October 30, 2009 17:3

Atlantis Press Book - 9.75in x 6.5in

Contents

1. Modeling and Testing Secure Web Applications

1.1 Introduction
1.2 RelatedWork
1.3 Testing Methodology Overview
1.4 Functional Specification of Web Applications using Ifhgaage . . .
1.4.1 Modeling Communicating Systems
1.4.2 IFFormallLanguage,
1.4.3 Case Study: Travel Web Application
1.4.4 Travel IF Specification
1.5 Secure Specification of Web Applications
1.5.1 Security Rules Specification Using Nomad Language . .
1.5.2 Security Integration Methodology
1.5.3 Correctness Proof of the Integration Approach
1.5.4 Travel Security Specification Using Nomad Language.
1.5.5 Automatic Rules Integration.
1.5.6 RulesIntegrationResults
1.6 TestGeneration
1.6.1 TestGen-IFtool
1.6.2 Fixingthe TestObjectives
1.6.3 Test Generation with TestGen-IF
1.7 Test Cases Instantiation and Execution
1.7.1 Tclwebtesttool
1.7.2 TestCasesInstantiation
1.7.3 TestCasesExecution
1.8 Conclusion
1.9 Acknowledgements
Bibliography

ap-book975x65

.. 4

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

Chapter 1

Modeling and Testing Secure Web Applications

1.1 Introduction

In modern networks, the heterogeneity and the increassighlition of applications, such
as telecommunication protocols, Web-based systems ahtimeasystems, make security
management complex. These applications are more and meneaoyl rely on networking
parts of computer systems that generally make use of diffes@utions. In the context of
the deployment of such applications and services, the igafficials are led to empiri-
cally bring security solutions together. The consistenicthese assemblies is difficult to
achieve. Nowadays, many security features are availabk call cite for instance cryp-
tographic protocols, management infrastructures of pukdiys (PKI), firewalls, control
access mechanisms within operating systems and apphsatigrusion detection systems
or anti-viral mechanisms etc.

To ensure that these different security components aretefieand that a certain level
of security is always maintained, the system behavior mastelstrained by a security
policy. A security policy is a set of rules that regulatesmiagure and the context of actions
that can be performed within a system, according to specifasr As an example, such
policy can tackle the interactions between a network itfe@sure and Internet or manage
accounts and rights toward an operating system or a datafd&semain objective is to
ensure that security policy is well defined and that is abtuedplemented in the system.

To reach this aim, we usually carry out audits that focus oniai$trative procedures
and systems configurations. Tests are then carried out ttk¢dheome known vulnera-
bilities would remain present. If several tools for somec#petests (such as passwords
crackers) exist, there is no general solution analyzingthegall system conformance ac-
cording to its security policy. Several reasons can expla@se deficiencies. First, there
is currently few research work on formal modeling of comelsécurity policies, even if
some aspects, such as access control security rules, hawetoelied further. In addition,
analytical work about security checking often focuses enwrification of punctual ele-
ments, such as cryptographic protocols or code analysiss, The responsible for security
and all the system administrators are missing a formal isolud ensure the coherence of
a system implementation with respect to its security pokegn if this last has been fairly
well defined.

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

2 Book Title

Most current work only concentrates on defining meta-laggaan order to clearly
express security policies and provide unambiguous rulesBAT [Abou El Kalamet al.
(2003)], PDL [Loboet al.(1999)], Nomad [Cuppenst al. (2005)] and Ponder [Damianou
et al.(2001)] are typical examples of such generic policy desiormpmodels. They suggest
concepts to describe the security policy independentlyhefgystem functional specifi-
cation or implementation. Once the security policy is foltynapecified, it is essential
to prove that the target system implements this policy. édgdéf one cannot ensure this
conformance, the global security cannot be guaranteed @mym

Many solutions can be proposed to achieve this objective iftiplementation con-
formance with respect to its security requirements). Thefaonance guarantee can be
reached for instance by:

e formally injecting the security policy in the consideredtsm code,

e or by formally specifying the target system to prove thateitifies the security policy
it has to respect,

e Or by considering several strategies of formal tests.

This last methodology will be explored in this chapter in toatext of Web-based ap-
plications. Indeed, in recent years Web-based systemdiemeene extremely popular and,
nowadays, they are used in critical environments such asdiala medical, and military
systems. As the use of Web applications for security-alitservices has increased, the
number and sophistication of attacks against these apiplsahave grown as well.

For this reason it is essential to be able to prove that thgetaMeb-based system
implements the security requirements it should respedicfiteed using a security policy
language). Model-based testing consists in deriving e sufittest cases from a model
representing the Web system behavior. Such a model can leeaged from an informal
specification of the system and designed by software engitlee®ugh the use of diagram
manipulation tools. Moreover, Web applications can haviena dependent behavior as
well as an increasing demand for security mainly due to timeireased complexity and
inherent distribution. Consequently, engineers devalpgiiese Web systems are not only
confronted to functional requirements but also have to mamdher kinds of requirements
concerning security issues. Roughly speaking, by “fumetisequirements” we mean the
services that a Web application has to offer to end users. &dsesecurity rules denote
the properties that a system has to fulfil so that it is always $afe state and guarantees
service quality.

To tackle this problem we rely, in this chapter, on a formadrapch to integrate elab-
orated security rules involving time constraints into anfat specification of the system
based on communicating extended timed automata [Bezgk(2004b)] supported by the
IF (Intermediate Format) language [Bozeggal. (2002)]. The derivation of the test cases
can be done automatically, providing generic test casexities in a standard language.
By executing the model-based test cases, the conformartice imfiplemented system to its
specification can be validated. More precisely, the mairirdmrtions of this chapter are:

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

Modeling and Testing Secure Web Applications 3

e The specification of Web application features using the iiglege. This language is
well-adapted to formally describe Web systems featureh aschyperlinks, sending
and receiving data and client-server communications, etc.

e The definition of Web system security requirements basecherNbmad [Cuppens
et al. (2005)] (stands for Non Atomic Actions and Deadlines Modetjnal language.
Nomad allows specifying, unambiguously, security rulessas permissions, prohi-
bitions and obligations) in specific contexts that includeetconstraints.

e The integration of the security rules within the functiotfaimodel to obtain a secure
specification that takes into account the security requérgs

e The automatic generation of test cases targeting secumitstaints. This generation
is performed using TestGen-IF tool based on Hit-or-Jumprétlym [Cavalli et al.
(2999)].

e These test cases are instantiated into TCL script languga@é Script Language
(2009)] and are applied, in an automated manner, on a realdasdd system (Travel
Web application provided by France Telecom Compaty check whether its behav-
ior respects the security requirements. The applicatiditlamanalysis of the designed
test cases are performed by tclwebtest tool [TclWebTest (ROD9)].

This chapter is organized as follows. In section 1.2 we dis¢he related work on for-
mal modeling and testing of secure systems with timed caim$. Section 1.3 exposes an
overview of our methodology to specify and test the secwfitijeb-based systems. In sec-
tion 1.4, we apply our methodology to an industrial caseystadlled Travel) and formally
specify its functional behavior. Section 1.5 presents @aausty integration methodol-
ogy as well as its corresponding tool. In section 1.6 and e automatically generate
security-target test cases using TestGen-IF tool and perfbem using tclwebtest tool.
Finally, section 1.8 presents the conclusion and introslfigtire work.

1.2 Related Work

Many models are proposed in the literature for the formatiigation of Web applications
from their functional point of view. These models sometinmesude functional time con-
straints. In [Syriani and Mansour (2003)] for instance, dla¢hors present a methodology
that specifies Web-based systems using the SDL formal lgegi@audinet al. (2007)].
This language is based on Extended Finite State MachineSNERmodel [Lee and Yan-
nakakis (1996)] and is well adapted for describing commafitig systems.

Others studies are based on timed automata theory [Alur @h@LB94)] and allows
specifying functional system requirements with timed prd post conditions. This paper
is based on the IF language [Bozgtaal. (2004b)] because it allows providing the main con-
cepts to design Web-based systems with time constraintszder, several tools allowing
the simulation and the generation of test sequences exisar@nopen source. However a
main issue here to guarantee the system reliability, istthiafunctional specification has

IFrance Telecom is the main telecommunication company in France.

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

4 Book Title

to be completed by integrating system security aspects.

To tackle this problem we have introduced in an earlier malion [Mallouli et al.
(2007)] a formal approach that permits to augment a funatidescription of a system
with security rules expressed with the Or-BAC language [Ald Kalamet al. (2003)]
(Organisationnal Based Access Control). We describedisgcules that specify the obli-
gation, permission or prohibition for a user to perform s@otons under given conditions
calledcontext This context does not involve time aspects since we onlgipd rules
without considering them. We applied this approach to a Wélolhse study in order to
validate its security and the results were satisfactory.

To be able to include timed security rules (for instance gasfjistem may have to spec-
ify the prohibition for a user to access to a specific docunfdrg/she is not authenticated
or if his/her session of 10 minutes has been expired), wegs@m this paper to rely on
the Nomad language [Cuppeesal. (2005)] that supports time constraints. We integrate
the defined Nomad security rules that the system shouldcgspith its IF formal specifi-
cation through the use of specific algorithms describeddti@@1.5. The obtained system
specification is called a secure system specification.

Many tools [Jard andéton (2005); Vieira and Cavalli (2007)] allowing automagst
generation [Merayeet al. (2007)] from IF specifications exist in the literature. Insth
paper, we rely on our own generation tool, called TestGernhi&t efficiently constructs
tests sequences with high fault coverage. The tool avoglsttite explosion and deadlock
problems encountered in exhaustive or exclusively randesarchies used in classical tools.
The execution of the generated tests are performed usinghitést tool [TclWebTest Tool
(2009)], well adapted to check the stability and scalgbdit\Web applications.

1.3 Testing Methodology Overview

In this framework, we present the proposed testing metlogyaio test security rules. This
methodology manipulates three different inputs:

e A functional specification of the Web application based anlthformal language.

e A specification of the security policy that the applicaticasho respect (based on the
Nomad language).

e And finally an implementation of the Web-based system.

The aim of this framework is to generate a new specificatiah@Web-based system
(called secure specification) that takes into account tberig policy, and then to generate
a complete test suite to check whether the implementatigheo$ystem conforms to this
secure functional specification.

To reach this goal we automatically integrate differenetypf security policy rules de-
scribed using the Nomad language within the initial funeilbsystem specification. Then,
we define an end-to-end methodology for testing Web applicatas presented in Figure
1.1. The main steps of our testing methodology aresiecificationof a secure system
based on the IF language, thetomatic test generatiobased on TestGen-IF tool (gener-

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

Modeling and Testing Secure Web Applications 5

Security
Requirements

Functional
Requirements

!

IF Model I:

Automatic Test
Generation

Secure IF Model \

Abstract Test Cases

« > Web)
a . . Tester Tclwebtest Scripts
Application

Verdict

Fig. 1.1 Testing Methodology Overview

ated test cases are described in aldebaran standard ngkimandeet al. (1996)]), their
instantiation toexecutable test casesd theapplicationof these test cases on a real Web
application using tclwebtest language. The analysis ofleb application is performed
using a dedicated tool called ACS-Automated-Testing iporated in the OpenACS plat-
form [OpenACS Community (2009)].

