
October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

Contents

1. Modeling and Testing Secure Web Applications 1

1.1 Introduction . 1
1.2 Related Work . 3
1.3 Testing Methodology Overview .4
1.4 Functional Specification of Web Applications using IF Language 5

1.4.1 Modeling Communicating Systems 5
1.4.2 IF Formal Language . 7
1.4.3 Case Study: Travel Web Application 8
1.4.4 Travel IF Specification . 9

1.5 Secure Specification of Web Applications 10
1.5.1 Security Rules Specification Using Nomad Language 10
1.5.2 Security Integration Methodology 12
1.5.3 Correctness Proof of the Integration Approach 25
1.5.4 Travel Security Specification Using Nomad Language 27
1.5.5 Automatic Rules Integration . 28
1.5.6 Rules Integration Results . 30

1.6 Test Generation . 31
1.6.1 TestGen-IF tool . 31
1.6.2 Fixing the Test Objectives . 33
1.6.3 Test Generation with TestGen-IF 34

1.7 Test Cases Instantiation and Execution 35
1.7.1 Tclwebtest tool . 35
1.7.2 Test Cases Instantiation . 36
1.7.3 Test Cases Execution . 39

1.8 Conclusion . 41
1.9 Acknowledgements . 41

Bibliography 43

1

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

Chapter 1

Modeling and Testing Secure Web Applications

1.1 Introduction

In modern networks, the heterogeneity and the increasing distribution of applications, such
as telecommunication protocols, Web-based systems and real-time systems, make security
management complex. These applications are more and more open and rely on networking
parts of computer systems that generally make use of different solutions. In the context of
the deployment of such applications and services, the security officials are led to empiri-
cally bring security solutions together. The consistency of these assemblies is difficult to
achieve. Nowadays, many security features are available. We can cite for instance cryp-
tographic protocols, management infrastructures of public keys (PKI), firewalls, control
access mechanisms within operating systems and applications, intrusion detection systems
or anti-viral mechanisms etc.

To ensure that these different security components are effective and that a certain level
of security is always maintained, the system behavior must be restrained by a security
policy. A security policy is a set of rules that regulates thenature and the context of actions
that can be performed within a system, according to specific roles. As an example, such
policy can tackle the interactions between a network infrastructure and Internet or manage
accounts and rights toward an operating system or a database. The main objective is to
ensure that security policy is well defined and that is actually implemented in the system.

To reach this aim, we usually carry out audits that focus on administrative procedures
and systems configurations. Tests are then carried out to check if some known vulnera-
bilities would remain present. If several tools for some specific tests (such as passwords
crackers) exist, there is no general solution analyzing theoverall system conformance ac-
cording to its security policy. Several reasons can explainthese deficiencies. First, there
is currently few research work on formal modeling of complete security policies, even if
some aspects, such as access control security rules, have been studied further. In addition,
analytical work about security checking often focuses on the verification of punctual ele-
ments, such as cryptographic protocols or code analysis. Thus, the responsible for security
and all the system administrators are missing a formal solution to ensure the coherence of
a system implementation with respect to its security policy, even if this last has been fairly
well defined.

1

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

2 Book Title

Most current work only concentrates on defining meta-languages in order to clearly
express security policies and provide unambiguous rules. Or-BAC [Abou El Kalamet al.
(2003)], PDL [Loboet al. (1999)], Nomad [Cuppenset al. (2005)] and Ponder [Damianou
et al.(2001)] are typical examples of such generic policy description models. They suggest
concepts to describe the security policy independently of the system functional specifi-
cation or implementation. Once the security policy is formally specified, it is essential
to prove that the target system implements this policy. Indeed, if one cannot ensure this
conformance, the global security cannot be guaranteed anymore.

Many solutions can be proposed to achieve this objective (the implementation con-
formance with respect to its security requirements). The conformance guarantee can be
reached for instance by:

• formally injecting the security policy in the considered system code,
• or by formally specifying the target system to prove that it verifies the security policy

it has to respect,
• or by considering several strategies of formal tests.

This last methodology will be explored in this chapter in thecontext of Web-based ap-
plications. Indeed, in recent years Web-based systems havebecome extremely popular and,
nowadays, they are used in critical environments such as financial, medical, and military
systems. As the use of Web applications for security-critical services has increased, the
number and sophistication of attacks against these applications have grown as well.

For this reason it is essential to be able to prove that the target Web-based system
implements the security requirements it should respect (described using a security policy
language). Model-based testing consists in deriving a suite of test cases from a model
representing the Web system behavior. Such a model can be generated from an informal
specification of the system and designed by software engineers through the use of diagram
manipulation tools. Moreover, Web applications can have a time dependent behavior as
well as an increasing demand for security mainly due to theirincreased complexity and
inherent distribution. Consequently, engineers developing these Web systems are not only
confronted to functional requirements but also have to manage other kinds of requirements
concerning security issues. Roughly speaking, by “functional requirements” we mean the
services that a Web application has to offer to end users. Whereas, security rules denote
the properties that a system has to fulfil so that it is always in a safe state and guarantees
service quality.

To tackle this problem we rely, in this chapter, on a formal approach to integrate elab-
orated security rules involving time constraints into a formal specification of the system
based on communicating extended timed automata [Bozgaet al.(2004b)] supported by the
IF (Intermediate Format) language [Bozgaet al. (2002)]. The derivation of the test cases
can be done automatically, providing generic test cases described in a standard language.
By executing the model-based test cases, the conformance ofthe implemented system to its
specification can be validated. More precisely, the main contributions of this chapter are:

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

Modeling and Testing Secure Web Applications 3

• The specification of Web application features using the IF language. This language is
well-adapted to formally describe Web systems features such as hyperlinks, sending
and receiving data and client-server communications, etc.

• The definition of Web system security requirements based on the Nomad [Cuppens
et al.(2005)] (stands for Non Atomic Actions and Deadlines Model)formal language.
Nomad allows specifying, unambiguously, security rules (such as permissions, prohi-
bitions and obligations) in specific contexts that include time constraints.

• The integration of the security rules within the functionalIF model to obtain a secure
specification that takes into account the security requirements.

• The automatic generation of test cases targeting security constraints. This generation
is performed using TestGen-IF tool based on Hit-or-Jump algorithm [Cavalli et al.
(1999)].

• These test cases are instantiated into TCL script language [TCL Script Language
(2009)] and are applied, in an automated manner, on a real Web-based system (Travel
Web application provided by France Telecom Company1) to check whether its behav-