1.4 Functional Specification of Web Applications using IF Laaguage

1.4.1 Modeling Communicating Systems

The objective of modeling a Web-based system is to providepanational specification
of a system from the functional point of view which can in@uime constraints. In par-
ticular, it helps to provide a better common understandindp@ system. In addition, this
operational model can also be used as input to existingatdia tools, such as interactive
or random simulators, model-checkers or (conformancéptrseration engines.

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

6 Book Title

To achieve the modeling goal, we rely in this approach on TR®del supported by
IF language [Bozgat al. (2004b)] because it provides the main concepts to desidn rea
time systems. Moreover, several tools allowing its simatatind the generation of test
sequences exist and are open source. A TEFSM modeling oftensy®nsists of a set
of processes, each one denotes a TEFSM that can communiitiatetiier processes via
FIFO channels.

Definition 1.1. ATEFSM M isa 7-tuple M < S, 9, |, O,X,C, Tr > where:

S is a finite set of states;

S is the initial state;

I is a finite set of input symbols (messages possibly withrpatars);
O is a finite set of output symbols (messages possibly witinpaters);
X is a vector denoting a finite set of variables;

C is a vector denoting a finite set of clocks;

and Tr is a finite set of transitions.

A transition tr is a 4-tuple te=< s, s, G, Act > where:

e 5 and g are respectively the initial and final state of the trangitio

e G is the transition guard which is composed of predicateso{@mn expression) on
variablesX and clock<;

e and Act is an ordered set (sequence) of atomic actions inaudputs, outputs, vari-
able assignments, clock setting, process creation andistn.

The execution of any transition is spontaneous i.e. th@r(s) associated with this
transition occur simultaneously and take no time to conepletich is not the case of the
model presented in [Merayet al. (2008)]). The time progress takes place in some states
before executing the selected transitions. More detadsitafime progress can be found in
[Bozgaet al. (2004b,a, 1999)].

input A input A, P, T, set ckl = 0, output X

output input C
set ck2=0,
output Z

Fig. 1.2 Example of a Simple TEFSM with Four States.

We illustrate the notion of TEFSM through a simple examplscdiéed in Figure 1.2.
This TEFSM is composed of four stateé$(S;, S and S3) and six transitions that are
labeled with three input8, B andC, three output¥, Y andZ, one guard (or predicat®
on variables, two clocksk; andck, and four taskg, T/, T” andT".

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

Modeling and Testing Secure Web Applications 7

The TEFSM operates as follows: starting from st&ewhen the inpufA occurs, the
predicateP is checked. If the condition holds, the machine performstas& T, starts
the clockck,, triggers the outpuK and moves to stat§;. Otherwise, the same output
X is triggered but it is actiof’ that is performed and the state loops on itself. Once the
machine is in stat&;, it can come back to stat®y when the clockck; exceeds the value
6 and receives the inpl. If so, taskT” is performed and outpu¥ is triggered. On the
reception of the input, the clockck; is started, the outpu is triggered and the machine
moves to stat&. Once the machine is in sta®g, it can go to stat&; when the cloclcky
exceeds the value 2 and receives the irulf so, taskT” is performed and outpX is
triggered. In Stat&s, on the reception of the inp#, the machine triggers the outpxt
and comes back to the initial stefg

In the following sections, ifr = < §,s¢,G,Act > anda € Act, then we can denot&ct
by (beforda); a; after(a)) to express that actioais performed within the transitiotr
and that there is possibly other actions before or &téye forda) andafter(a) may be

empty).

1.4.2 IF Formal Language

The Intermediate Format (IF) language can be consideredcasnanon representation
model for other existing languages. It was originally depeld to sit between languages as
SDL, Promela [Gallardet al. (2004)] or Lotos [ISO (1989)]. It has been extended to deal
with UML notation as well [Cavarr&t al. (2002)]. IF is based on communicating timed
automata TEFSM, and it is used to describe and validate hsynous systems.

In IF, a system is a set of processes communicating asynchstnthrough a set of
buffers. Each process is an TEFSM that models the behaviargifen component. A
process can send and receive messages to and from any buffer.

The semantic of time is similar to the one of communicatingeded timed automata.
That is:

e A time behavior of a system can be controlled through clocks.
e The time progresses in some state before selecting andtexgsame transitions.
e Transitions take zero time to be executed.

In order to control the time progress or the wait time in stalle implements the notion
of urgency in the transitions. A transition may have pripaver others, or may be delayed.
In this context, a transition may be described as following:

deadline {eager, delayable, lazy};
provided <expression>;

when <constraint>;

input <signal (expression)>;
{statement};

{action};

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

8 Book Title

if <expression> then {statement} endif;
while <expression> do {statement} endwhile;
nextstate <state_id>;

stop;

In the sample above, “Eager”, “Delayable” and “Lazy” contethe priority of the
transitions related to the progress of time, where:

e Eager: the transition has priority over the time. The time gat evolve except if the
transition is fired. In other words, these transitions msekecuted as soon as they
are enabled and waiting is not allowed.

e Delayable: the time has priority over the transition. Thisams that the time may
evolve until the time constraint becomes true. When it is Ethhwaiting is allowed
as long as time progress does not disable it.

e Lazy: the transition and the time have the same priority.hla tase does not matter
what comes first: the transition may be fired or the time mayvevd hese transitions
are never urgent. When a lazy transition is enabled, theitimmsnay be executed or
the process may wait without any restriction.

Several tools may interact with IF. Some concern the autiertrainsformation of sys-
tem specifications into IF Format (&DL2IF, or UML2IF). Other tools have tackled the
system analysis and verification using the IF format suchHResXITAnnichiniet al. (2001)].
Other possibilities are the simulation of the system (IB22nd IFxX'), or even the test gen-
eration using TGV tool.

1.4.3 Case Study: Travel Web Application

To prove the effectiveness of our framework we carried ouadseestudy using a Travel
application which is an internal service used by Francectetecompany to manage ‘mis-
sions’ (business travels) carried out by its employees.uincase study we only consider,
at first, a simple Travel application where a potential tlawvean connect to the system
(using a dedicated URL) to request a travel ticket and a mesarvation during a specific
period according to some business purposes (called m)sgibis request can be accepted
or rejected by his/her hierarchical superior (called \atlid). In the case it is accepted, the
travel ticket and hotel room are booked by contacting a tragency. The specification of
this Travel Web application is performed using the IF larggua

Further, we defined some specific security rules to boostykis security. These
security rules are inspired from France Telecom’s sectegy campaign and are formally
specified using the Nomad model.

2http://www-omega.imag.fr/

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

Modeling and Testing Secure Web Applications 9

grant_choice
(m_recv, p_recv)

(while i < NB_TRAVELER)

\

req_validation (m_recv, p_recv) to
({basic_traveler} i)

(end while)

send_validate_notification send_unvalidate_notification
(v_recv, m_recv) (v_recv, m_recv)

recv_unvalidate_notification
(v_recv, m_recv)

recv_validate_notification
(v_recv, m_recv)

X X

Fig. 1.3 An IF State in the TravéMission Process: q7 and g8 States

1.4.4 Travel IF Specification

Modeling Web applications allows software engineers te¢gpaunderstand and maintain
their complex architecture in an optimized manner. To penfthis formal specification,
we use the IF language to model the functional behavior oTtheel communicating Web
application. This specification provides the metrics inttdae 1.1.

Table 1.1 IF Travel System Specification
Processes States | Transitions | Signals | Variables

basictraveler 5 12 13 11
travelermission 7 12 11 8
basictravel 2 7 7 8
travelLmission 9 11 14 6

The IF model is composed of four processes. Each process goitates with the
other using a set of signals:

e basictravel andtravel. missionare two processes that describe the Travel system be-
havior. basictravel allows to communicate with a basic user of the system whereas
travel.missionallows to manage the ‘missions’ requested by a potentie¢lea

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

10 Book Title

e basictravelerandtraveler missionare two processes that describe the user behavior.
The first process simulates a basic traveler that can chasgwdfile, delegate its
rights, and request the creation of a mission or its valisatiVhereasraveler mission
describes a potential traveler that can choose the defaitslmisiness travel.

The IF specification of the Travel system is finite but larger. fiRatter of space, we only
present, in Figure 1.3, two stateg @ndqgg) from thebasictravel process. In the statg,
the system asks for a validation relating to a mission retfoeput reqvalidation()). State
gs has two transitions. The input in the left transition (resight transition) is received
from the mission validator that sent an acceptance (respjeaty notification to the Web-
based system. This natification is transmitted to the pitktraveler using the output
signal (output recy(un)validatenotification()).

1.5 Secure Specification of Web Applications

1.5.1 Security Rules Specification Using Nomad Language

We rely in this approach on Nomad formal language [Cuppered. (2005)] to specify,
without any ambiguity, the set of security properties tlmg $ystem has to respect. The
choice of this language was mainly motivated by the charistites of Nomad that provides
a way to describe permissions, prohibitions and obligati@tated to non-atomic actions
within elaborated contexts and mainly time constraintscBybining deontic and tempo-
ral logics, Nomad allows to describe conditional privilegad obligations with deadlines,
thanks to the time concept it supports. Finally, it can atsonilly analyze how privileges
on non atomic actions can be decomposed into more basiteged on elementary actions.

1.5.1.1 Nomad Formal Language: Syntax and Semantics

To meet the requirements of the functional model of the systee define an atomic action
with the same concepts of TEFSM actions.

Definition 1.2. (Atomic action) We define an atomic action as one of the fatig\actions:
a variable assignment, a clock setting, an input action, atpot action, a process creation
or a process destruction.

Definition 1.3. (Non-atomic action) If A and B are actions, theé& B), which means "A is
followed immediately by B” is a non-atomic action.

Definition 1.4. (Formulae) If A is an action then stgr) (starting A), and don@) (fin-
ishing A) are formula.

e If a and B are formulae thera, (a A) and(a Vv) are formulae.

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

Modeling and Testing Secure Web Applications 11

e If o is aformula then @a (a was true d units of time ago ifd 0, a will be true after
d units of time if &> 0) is a formulae too.

e If a is a formula then O% (within d units of time agog was possibly true if & 0,
o is possibly true within a delay of d units of time iBd0) is a formulae.

e If o andy are formulae ther{a|y) is a formula whose semantics is: in the contgxt
the formulaa is true.

In the rest of the chapter, we refer to operatd® and “|” by timedand contextual
operators respectively. Also, we use the nota®A to cover both case® and O<9.
Notice also that using Nomad formalism, we deal with a disctiene. The choice of the
unit of time can be very important and depends on the studistés. In our work, we
use real time units like seconds, milliseconds or microsdsalepending on the desired
precision.

Definition 1.5. (A security rule) Ifa and 3 are formulaeZ (a | B) is a security rule where
R denotes one of the following deontic operatofs?, .#, 0'}. & (a | B) (resp..Z (o |
B), ¢ (a | B)) means that it is permitted (resp. prohibited, mandataoygxecutex when
contextf holds.

1.5.1.2 Examples of Security Rules Specification

We present in this section some examples of security rulesfigations according to No-
mad language:
Example 1:

P (start (input ReqWrite(user,file.dot))
(O=-°% done (output AuthOK(user)))
(— done (output DisconnectOK(user))))

This rule expresses a permission granted to any user tosetuevrite in ‘file.doc’, if
earlier, within 5 seconds, he/she was authenticated inysters and his/her authentication
is still running.

Example 2:

O(start (output DisconnectOK(user))
(O=—30min_, done (input (user)))\
(— done(output DisconnectOK(user))))

According to this obligation rule, the system must disca@erunning connection of
any user if this latter remains inactive for 30 minutes.
Example 3:

Z (start ((output AuthOK (user)))
0=-001s done (output AuthOK(user))
(— done(output DisconnectOK(user))))

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

12 Book Title

To avoid service deny, this prohibition rule means that {stesn must not allow any user
to get two simultaneous connections in the same millisecond

1.5.2 Security Integration Methodology

The integration of security rules into a TEFSM model desnglihe behavioral aspects of
a system leads to a TEFSM specification that takes the sgqalicy into account: we
call it ‘secure functional specification’. The integratiprocess is twofold. At first, the
algorithm seeks for the rules to be applied on each transitidhe TEFSM specification.
Then, it modifies each transition by adding some statessitians and clocks or by up-
dating transition guards. This modification depends on #tare of the rule (prohibition,
permission or obligation) and its syntax format.

1.5.2.1 Integration Process Assumptions

To integrate security rules into a TEFSM specifications, w&eehto make the following
assumptions:

e The initial TEFSM specification representing the behavibthe system is correct.
Indeed, it must be deadlock free and each state must be tdadi@n any other state.

e The initial TEFSM specification of the system does not take atcount any security
requirements. It only specifies system behavior from itgfiomal point of view.

e The security rules to integrate are consistent. We assuatdttio not contain any
incoherent or redundant rules. Checking the consistentiyeo$ecurity policy is out
of the scope of this approach. We assume that this issue baschecked. There are
several techniques to achieve this goal (see for instangegén<et al. (2006)]). Here
is an example of inconsistent security policy composed ofriwles¢ (start(A)| O 9
done(B))and.Z (start(A)| O~9 done(B)) We cannot oblige the system to perform
actionA in a contexiC = O~9 doneg) if this action is forbidden in the same context.

1.5.2.2 Security Rules Classification

According to the Nomad syntax, there are several possilslasdor security rules. It
would obviously be tedious to deal separately with each @$¢lforms. Consequently, we
classify the Nomad security rules into two main classesritest hereafter:

(1) Basic Timed security ruleswe consider in this class security rules of the form
Z(start(A)|0l<l9dongB)) whereA andB are actions. To make easier the integration
of such rules, we also distinguish two subclasses:

(a) Basic security rules with atomic actianactionsA andB are atomic.
(b) Basic security rules with decomposable actiodsor B or both are non-atomic
actions. They denote a sequential set of atomic actions.

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

Modeling and Testing Secure Web Applications 13

Section 1.5.2.3 gives the algorithms we have developedégiate such basic security
rules into a TEFSM specification.

(2) General security rulesa general security rule denotes any rule that does not €t int
the first class. This means that the rule may contain severdéxtual or/and timed
operators or/and logical connectors. In section 1.5.2etshow that such a rule can
be decomposed and rewritten into one or several basic riiekis way, integration
algorithms developed for the first class can be reused arltedpp integrate general
security rules.

1.5.2.3 Integration of Basic Timed Security Rules
This section describes the integration of security rulethefform:
Z (start(A|O/=/9dongB))

As stated in the previous section, we have to distinguisk&lses of atomic and non-atomic
actions. The first part of this section describes the algarit that allow the integration of
basic security rules that only contain atomic actions, whsrthe second part deals with
non atomic actions.

Basic Security Rules with Atomic Actions

A basic security rule with atomic actions has the followirgrnfi: % (start(A |
0l=lddongB)) whereR € {.#, &, 2} andA andB are atomic actions.

Prohibitions Integration

The prohibited action relates usually to an already exgsdiction in the initial system.
Considering the TEFSM specification, actiBrcan appear on one or several transitions.
The basic idea of integrating such prohibition rule in a TER80del is to check the rule
context before performing the prohibited action. If thisitxt is verified, the prohibited
actionA must be skipped. Otherwise, if the context is not valid, ttt@a can be performed
without any rule violation. Since we deal with a timed comtexe have to define a clock
to manage the temporal aspect of the rule.

First Caseln the following, we present the different steps to integratprohibition rule

in the form of.Z (start(A) | O<~¢ done(B))within a TEFSM model whered(> 0). This
rule expresses that it is forbidden to perform actfoifwithin (d — 1) units of time agoB
was performedB is the context action anélis the prohibited action. Three steps are to be
considered:

e The creation of a public clockk that can be modified by all the TEFSM model pro-
cesses.
e ClockCkis set to 0 after each occurrenceBin the TEFSM transitions. Intuitively,

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

14 Book Title

Ck measures the time elapsed from the last occurrence of aBtiddefore the first
occurrence 0B, clockCkis simply inactive.

e Before performing the prohibited actigy we verify whether clociCk is already ac-
tivated. If so, we check its valuation to deducditan be performed or not. If clock
Ckis not activated, that means that the system did not perByet. In that caseA is

allowed.
B
B‘ .

Fig. 1.4 Initial System Specification.

These steps are provided in pseudo-code in Algorithm 1.1llukirate this algorithm,
we present an example of a prohibition rule integration iguFé 1.4 and 1.5. The initial
functional system illustrated in Figure 1.4 contains salveccurrences of the atomic ac-
tions A andB. We want to integrate the rulé (start(A) | O<~9 done(B))that stipulates
that it is forbidden to perform actioA if within d units of time agoB was performed.
Applying Algorithm 6, we obtain the secure system depicteBigure 1.5.

B, set Ck:=0

when Ck>d-1, A

provided
active Ck,
when Ck>d-1

provided not
active Ck,
A

B, set Ck := 0

Fig. 1.5 Secure System Specification.

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

Modeling and Testing Secure Web Applications 15

Algorithm 1.1 Prohibitions Integration (1/2)
Require: The TEFSM modelM =< S 5,1,0,X.C, Tr > and the prohibition security rule#
(start(A)| O<~9 done(B))
1. Define a new integer variable k:=0;
2: Define a new clockCk within M
3: for each (transitiontr such thattf € TrAtr =< §,S;,G,Act >)) do
4. if Be Actthen

5: tr := < §,Sj,G, (beforgB); B;set ck=0; After(B)) >
6: if ((A € Act) A Ac After(B)) then
7 *tris of the form< S, Sj, G, (be forgB); B; C; A; After(A)) >*/
8: Create a new stal®y and a new transitiof r
9: tr :== < §,Sx,G, (beforgB);B;C) >
10: tri ;= < Sy, Sj, {when Ck> d — 1}, (A;After(A)) >
11: k++;
12: end if
13: else
14: if (A € Act) then
15: Create a new transitiofirg
16: tr:= < S,S;,{G, provided not active Ck (beforgA); A;After(A)) >
17: try =< §,Sj,{G, provided active Ckwhen Ck> d — 1}, (be forgA); A;After(A)) >
18: k++;
19: end if
20: endif
21: end for

Second caseThis part gives the steps to follow in order to integrate hwita TEFSM
specification, a prohibition rule of the for (start(A)| O~9 done(B))whered > 0. This
rule expresses that it is forbidden to perform actfoifi B was performedl units of time
ago. The first solution that comes to mind consists in defidikg in the first case- a new
clockCkwhich is set to 0 each time actid@is executed. Then, the guard of each transition
that executes actioA is reinforced by the guarfiCk d} to make the transition fireable
only if the elapsed time from the execution of act®is different fromd (It may be more

or less). This solution is represented by a declination gfoAithm 6 by replacindwhen
Ck> d— 1} with {when Ck# d}.

Table 1.2 A Transitions Sequence Example with Time

Progress.
Transition | Arrival State § | Durationin §
Tr V- R 2 2
Tr, -0 D 3
Trs D —SL S 2
Trg Sl— R Y Not relevant

Figure 1.6 illustrates the application of this algorithm thie example of the initial
TESM presented in Figure 1.4. However, a deep analysis giragented solution shows
that this latter is only conceivable if the interval between successive executions of ac-

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

16 Book Title

tion B is longer thard. Indeed, let us assume that TEFSM system in Figure 1.6 felibe
sequences of transitions shown in table 1.2 and that déqgkogresses after its activation
in each stat& according to a given valuation.

when Ck<>d,

provided
active Ck,
when Ck<>d,

provided not
active Ck,
A

Fig. 1.6 First Intuition for Prohibition Rule Integration

Let us suppose thatis equal to 5gckdenotes a master clock that measures the system
global time. The progress of the secure system is descnibéalle 1.3.

Table 1.3 The Secure TEFSM System Progress

Tr State | gck | Ck | Note
Try D 0 -1 | Ckis not yet activated
2 0 -1 | Transitions are instantaneous
Time progress (2 units of time)
Try S 2 -1 | Ckis not yet activated
0 2 0 1st execution oB
Time progress (3 units of time)
Trs D 5 3 Both clocks progress
S1 5 0 2nd execution oB
Time progress (2 units of time)
Try S 7 2 Both clocks progress
2 7 2 | ActionAis performed since
Ck#5

We can notice that sindgék is not equal to 5, actioA is ‘wrongly’ executed although
the time elapsed from the first execution of act®is equal to 5. This is due to the reset
action Ck:= 0) executed at the second occurrenc8ofn other words, this re-set action
erases the previous executionBfrom the system memory.

To cope with this limit, we suggest the following second ol Basically, we define a
clockgckthat denotes a master clock that measures the time elajpsethe beginning and
an integer variable that indicates the next moment when the executioA isfforbidden.
Thus, for each execution of actid®) the system creates a new proc&dsP (for Rule
Handler Process) that waits duridgunits of time. Then, it updates the valueato state
the moment when the execution Afis forbidden, then it stops (it kills itself). The global
clock gckis compared to the value afbefore performingA. The algorithm 1.2 formally

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

Modeling and Testing Secure Web Applications 17

Algorithm 1.2 Prohibition Integration (2/2)

Require: The TEFSM modelM =< S 5,1,0,X.C, Tr > and the prohibition security rule#
(start(A)| 09 done(B))

1. Define a new integer variable k:=0;
2: In M, define a new public clocgckand a new public integer variabte
3: Inthe initial State, set gck :=0
4: ¢c:=-1
5: for each (transitiontr such thattf € TrAtr =< §,5;,G,Act >)) do
6: if (B € Act) then
7: tr := < §,Sj,G, (beforgB);B; fork RHP((integengck+d); After(B)) >
8: [*RHP is a new process that handles the c variable. It accepts an intgengter*/
9: if ((A € Act) A Ac After(B)) then
10: *tr is of the form of< §, S, G, (be forgB); B;C; A; After(A)) >*/
11: Create a new stat®y and a new transitiof r
12: tr :== < §,Sx,G, (beforgB);B;C) >
13: tri ;= < Sy, Sj, {when gck# ¢}, (A;After(A)) >
14: k++;
15: end if
16: else
17: if (A € Act) then
18: G := {G, when gck# c}
19: end if
20: endif
21: end for
22: for RHP (T)do
23: In the initial stateS,, define a transitiof rl

24: trl:=<$%,_,whengck=T, (c:=T; stop >
25: end for

defines these steps.
Applying this algorithm on the TEFSM of Figure 1.4 gives trezgred TEFSM de-
picted in Figure 1.7.

B, fork RHP (gck+d) Process RHP (T)

when gck<>c, A a

Fig. 1.7 Prohibition Rule Integration# (start(A)| 09 done(B)).

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

18 Book Title

Permissions Integration

Like prohibitions, permission relate to actions which athg exist in the initial func-
tional system. Though even the permission to perform amétin a given contexC it
is equivalent to the prohibition to execute actidanvhenC is not verified, the permission
integration algorithms are slight different form those eleped for prohibition rules. We
give hereafter the steps to follow to integrate permissrores.

First case.n this section, we propose a methodology to integrate a igsiom rule in
the form 2 (start(A) | O<~¢ done(B))within a TEFSM model whered(> 0). This rule
expresses that it is permitted to perform actoii within (d — 1) units of time agd was
performed. Like in prohibitions integration, we need to defa new public clock variable
that can be modified by all the TEFSM model processes. Thisagidock is set to 0 after
each occurrence d@. Before performing the granted actidnand in case where actid

is not already executed in the same transition, we verifyctbek valuation (if the clock is
already activated) to deduceAfcan be performed or not. In fact, if acti@is executed in
the same transition just before acti@nthis latter later can be executed without violating
the permission rule.The steps to integrate a permissi@nang described in pseudo-code
in algorithm 1.3.

Algorithm 1.3 Permission Integration (1/2)
Require: The TEFSM modeM =< S 5,1,0,X,C, Tr > and the permission security rule
2 (start(A)| O<~9 done(B))
1: Define a new clockCk within M
2: for each (transitiontr such thattf € TrAtr =< §,§;,G,Act >)) do

3: if (B € Act) then

4: [* tr is of the formtr =< §, §;, G, {beforgB); B; After(B)} > */

5: tr :=<8§,S5;,G,{beforgB),B,set Ck= 0, After(B)} >

6: endif

7. if (A€ Act) then

8: * tr is of the formtr =< §, Sj, G, {be forgA); A; After(A)} > */

o: if (B ¢ BefordA)) then
10: tr :=<§,S;,{G, (provided not active OQkv

(provided active Ckwhen Ck> d)}, {befordA); After(A)} >
11: [*Create a new transitiotr,*/
12: tri =< §,S;, {G, provided active Ckwhen Ck< d},
{beford A)A After(A)} >

13: end if
14: endif

15: end for

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

Modeling and Testing Secure Web Applications 19

Algorithm 1.4 Permissions Integration (2/2)
Require: The TEFSM modeM =< S 5,1,0,X,C, Tr > and the permission security rule
2 (start(A)| O~9 done(B))
1: Define a new integer variable k:=0;
2: In M, define a new clock publigckand a new public integer variabte
3: In the initial State, set gck :=0
4. c:=-1
5: for each (transitiontr such thattf € TrAtr =< §,S;,G,Act >)) do
6: if (B € Act) then
7: * tr is of the formtr = < §,§;, G, {beforgB); B;After(B)} > */
8: tr :=<8§,S;,G,{beforgB),B,
fork RHP((integengck+d),After(B)} >

9: (RHP is a new process that handles the c variable. It acceptsemer parameter)
10: if (A € After(B)) then
11: *tr is of the formtr = < S, S;, G, {beforgB), B,

fork RHP((integengck+d), C, A, After(A)} >)*/

12: Create a new stal® and a new transitiotry
13: tr :=< §,%. G, {beforeB), B, fork RHP((integengck+d),C} >
14: tri := < &, Sj, {when gck= c}, {A After(A)} >
15: K++;

16: end if

17: else

18: if (A € Act) then

19: * tris of the formtr = < §,S;, G, {befordA); A; After(A)} > */
20: tr :=<§,S;,{G, when gck= c},Act >
21: end if
22: endif
23: end for

24: for RHP (T)do

25: Inthe initial statey, define a transitiotr 1

26: trl:=<$%,_,whengck=T, {c:=T, stop} >
27: end for

Second caseThis part gives the steps to follow in order to integratethimi a TEFSM
specification, a permission rule of the fors (start(A)| O~9 done(B))whered > 0. This
rule expresses that it is permitted to perform actioifi B was performed! units of time
ago. If this condition is not satisfied is denied. Like in the case of prohibition rule, we
need to define a global clogckan integer variable that indicates the moment when the
execution ofA is permitted. Thus, for each execution of acti®rithe system creates a child
process that waits state duridgunits of time. Then, it updates the valueto state the
moment when the execution Afis granted, then it stops. The global clagkis compared
thec value before performing. The algorithm 1.4 formally defines these steps.

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

20 Book Title

Obligations Integration

To integrate an obligation security rule, we rely on a newcpssRH Pthat ensures the
execution of the mandatory action. If the related mandaation is not executed by the
initial specification, the process has the task to execlitseif.

First caseThe integration methodology follows these steps for a rud is in form of&
(start(A)| O~9 done(B))whered > 0:

e The definition of a new process that can be creatéithes by the initial functional
specification.n is the maximum number of occurrences of the rule contexbadi
that can be executed duriiigunits of time.

e The new process has to set a clock and wait until the deadiimeaiched. At this
moment, it performs the mandatory acti@n

Algorithm 1.5 Obligations Integration (1/2)

Require: The TEFSM modeM =< S 5,1,0,X,C, Tr > and the obligation security rul€ (start(A)
| 0~9 done(B))
1: for each (transitiontr such thattf € TrAtr =< §,§;,G,Act >)) do
if (B € Act) then
tr:=<§,Sj,G,(beforgB);B; fork RHP Afte(B)) >
[*RHP is a new process that handles the obligation rule*/
end if
end for
. for RHP processlo
. Define a new clock Ck
Define a new state Wait
Define two transition3 rl andTr2
trl =< $,Wait, _,set Ck=0 >
12: tr2:=< Wait, - ,when Ck>d —1,(A;stop >
13: end for

oOoNO RN

R
o

Note that we assume that the initial syst&is not secure, that is it does not perform
the actionA, d units of time afterB. Otherwise, (ifA is performed byS), we can easily
define a boolean and public variablar that is set to true wheA is executed at the right
moment. In that case, the external prodestP performsA only if var = false

In Figure 1.8, we present the integration of an obligatide within the initial system
depicted in Figure 1.4. In this functional system, we can $iederal occurrences of atomic
actionB.

Second casdo add an obligation rule of the form @f (start(A)| O<~¢ done(B)) we have
to associate with each occurrence of actiban execution of actiod. This latter action
has to be performed within a delay af{ 1) units of time. To perform such an integration,
we have to follow the steps given hereafter (see Algorith®): 1.

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

Modeling and Testing Secure Web Applications 21

B, fork RHP() Process RHP

‘ t
se

Ck:=0

Fig. 1.8 Obligation Rule IntegrationsZ (start(A)| O~ ¢ done(B)).

B, fork
RHP()

when Ck=5, A
wait V
JAN

Algorithm 1.6 Obligations Integration (2/2)

Require: The TEFSM modeM =< S 5,1,0,X,C, Tr > and the obligation security rul€ (start(A)
| 0<~9 done(B))
1: In the initial state oM, waits := 0
2: for each (transitiontr such thattf € TrAtr =< §,§;,G,Act >)) do
3: if (B € Act) then
tr := < §,Sj,G, (beforgB); B;waita + +; fork RHR); After(B)) >
end if
if (A € Act) then
tr := < §,Sj,G, (beforgA); A;if (waity > 0) waity — —; After(A)) >
end if
end for
10: for RHP processlo
11: Define a new clockCk
12: Define a new state Wait
13: Define three transitions 1 andtr2 andtr3
14 trl:=< §,Wait, _,set Ck=0>
15: tr2:=<Wait, _,{when Ck=d — 1,if (waity > 0)}, (A;stop >
16: tr3:=<Wait, _,{when Ck=d—1,if (waita = 0)},stop>
17: end for

©oNoaRr

e We define an integer variableaits that counts the number of occurrences of actiBns
that are waiting for an execution of actién

e We define a new proce$®HP where a cloclkCk is activated to wai{d — 1) units of
time (till action A has to be executed). When the deadline is reached, pr&t¢Bs
checks whether we are waiting for any execution of acdwaita > 0) and executes
Aif necessary.

e Variablewaity is updated as followswaita is incremented each time acti@his ex-
ecuted. If the valuevaita is strictly positive, it is decremented each time actfois
executed either by the initial specification or by prodestP.

Intuitively, processRHP has to wait for a possible execution of actidrduring the
allowed time(0..(d — 1)). In case where the initial specification does not executh anc

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

22 Book Title

action, procesRHP must execute it.
Figure 1.9 shows the integration of obligation rule of thenfas’ (start(A) | O<—¢
done(B)) within the initial system shown in Figure 1.4.

B, wait_A++, fork RHP() Process RHP()

fork RHP(),
A,

if(wait_A>0)

wait_A--

set
Ck:=0

when (ck=d-1), if (wait_A>0) A
when (ck=d-1), if (wait_A=0)
Fig. 1.9 Obligation Rule IntegrationsZ (start(A)| O<~9 done(B)).

Basic Security Rules with Non-Atomic Actions

In this section, we consider the integration of securityesulvith non-atomic actions
(see definition 1.3). A non-atomic actiénis sequence of atomic actiofias; . . . ; asiz¢) } -
First, we define two different categories of non-atomicatii

Definition 1.6. (1_Tr actions) a nhon atomic action A isTr action with respect to a tran-
sition tr =< s§,s¢,G,Act > if and only if AC Act. That means that it exists sequences of
actions X and Y such that (Aet (X;A;Y)). Both sequences X and Y may be empty

Definition 1.7. (n_Tr actions) a non atomic action A is &k action with respect to the
ordered set of transitions T+ {try,...,trc} if and only if the execution of A needs the
triggering of all the transitions of Tr in their order in Tr. bte formally:

(1) Vi.(1<i< (k—=1) = FStri) = 1S(tr(,1))) where 13tr) (resp. F$tr)) denotes the
initial state (resp. Final state) of transition tr.

(2) AC (Act(try);...;Act(trk)). Act(tr) denotes the sequence of actions labeling transi-
tion tr.

Integration of Rules witlh_Tr Actions

Let us consider a I'r non atomic actiorAct with respect to a transitiotr, and a
security rule of the fornR(A|Ol</=9B). The integration of security rules containing the
Actin the transitiortr is performed similarly to the case of atomic actions sincénesedle
a unique transition. In other words, we can apply the algoré we defined in section
1.5.2.3 by distinguishing the two following cases:

e B = Act the activation of the possible clocks and the creation ehaval processes
are added to actions of immediately after the execution of actidwt.

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

Modeling and Testing Secure Web Applications 23

e A=Act: in that case, possible guards related to the clocks aredaddbe guard of
transitiontr.

Integration of Rules with 1Tr Actions

The handling of decomposable actions can be inspired fromllgdli and Cavalli
(2007)]. In this section, we only considarTr actions that are decomposable ulis-
tinct transitionsTr = (try,...,tr,). We also make the assumption that the subgraph formed
by transitionsTr does not contain any cycle. According to thigransitions, we introduce
the following notations:

e The starting transitio®T: includes the transition that the system has to follow totsta
the action:ST =try.

e The ending transitioET: includes the transition that the system has to follow to end
the action:ST =trp.

e The intermediate transitions séTS includes the remaining transitionstT =
{tra,...,trp_1} and may be empty.

e The outgoing transitions s&T S includes the transitions whose initial states belong to
those of transitionsI{r — {tr1 }) and whose final states are beyond the action. This setis
formally defined as followsOT S= {tr|3tr’.(tr’ € Tr—{tr1} A IS(tr) = IS(tr") Atr #
tr'}.

Fig. 1.10 An initial TEFSM specification with onefr Action a;b;c;d.

In Figure 1.10, the actiofe; b;c;d) is a 4Tr decomposable action. We have one start-
ing transition §T), two intermediate transition$T1 andI T 2), one ending transition&(T")
and two outgoing transition€(T1 andOT?2).

For sake of space, this chapter only discusses the integratia prohibition security
rule of the form.7 (start(A)|O<~9dongB)) with A and/orB denoting decomposable ac-
tions. The other cases can be deduced based on the same oheglyodTo integrate a
security rule with decomposable actions we have to know kdréhe underlying system is
executing any decomposable action. [@t= (c;;...;¢cn)) be a decomposable action with
respect to transitionsr = {try,...,tr,}. A system is executing actidd if and only if it
is firing transitionsTr in the good sequence order. To memorize such a state, we define

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

24 Book Title

variablevc that is initialized to false and updated in the TEFSM as fedb

e The action(vc :=true) is added to the starting transiti@T.

e The action(vc := false) is added to each outgoing transitione OTS In fact if the
system fires a transition belonging @T S this means that the possible execution of
actionC is interrupted.

Variablevc being defined for each decomposable action, the integratiocess pro-
ceeds as follows:

e B=C: the activation of the clock is done when the whole decomiplesaction is per-
formed, that is, when the system is firing the ending tramsET and whilevc is true.
So, we add actionsgt ck:=0 by stating that this action is only performed whenis
true.

e A=C: to forbid the execution of actio@ in a given context, we chose to skip the last
action(s) in the transitiotr, when context condition holds. In our case for instance,
we add condition(vhen ck ¢, d-1) orey= false to the ending transitio&BT. By this
way, we state that this transition is only fired if the time staint is fulfilled or the
system is not running actid.

Cond = (when Ck >d-1) or (v=false) or (provided not active Ck)

Fig. 1.11 Secure TEFSM After Integration.

Figure 1.11 shows the integration of security rék(start(e)|O<"9donea;b;c;d)).
Variable v is added to know if the system is running or not the decomgesattion
(a;b;c;d).

1.5.2.4 Integration of General Security Rules

So far, the integration algorithms we have described onl déth security rules with

a unique timed operator in the context part. Moreover, thetes do not contain any
logical operator. This section gives some features to elxtam proposed approach by
considering more elaborated rules that may contain sel@yadal and timed operators.

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

Modeling and Testing Secure Web Applications 25

Table 1.4 Rewritten Rules for Some Elaborated Security

Rules
Rule Rewrite
Z(ACLVCy) {%(AC1), Z(AIC2) }
whereZ € {? 0,7}
Z(ALV A2|C) {#(A[C), % (A2|C)}
whereZz € {F, 7}
O(A1V A2|C) either@(Aq1|C) or (/’(AZ\C)
% (A1 AAZIC) {%(A|C), %2 (A2C)}
whereZ € { 7,0, %}
7 (A-B) Z(AB)
Z(A-B) 7 (AB)
Z(-AB) O(AB)
Z(-A-B) O(AB)
Z(A0~%20-%C) Z(AJO~(G1+d)C)
wherez € { 7,0, 7}
#(A0<~%20<"%C) Z(A|O<~(0+%]C)
whereZ € { 7,0, %}

We especially tried to show that the integration of some ef ¢laborated rules comes
down to the integration of one or several more basic secuulgs.

Table 1.4 gives some examples of rewritten rules that teansf subset of complex
rules into one of several simpler basic rules. These ruleseadivided into two classes.
The first class concerns security rules involving logicairmeectors, the second deals with
the multiple uses of timed operators. Let us remark thatdfiehd right parts of the third
rewritten rule are not equivalent. Such a rewrite rule cavibe&ed as a refinement rule. In
fact by integrating”(A1|C) (resp.¢'(A2|C)), we will obtain a final system whose behavior
is included in the behavior of a system that would verifyA; v A|C).

1.5.3 Correctness Proof of the Integration Approach

To ensure the correctness of the approach we proposed ¢patgesecurity rules within a
TEFSM functional model, we have to prove all the algorithraedeped in section 1.5.2.3.
Most of them are obvious and easily proved. We only presetitinsection one relevant
correctness proof related to algorithms 1.1 and 1.3.

1.5.3.1 Correctness Proof of Algorithm 1.1

By proving the correctness of algorithm 1.1, we preciseiyndestrate that the integration
of prohibition rule of the form:% (start(A) | O<~9 done(B)) where d> 0 produces to a

secure TEFSM specification. To achieve this goal, we definedoh occurrence of action
B:

e tg as the instant of the execution actiBn
e k as the time elapsed after the execution of acBon
e tis atime variable.

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

26 Book Title

e gck(t) is a global clock of the system. By definitigiek(t) =t
e ck(t) is the clock which is set to O after each occurrence of addion

We have to prove that we can not perform the acfiomithin d units of time after the
execution of actiof3. Mathematically, we have to establish that for each pasititegerk
the following predicate holds:

((k< d)A(gck(t) =tg+k)) = —start(A) 1)

To prove that actiom\ cannot be executed at the momégek(t) = tg + k), it is sufficient
to prove that at this moment all the transitionisof the secure system labeled by actidn
are impassable. That is all the guards of the transitianare false. In the secure system,
the algorithm 1.1 adds the guangh{en ck> d — 1) before each execution éf Thus, we
have to prove, for each positive intedethat:

((k<d)A(gckt) =tg+k)) = ck(ts +k) < d (2
To reach this aim, we propose to prove that:
((k<d)A(gekt) =tg+k)) = ck(tg + k) <k 3)

Indeed, if (3) is true which means thak(tg + k) < k), and, knowing thatk < d) we
can easily deduce equation (2). To establish goal (3) letarssed by induction ok:

(1) Basic casel(=0): gck(t) =tg+ 0 =tg. We have to prove thatk(tg) < 0). Atthe
instanttg, actionB is performed and according to algorithm 1.1, we launch tbekcl
ck (set ck=0) after the execution d8. Thusck(tg) = 0, the goal is true sinc@® < 0).

(2) Induction hypothesik(= n): let us make the assumption that the goal is true until the
rank k = n where (< (d — 1)), that is, at the momenr(igck(t) = ts + n), we have:
(ck(tg +n) < n). Let assume that at momeftg + n) the system is in the stag

(3) Induction casel(= n+ 1): let us prove that the inequality is true fgt=n—+ 1), that
is, when the global clocgckincreased of one unit of timgck(t) =t +n+1), we have
(ck(t+n-+1) <n+1). Inthe period betweegck(t) =tg + nandgck(t) =tg + n+1,
the system has executed a transitionsisgfmay be empty) without any time progress
beginning from the stat8and ending in the sta® (may be equal t&). Note that we
consider tha8 is the first state in the system whgok(t) > tg + n. Let us prove that:

(gekt) =tg+n+1) = ck(ts+n+1) <n+1 (4)

Note first that the only transitions that act on clatkkare those labeled by actidh
These transitions are modified by algorithm 1.1 by settikngp 0. We call thenT rg.
Consequently, to establish (4), two cases are to be coesider

(8) TrgNTS=# 0: This means that at least oBeaction is performed and the clock
is setto 0. Thenck(tg +n) = 0. We know that time does not progressTiand
that in stateS, clocksck andgck run simultaneously. We can then deduce that
ckits+n+1) =ck(tg+n)+1=0+1=1. Since I< n+1, (4) is true.

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

Modeling and Testing Secure Web Applications 27

(b) TrgNT S= 0: During the execution off § the valuation ofck does not change
since no transition modifies its valuation. The clocksand gck run simultane-
ously, both of them progress in st&e So,ck(tg +n+ 1) = ck(tg +n) + 1. Since
ck(tz +n) < n (induction hypothesis), we can deduce tbigtg +n+1) <n-+1.
(In particular wherT S=¢, —=(3 Tr € TS and the system stays in the st&t@uring
one unit of time)

1.5.3.2 Correctness Proof of Algorithm 1.3

By proving the correctness of algorithm 1.3, we precisendastrate that the integration
of permission rule of the form 27 (start(A) | O<~% done(B)) where d> 0 produces a
secure TEFSM specification. To achieve this goal, We havedeepthat we can perform
the actionA only if within d units of time actiorB has been executed. To establish this
proof, we define for each occurrence of actian

e ta (resp.tg) as the instant of the execution of actiarfresp.B).
e CKk(t) is the clock which is set to O after each occurrence of addion

Mathematically, we have to establish that for each posititegerk the following predicate
holds:

Jk.((k < d) A (gekt) = ta— k) AdongB)) (1)

Let us reason about the form of the transitionthat is triggered by the exe-
cution of actionA. Since A belongs to actions ofr; tr is ,of the formtr =<
s,st,G,BefordA); A; After(A) >. We distinguish then the following cases:

e Be BefordA): goal (1) is satisfied fok = 0. Since the time does not progress during
the execution of transitions, actioAsndB are executed at the same tine=£ tg)even
if action B has been executed before actfan

e B¢ BefordA): since transitiortr contains actiorA and according to algorithm 1.3,
transitiontr has been added by the integration process. Then, its gbiasdof the
form (G'A provided active Ckwhen Ck< d). Goal (1) is satisfied fok equal toCk
that denotes the elapsed time from the last execution afraBti Indeed clockCk is
active because predicatprovided active Ckis true. Otherwise, actioA cannot be
executed. For the same reason, predi¢ate< d) is true.

1.5.4 Travel Security Specification Using Nomad Language

France Telecom proposed a preliminary version of the casly skravel in which some
informal security requirements are provided. Based onetlieguirements, we formally
specified a set of 34 security rules using the Nomad langluearematter of space, we only
present the following three:

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

28 Book Title

e Rule 1:

F (start (output reqcreatemissiotit))|
O=-2Mn done(out put reqcreatemissiorit)))

This first prohibition rule expresses that two missions esfgiof the same traveler must
be separated by at least 2 minutes. This request can bemperdaon thebasictraveler
process.

e Rule 2:

& (start (output regpropositionlist(t, m))|
O=-10min done(out put reqpropositionlist(t,m)))

This permission rule expresses that a traveler can reqaestnbther list of travel
propositions within a delay of 10 minutes if he/she alreasled for a first list of
travel propositions. This request can be performed irtréneeler missionprocess.

e Rule 3:

O (start (output regvalidation())]
O~1008Min gone(out put reqvalidation())
A O=~10080in ((— done(input recvvalidate notification()))
A (- done(input recvunvalidatenoctification()))))

This obligation rule expresses that if a traveler requekiethe validation of his/her
mission and if he/she did not received an answer, the systeshsend, as a reminder,
another request to the potential mission validator. Thisimeer is sent within a delay
of (10080 min = 7 days). The requests and answers are made tratkel. mission
process.

1.5.5 Automatic Rules Integration

A securuity rules integration module based on Nomand foterajuage has been imple-
mented using C language. This module is composed of fouerdift sub-modules as
illustrated in figure 1.12.

e Specification parsing sub-module: a communicating systestribed using IF lan-
guage is composed of active process instances runningaligland interacting asyn-
chronously through shared variables and signals via coration buffers (signal
routes instances) or by direct addressing. A process iostean be created and de-
stroyed dynamically during the system execution. It haalldata and a private FIFO
buffer. Each IF process is described as a timed automatiemeésd with discrete data
variables, communication primitives and urgency attelsudn transitions. The parsing
methodology of the func-tional specification file is basedlws IF language syntax.
It allows to store the IF elements in a C structure. This fi@mnsation is required in
order to allow the integration of the security rules withire functional specification.

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

Modeling and Testing Secure Web Applications 29

Security Rules

Input

h 4

Security Rules Parsing —

Security Rules

h 4

Functional Integration
Specification Input
Pof SUT = » Specification Parsing i

Secure Specification
File Printing

Y

Secure
Specification
- _/_7

Fig. 1.12 Secure Specification Building Module.

e Security rules parsing: security rules are specified ugiagNomad formal language
that is suited to model permissions, prohibitions and a@bigns related to non-atomic
actions within different contexts. To simplify the devefognt process and to address
forward compatibility issues, we defined an XML represeatabf the Nomad lan-
guage to use within the integration module. The XML schemsuch security rule is
defined and the XML parsing is possible based on Gnome XMU2tb It permits
to store the rules’ elements within a C structure that is guoitifior the security rules
integration sub-module.

e Security rules integration: the integration of the seguiies within the IF functional
specification of the studied system is done according to lilperithms presented in
section 1.5.2. At first, the algorithm seeks for the rules ¢oapplied on each state
transition of the specification. Then, it integrates theusége rules within the initial
specification by adding or modifying guards, transitiond/anstates to make the ex-
ecution instance of a given action possible/mandatory uadgpecific context. At
the end of the process, this integration will generate a nestr@ture describing the
system specification that takes into account the secuiiyirements.

e Secure specification file generation: this last sub-modatestates, in IF syntax, the
secure specification of the system under test (SUT) basdtedd structure integrating
the security rules within the functional specification.

October 30, 2009 17:3

30

Atlantis Press Book - 9.75in x 6.5in

ap-book975x65

Book Title

1.5.6 Rules Integration Results

The table 1.5 shows some metrics about the modifications thiéeintegration of some
specific rules: the modified and added transitions (M&A Titamss), the added variables
and clocks (Added Var & Ck), the added processes (Added Proc)

Table 1.5 IF Travel System Modifications According to EacteRu

Rule | M&A Transitions Added Var & Ck Added Proc
1 1+1 1 0
2 2+1 1 0
3 4+3 4 1

grant_choice
(m_recv, p_recv)

(while i < NB_TRAVELER)

\

req_validation (m_recv, p_recv) to
({basic_traveler} i)

(end while)

‘ wait_a:= wait_a + 1 ‘

fork
RHP(m_recv,p-recv)

send_validate_notification send_unvalidate_notification
(v_recv, m_recv) (v_recv, m_recv)
‘ wait_a:= wait_a - 1 ‘ ‘ wait_a:= wait_a - 1 ‘

recv_validate_notification recv_unvalidate_notification
(v_recv, m_recv) (v_recv, m_recv)

X X

Fig. 1.13 Resulting Transitions After Security Integratio

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

Modeling and Testing Secure Web Applications 31

As an example, let us consider the Travel specification pestiibed in Figure 1.3.
These transitions are modified during the integration oftiiivel rule and leads to the cre-
ation of a new process forked in the transition triggerethfetateq;. Figure 1.13 describes
the resulting transitions. The new variaklait_a has 0 as a default value.Wait_a is pos-
itive, this means that the system is waiting for a missioidegion. The process RHP (for
Rule Handler Process) launches a clock in its first state. Welock valuation reach
the deadline of 7 days, the system verifies\agt_a value, if (vait_a¢,0) the RHP process
sends another validation request. Otherwisea{t_a < 0 which means that the system
got through one of the transitions of the stggeand already received an answer from the
mission validator), the RHP process is stopped withoutqoaring any action.

1.6 Test Generation

1.6.1 TestGen-IF tool

To automatically generate test cases from the secure spadidfi of Travel, we use the
TestGen-IRest generation tool developed in our laboratory.

1.6.1.1 Test Generation Algorithm

TestGen-IFimplements a timed test generation algorithm based on altsmp explo-
ration strategy [Cavallet al. (1999)]. This algorithm efficiently constructs test sequesn
with high fault coverage, avoiding the state explosion asadiiock problems encountered
respectively in exhaustive or exclusively random searclieallows to produce a partial
accessibility graph of the system under test (SUT) spetiifican conjunction with the IF
simulator [Bozgeet al. (2004b)].

At any moment, a local search is conducted from the curreé $h a neighborhood
of the reachability graph. If a state is reached, and one oenest purposes are satisfied
(a Hit), the set of test purposes is updated and a new pagtiatl is conducted from this
state. Otherwise, if a search depth limit is reached witlsatisfying any test purpose, a
partial search is performed from a random graph leaf (a Jufigy algorithm terminates
when all the test purposes are satisfied or when no trangtleft to explore. The test case
is the path constructed on the fly from the initial state of &l specification containing
all the hit and jump states.

1.6.1.2 TestGen-IF Architecture

The active testing tool is illustrated by Figure 1.14. Thegerties (Test Purposes) box
represents the timed system objectives to be tested (s¢ierS&d.2.1). The Automatic
Test Generation box represents the test generation pnecedmbined with the IF specifi-
cation (.if file) and the test purposes (.tp file). It is up te tiser to choose the exploration
strategy of the generated partial graph he wants to perfemimgl the test generation: in
depth (DFS) or in breath (BFS) [Cavadt al.(2006)]. During this generation, when a test

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

32 Book Title

purpose is satisfied, a message is displayed to inform thie Tise number of test purposes
already found and the number of those missing are also prdviBased on this approach,
a test case is generated (represented by the Test Case btedt fite is composed of a
finite set of test cases (or scenarios) described in a staholanat. It is used to stimulate
the implementation under test (IUT) to validate its reattio

input

U

Properties
(Test Purposes)

TESTGEN-IF TOOL

Time Signals
Constraints Messages
\

States

IF Specification of IUT

Automatic Test Generation

v

1
1
LLTest Case

Y

y
Aldebaran Format TTCN
output output

Execution of test scenarios on ||
the implementation of the system

U

Verdict

Fig. 1.14 Basic architecture of the TestGen-IF tool.

1.6.1.3 TestGen-IF Implementation

The TestGen-IRool is based on the IF-2.0 simulator [Bozegigal. (2004b)] that allows to
construct the accessibility graph from an IF specificatitims simulator is developed by a
research team at Verimag [Verimag Lab (2009)], for modedind simulating asynchronous
timed systems such as telecommunication protocols orilalistd applicationsTestGen-
IF uses the IF-2.0 simulator libraries which provide some fienalities for on-the-fly
state-space traversal. It is implemented in the same imgaigation language as the IF-2.0
simulator, i.e. C++ language.

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

Modeling and Testing Secure Web Applications 33

As output ofTestGen-IRool, two files can be generated:

e The “output.stat file containing statistics about the test generation pse¢aumber of
jumps, visited states, generation duration, test casaHedgpth limit value, strategy
exploration, etc.);

e And the “output.sequentefile (in Aldebaran [Fernandeet al. (1996)] or TTCN
[J. Grabowski and Willcock (2003)] format) containing tlmeéd test sequence. This
last output is represented in Figure 1.14 by the Aldebaremdband TTCN boxes.

The test cases are generated from the output dileépgut. sequencedy filtering the
generated test sequences according to the input actiotjtactions and delays (i.e.,
progress of time) of the system under test. The test genaraith TestGen-IFderives its
benefits fronHit-or-Jumpcharacteristics. It is faster that classical test geranatols and
less memory consuming. In addition, it avoids the stateasiph and deadlock problems.

1.6.2 Fixing the Test Objectives
1.6.2.1 Test Purposes Formulation

In order to formulate timed test purposes using TestGewdF, several options are permit-
ted:

e State constraint purposes: expressing that a system carelapecific state;

e Action constraint purposes: corresponding, in particutasignals actions (e.qg., input
signal, output signal) and describe that an action can beuéxe in a state (optionally)
at a specific time;

e Clock constraint purposes: expressing that a clock candapecific value, optionally
in a specific state.

For instance, the constraira¢tion= input sg in state= s when clock e- d” describes
that the signabkgis to be received in the stagewhen the clockc = d. Timeouts and
deadlines can be usually described by clock constraintredsethe flow requirements can
be described using states and actions constraints.

1.6.2.2 Test Purposes for the Travel Application

The automatic test generation only targets security isands as a result, it is less time
consuming. In this work we defined a set of test purposes ibasgrsecurity properties.

In the following, we provide both informal and formal testrposes (according to the
TestGen-IF formulation) relating to the rules describeddntion 1.5.4.

e Rule 1: A potential traveler wants to request for two missiokle/She is obliged to
perform the two requests within a delay greater than 2 m@dike timed test purposes
of the rule 1 are formulated as:

October 30, 2009 17:3

34

Atlantis Press Book - 9.75in x 6.5in

ap-book975x65

Book Title

TPy = {tps,tpz}
tp; = {signal= output "reg.createmission”}

tp, = {signal= output "reg.createmission” when clock ck1 =P

e Rule 2: A potential traveler tries to choose his/her misgjanameters (date, flight,
hour, etc.) among a set of propositions provided by the Tiked application. In the
case he/she requests for more propositions, the systewsdiim/her to request a new
list within a delay of 10 minutes. Otherwise, his/her sessuil expire. The timed test
purposes of the rule 2 are formulated as:

TPz = {tpy,tpz,tps,tpa}
tp, = {signal= output "reg.createmission”}
tp, = {signal= output "reg.propositionlist” }
tps = {signal= input "recv_propositionlist” }
tp, = {signal= informal "other_propositionrequest’}

e Rule 3: Once a mission is created, it has to be validated byecifspuser called val-
idator. The system sends the mission parameters to theat@lidnd waits for his/her
acceptance/rejection. If the validator does not send atificadion within a delay of
7 days, the system generates a validation request remiflgietimed test purposes of
the rule 3 are formulated as:

1.6.3 Test Generation with TestGen-IF

TPs = {tpy,tpz,tps,tps}
tp, = {signal= output "grantcreatemission”}
tp, = {signal= input "req_propositionlist” }
tps = {signal= output "req.validation” }
tp, = {signal= output "reg.validation” in state relaunch

Our objective is to automatically generate test sequermms@ding to our test purposes. To
reach this aim we used, for Travel test generation, two usaes being the validator) and
two missions. We also defined adequate interval values tan@aiables in order to reduce
the accessibility graph size and to avoid state explosioblpms.
A set of timed test cases are generated based on the IF spéeifiof Travel Web

application and the timed test purposes for each rule, uBstGen-IF. These test cases
are then filtered according to the observable actions (jruput and delays) relating to

the system under test. For instance, the filtered timed > for the rule 3 is presented in
the following page.

Table 1.6 Some Test Generation Metrics
Rule | Strategy | Maxdepth | Jumps | Test Case Length | Visited States | Duration
1 BFS 10 0 9 291 0.2s
2 BFS 10 1 16 7844 10s
3 BFS 10 2 23 26552 1m25s

Notice that the input/output signals described in eachcese are relative to the system
under test. In our case itis the Travel system designed bwiprocesselasictraveland

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

Modeling and Testing Secure Web Applications 35

travelLmission The test cases generated by TestGen-IF tool are abstragsdloie; they
are produced in aldebaran standard notation facilitatieg portability and their automatic
execution. Some metrics about this test generation rglatithree rules are presented in
Table 1.6.

TEST CASE FOR THE RULE 3

(1) ?givetravelerid{0} / Ireq-connec{0,0}

(2) ?regconnec{0,0} / !grantconnec{0,0}

(3) ?grantconnecf0,0}

(4) 'regcreatemission{ 0}

(5) ?regcreatemission{0}

(6) !grantcreatemission{{0,0,0{travelermission}0,{traveLmission}0} }
(7) ?grantcreatemission{{0,0,0{travelermission}0,{traveLmission}0} }
(8) !regpropositionlist{0,{0,0,0{travelermission}0,{ traveLmission}0} }
(9) ?regpropositionlist{0,{0,0,0{traveletmission}0,{ traveLmission}0} }
(10) ?givechoicelist{{{0},1}}/

Irecv_propositionlist{0,{0,0,0{ travelecmission}0,{ traveLmission;0},{0},1}
(11) ?recvpropositionlist{0,{0,0,0{travelermission}0,{ traveLmission;0},{0},1}
(12) !reqchoice{0,{0,0,0{travelermission}0 {traveLmission;0},0}

(13) ?reqchoice{0,{0,0,0{traveletmission}0,{traveLmission;0},0}
(14) !'grantchoice{{0,0,0{travelermission};0,{traveLmission;0},0}

Ireq.validation{ {0,0,0{travelermission} 0,{ traveLmission} 0},0}

(15) ?granichoice{{0,0,0{travelermission}0,{traveLmission}0},0}
(16) delay = 10080
(17) !reqvalidation{ {0,0,0{traveletmission}0,{traveLmission;0},0}

1.7 Test Cases Instantiation and Execution

In order to execute the generated test cases to a real Welcatjupl, they need to be
transformed into an executable script capable of commtingaia http (or https) with

the implementation under test. In this work, we conceived iamplemented a tool called
generaTCL to translate abstract test cases into execuvakléin TCL scripts) and we
connected this tool to tclwebtest framework [TclWebTesoIT@009)] to apply them on
Travel Web application.

1.7.1 Tclwebtest tool

Tclwebtest is a framework to build tests for Web applicatioih provides an API for issuing
http requests and processing results. It assumes spesifianee values, while taking care
of the details such as redirects and cookies. It has the BE3WL. parsing functionality to
provide access to elements of the resulting HTML page tleahaeded for testing, mainly
links and forms.

The execution of a test case writtentelwebtestsimulates a user that is interacting
with the Web application through a Web browser. By executiireginstantiated test cases,
it is possible to add, edit or delete data of the Web appbaoafiill some forms or follow a
specific link. Figure 1.15 illustrates thielwebtestcode for logging into the Travel appli-
cation by requesting the register page, then filling the @-amal password, and submitting
this information.

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

36 Book Title

::twt::do_request "http://tavel-example.org/register"
tclwebtest::form find "n login

tclwebtest::field find "n username

tclwebtest::field fill "user@mymail.com"
tclwebtest::field find "n password

tclwebtest::field fill "mypassword"

tclwebtest::form submit

Fig. 1.15 Example of Tclwebtest Code.

1.7.2 Test Cases Instantiation

The test cases generated by TestGen-IF tool are providedtamdard notation and are a
set of:

e Delays: a delay represents an amount of time that the teagetchwait for, before
performing any input action.

e Input signals: the tester has to stimulate the Web appdicdty applying a set of http(s)
requests called inputs.

e Output signals: the tester has to access to the Web systememats analyze it and
check if it conforms to the expected reaction as describéderiormal specification of
the system.

1.7.2.1 Delay Instantiation

A delay in the test case can be easily translated in TCL skenguage. It is transformed
directly into the codedfter n wherenis the real delay in millisencond (ms). For instance,
‘delay 10; is translated into &fter 10*1000*60; if we consider a delay of ten minutes.
(See Algorithm 1.7, lines 3 to 5)

1.7.2.2 Input Instantiation

To automatically instantiate the abstract test cases @eovby TestGen-IF tool, itis manda-
tory to know the types of HTML elements that correspond taitrgignals of the Web sys-
tem under test (that correspond to the output signals ofetster). In this work, the Web
system will be limited to receive just three types of inputsf a user via a regular browser:
(i) a URL setin the address bar, (ii) a link in the body of thg@ar (iii) the submission of a
form in the body of the page. Actions such as drag-and-drdpé#mer Ajax functionalities
are not considered in this work.

The first step of our methodology consists in mapping theadgginto the three types of
inputs that the Web application can receive. It is importattighlight that some IF signals
can be mapped just to one single interaction with the Webiegdjfun, e.g. following a
link, but other signals are mapped to a set of interactioigs,seibmitting a form.

For example, considering the form submission, there arerakinteractions that must
be performed by tclwebtest, i.e. filling text fields, selegtradio buttons, selecting check-
boxes and finally submitting the form. In these cases theasigmmapped to an HTML

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

Modeling and Testing Secure Web Applications 37

element (e.g. a form) but also to each signal parametertéxgfields).

To perform the mapping, we propose two tables containingired information of the
input signals and their parameters to transform them ireetatest script asking to follow
a link, submit a form or request a new URL. Both, tignalinfo_table and theparame-
ter_info_tableare illustrated in Tables 1.7 and 1.8. To access the infoom#tey contain,
we can take advantage of standard SQL queries. For each, sigmtablesignalinfo_table
stores the following data:

e signal: the name of the input signal in the IF specification,

e htmlLelementithe HTML type of the element that correspond to the signal,

e htmlLname:the name or id of the HTML element. For example, in the caselika
the name is the link caption.

Table 1.7 Signalnfo_Table Example

signal html_element | html_name
reg.connected | form login
regdisconnect| link logout

Then, for each parameter of an input signal, the informagitored in this table 1.8 is:

parameter:name of the parameter signal in the IF specification,

of_signal: name of the input signal that uses this variable,

htmlelement:ithe HTML type of the element that correspond to the parameter
type: the type of the variable expected by the hwigément, e.g. integer, string, etc.
htmLname:the name or id of the htmglement.

e o o o o

Table 1.8 Parametdnfo_Table Example

parameter | of_signal html _element | type html_name
user reg.connected| textfield integer | username
password | regconnected| texfield integer | pass

The second step of the methodology is to translate the sysfaits to tclwebtest script
for each test case. These inputs are built dynamically andealivided into three cate-
gories: following a link, submitting a form or setting a URhK the browser. The inputs
translation methodology is presented in pseudo-code iorlyn 1.7 (lines 6 to 36). By
performing this algorithm the following parts of the tesseawill be built:

e The script of the test preamble: a sequence of inputs (apesgitthat will lead the
system to a state where the test case can be executed. Dhisryéamble, system
outputs are not analyzed. For example, to test the creatiamdssion, the user needs
to be authenticated by the Travel system.

e The script that will stimulate the system to test it.

October 30, 2009 17:3

38

Atlantis Press Book - 9.75in x 6.5in

ap-book975x65

Book Title

Algorithm 1.7 Instantiation Methodology

Require: An abstract test caseC, signalinfo_table and parameténfo_table tables. Leact be a delay or an observable action

1: for each(act € TC) do

2: [*(wherei € N, 0 < i < n+1 such than is the number of actions and delaysTig)*/
3: while (act = delay n)do
4: tcl_script: after n;
5: end while
6: while (act = inputsg (ing,iny, ...,ink)) do
7 if (html_elementgg)= url) then
8: tcl_script: do request url;
9: end if
10: if (html_elementg¢g)= link) then
11: tcl_script: follow link;
12: end if
13: if (html_elementgg)=form)then
14: tel_script: form find “n htmLnameég);
15: for (eachparametex; of sg) do
16: /*(wherej €N, 0< j < k+1)*
17: tcl_script: field find “n htmLnameg;);
18: while (html_element;) = textfield)do
19: tcl_script: field fill inj;
20: end while
21: while (html_element;) = textarea)o
22: tcl_script: field fill inj;
23: end while
24: while (html_element;) = checkbox)do
25: if (in; = 1) then
26: tcl_script: field check htmlnameg;);
27: else
28: tcl_script: field uncheck htmhameg;);
29: end if
30: end while
31: while (html_element;) = radiobutton)do
32: tcl_script: field selecin;;
33: end while
34: end for
35: tcl_script: submit form;
36: end if
37: end while
38: while (act = outputsg (outy, oub, ...,out)) do
39: if (html_elementg¢g)= link) then
40: tcl_script: assert{[response url] == htmhameég)};
41: end if
42: if (html_elementgg)=form)then
43: tcl_script: response body;
44 tcl_script: form find ~n htmLnamegg);
45: for each (parametek; of sg) do
46: tel_script: assert{[field getvalue find“n htmLname &;)]==out; } ;
A7 end for
48: end if
49: call deduceverdict procedure;
50: end while
51: end for

in TCand letsg(dy,d>, ..., dk) be a signal instance sfy(x1, X2, ...,X). d; is denotedn; if sgis an input signal andut; if sg
is an output signal. (& j <k+1)

1.7.2.3 System Output Instantiation

The last step of the methodology consists in developing thipts that analyzes the re-
sponse (or reaction) of the Web application (Algorithm 1ings 37 to 49). This script also
assigns the verdict (pass or fail). Basically it checks Wwhethe platform did what it was
supposed to do. The system outputs (or reaction) can befiddsato two categories:

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

Modeling and Testing Secure Web Applications 39

e Observable outputs: Tclwebtest is basically dedicatetefstiing Web application inter-
faces accessible by Web user. It offers some basic HTML paufsinctionalities and
commands for the manipulation of the HTML elements of Webgsa@n our case, on
consider system output pages). The reaction of the systarbeg@rovided in one or
many HTML pages of the Web-based system. In general, it istificadion message
that stipulates that the desired action succeeded or fédethstance an authentication.
Sometimes, this reaction can be more difficult to discovehsas when reloading the
current page or navigating to another Web application pbugall cases, we need to de-
fine the two tables 1.7 and 1.8 for the output as well as thearpaters and follow the
same methodology developed in the input instantiation.c@seanalyze system Web
pages, we useesponsendfind commands to locate the HTML elements we want to
test. Then we rely oassertcommand to compare the displayed Web page values and
the output signal parameters and deduce the adequatetverdic

e Non observable outputs: the system may react to a user apetat performing an
action which is non-observable from this user’s point ofwi@nd as a result of the
tester). For example, we can consider the adding/editetidg of information in a
specific data base or the sending a notification email to afgpaser. In these cases,
no automatic solution has yet been elaborated.

In the Travel case study, all our test cases consider oligersgstem reactions that can
be defined automatically.

1.7.2.4 Test Cases Instantiation Tool: generaTCL

The GeneraTCLtool, illustrated in the Figure 1.16, is used to concrettee abstract test
cases translating them into an executable script able ¢éoaict with the IUT. In the con-
cretization process, some details of the implementatierii{@ username and password of
a real user) are added to the abstract test cases. Theds detaneeded to perform the
interaction tester-lUT.

1.7.3 Test Cases Execution

The test cases execution was performed on a prototype inepltion of the Travel Web
application (developed on OpenACS platform) to verify tttet specified security require-
ments are respected. It is important to highlight that same tettings in this prototype
have been changed so that the application of the tests waster than in the real sys-
tem. For example, we changed 10080 minutes (7 days) in the thlie to 3 minutes to
avoid waiting so long. Therefore in this case study we vettiy behavior of the system
concerning this rule using a delay of 3 minutes rather thamug days.

The execution of the test cases is performed using a deditegéng tool proposed by
the OpenACS community [OpenACS Community (2009)]. Thid isccalled the ACS-
Automated-Testing tool that allows executing the instetetl test cases, interacting with
the Web-based application under test and, also, displahi@gerdict of each test case.

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

40 Book Title

Abstract
Test Cases

GeneraTCL tool

Concretization o Addition of details
Data v

Concrete
Test Cases

uoneISUB|SU| 858D 189

| Translate to executable
Scripts (tcl)

Concrete and Executable
Test Cases

Fig. 1.16 Basic Architecture of the GeneraTCL tool

The ACS-Automated-Testing tool is, in itself, a Web appiima but we will refer to it just
asthe testerto avoid confusions between this system and the Web apiplictt be tested.

As a result of the execution of the designed test cases onrtitetype, we obtained
positive verdicts for thirty test objectives, while, fowast objectives were violated (fail
verdict). For example, a problem has been detected acgptalithe system respect to the
first rule that expresses a prohibition. If a potential tteweequests for a first mission and
then waits for 2 minutes, he/she is not allowed by the systeraquest for another mission.
We analyzed the implementation of the Web-based systematickd that a mistake was
encrusted in the code. Instead of 2 minutes, the Travel mysigited much longer before
allowing a second mission request.

The Travel application was analyzed to detect the four ewarces. Once the mistakes
corrected, all the test cases were applied again on the Walzatjon. This time, all the
verdicts were positive which demonstrates the efficienayusfmethodology.

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

Modeling and Testing Secure Web Applications 41

1.8 Conclusion

In this chapter, we have presented a formal approach torateegimed security rules,
expressed according to Nomad language, into a TEFSM spmficof a system. Roughly
speaking, a security rule denotes the prohibition, thegalibn or the permission for the
system to perform an action in a specific timed context. Totries objective, we have
distinguished two categories of security rules: basicsaed elaborated rules. To deal
with basic rules, we have described a set of algorithms tlmtsto add them to a TEFSM
specification describing the behavior aspect of a systeran,Mue have defined a rewritten
process that permits to transform an elaborated rule ire@oseveral basic ones one which
the previous integration algorithm can be reused. A proatfdemonstrates the correctness
of the prohibition integration algorithm is given.

Notice that our approach can be improved by minimizing theloer of introduced
clocks. Indeed, some dependent rules can be integratedtaimously by using a unique
clock. For instance, ruleg?(start(A)|O~>dongB)) and 2 (start(A)|O—3dongB)) can be
integrated by adding a single clo€kthat the system checks whether its valuation verifies
(Ck= 3V Ck=5) before performing actioA.

Indeed, we presented a framework for the modeling and thiagesf Web applications
from their security point of view. Our approach consistsutoaatically integrating secu-
rity rules described in using the Nomad formal language iwiéim IF specification. This
integration leads to an IF secure specification that takesyltem security requirements
into account. Afterward, we presented an approach to dexstecases from this IF secure
specification using TestGen-IF tool developed in our latmoyaand to transform them into
executable test cases (using TCL script language). Weeaptile generated test cases to
an industrial Web-based system provided by France Teleoatutly its respects to its se-
curity policy. Relying on our end-to-end framework, we digered several security flaws
that we were able to correct obtaining thus a secure Webrayste

As future work, we want to extend the test purposes formutally adding data con-
straints and complex clock constraints to express moreoedddd test objectives. We also
intend to adapt test generation algorithms to include thesetest purposes types. In ad-
dition, we want to investigate the automatic analysis of-nbeervable system reactions in
the context a white box testing [Tuga al. (2008)].

1.9 Acknowledgements

The research leading to these results has received fundimgthe European Community
Seventh Framework Programme (FP7/2007-2013) under ggae¢ment no 215995 and
the French ANR project WebMov.

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

Bibliography

Abou El Kalam, A., Baida, R. E., Balbiani, P., Benferhat, S., Cugpén, Deswarte, Y., Mige,
A., Saurel, C. and Trouessin, G. (2003). Organization Based AdCestrol, in4th IEEE
International Workshop on Policies for Distributed Systems and Netw®&y'03) (Lake
Come, ltaly).

Alur, R. and Dill, D. L. (1994). A theory of timed automatéheoretical Computer Sciend®6, 2,
pp. 183-235, URIciteseer.ist.psu.edu/alur94theory.html.

Annichini, A., Bouajjani, A. and Sighireanu, M. (2001). TReX: A Took fReachability Analysis
of Complex Systems, in G. Berry, H. Comon and A. Finkel (edSAY, Lecture Notes in
Computer Scien¢&/0l. 2102 (Springer), ISBN 3-540-42345-1, pp. 368-372.

Bozga, M., Fernandez, J.-C., Ghirvu, L., Graf, S., Krimm,.JMdunier, L. and Sifakis, J. (1999).
IF: An Intermediate Representation for SDL and its Application§0i. Forum pp. 423-440.

Bozga, M., Graf, S. and Mounier, L. (2002). IF-2.0: A ValidationviEanment for Component-Based
Real-Time Systems, iGAV, pp. 343-348.

Bozga, M., Graf, S., Mounier, L. and Ober, I. (2004a). IF Validati&nvironment Tutorial, irSPIN
pp. 306-307.

Bozga, M., Graf, S., Ober, I., Ober, I. and Sifakis, J. (20041e IF Toolset, in M. Bernardo and
F. Corradini (eds.)SFM Lecture Notes in Computer Sciendél. 3185 (Springer), ISBN
3-540-23068-8, pp. 237—-267.

Cavalli, A, Lee, D., Rinderknecht, C. and Zadi, F. (1999). Hit-ampu An Algorithm for Embedded
Testing with Applications to IN Services, iFormal Methods for Protocol Engineering And
Distributed System@eijing, China), pp. 41-56.

Cavalli, A. R., Maag, S., Mallouli, W., Marche, M. and Quemener, Y.(RD06). Application of Two
Test Generation Tools to an Industrial Case StudyeistCompp. 134-148.

Cavarra, Crichton, Davies, Hartman, Jeron and Mounier (2002hgUsML for Automatic Test
Generation, in TACAS.

Cuppens, F., Cuppens-Boulahia, N. and Ghorbel, M. B. (2006h-Hayel Conflict Management
Strategies in Advanced Access Control ModelsWarkshop on Information and Computer
Security (ICS)Timisoara, Roumania).

Cuppens, F., Cuppens-Boulahia, N. and Sans, T. (2005). No&dcurity Model with Non Atomic
Actions and Deadlines, iI@SFW pp. 186—-196.

Damianou, N., Dulay, N., Lupu, E. and Sloman, M. (2001). The RoRblicy Specification Lan-
guage, irPOLICY '01: Proceedings of the International Workshop on PolicieDistributed
Systems and NetworkSpringer-Verlag, London, UK), ISBN 3-540-41610-2, pp. 18-3

Fernandez, J.-C., Garavel, H., Kerbat, A., R. Mateescu, L. M.Sighireanu, M. (1996). CADP: A
Protocol Validation and Verification Toolbox, in R. Alur and T. A. Henzin@eds.),The 8th
Conference on Computer-Aided Verification, CAV(S@ringer Verlag, New Jersey, USA).

43

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

44 Book Title

Gallardo, M. D. M., Merino, P. and Pimentel, E. (2004). A Generalizeah&ntics of PROMELA for
Abstract Model Checkingzormal Asp. Computl6, 3, pp. 166—193.

Gaudin, E., Najm, E. and Reed, R. (eds.) (20@DL 2007: Design for Dependable Systems, 13th
International SDL Forum, Paris, France, September 18-21, 20@dcé®dingsLecture Notes
in Computer Scien¢&/l. 4745 (Springer), ISBN 978-3-540-74983-7.

ISO (1989).Information Processing Systems, Open Systems Interconnection,3 ORACFormal
Description Technique based on the Temporal Ordering of Obsenati®ehaviour Interna-
tional Standard 1S-880.

J. Grabowski, G. R. I. S. A. W., D. Hogrefe and Willcock, C. (200%).Introduction to The Testing
and Test Control Notation (TTCN-3), i@omputer Networks 42(3pp. 375-403.

Jard, C. andé&ron, T. (2005). TGV: Theory, Principles and Algorithr8§,TT7, 4, pp. 297-315.

Lee, D. and Yannakakis, M. (1996). Principles and Methods of Testinge State Machines - A
Survey, inProceedings of the IEEB/I. 84, pp. 1090-1126.

Lobo, J., Bhatia, R. and Nagvi, S. A. (1999). A Policy Description Lage, inAAAI/IAAIL pp.
291-298.

Mallouli, W. and Cavalli, A. R. (2007). Testing Security Rules with Deconafnds Activities, inthe
10th IEEE International Symposium on High Assurance Systems Engm@eASE)(Dallas,
Texas, USA), pp. 149-155.

Mallouli, W., Orset, J.-M., Cavalli, A., Cuppens, N. and Cuppens2607). A Formal Approach for
Testing Security Rules. iBACMAT(Nice, France).

Merayo, M. G., Nifiez, M. and Rodguez, |. (2007). Generation of Optimal Finite Test Suites for
Timed Systems, iTASE pp. 149-158.

Merayo, M. G., Nifiez, M. and Rodguez, I. (2008). Formal Testing from Timed Finite State Ma-
chines,Computer NetworkS2, 2, pp. 432—-460.

OpenACS Community (2009). http://www.openacs.org/, .

Syriani, J. A. and Mansour, N. (2003). Modeling Web Systems Usinlg, 8DA. Yazici and C. Sener
(eds.),ISCIS Lecture Notes in Computer Sciend®l. 2869 (Springer), ISBN 3-540-20409-1,
pp. 1019-1026.

TCL Script Language (2009). http://www.tcl.tk/, .

TclWebTest Tool (2009). http://tclwebtest.sourceforge.net/, .

Tuya, J., Dolado, J. J., Cabal, M. J. S. and Riva, C. D. L. (208&ontrolled Experiment on White-
Box Database TestinyCM SIGSOFT Software Engineering Notds 1.

Verimag Lab (2009). http://www-verimag.imag.fr/ ~ asyncl/if/, .

Vieira, E. R. and Cavalli, A. (2007). Toward Test Suite Automatic Getimravith Delayable Tran-
sitions and Timing-Fault Detection, RTCSA

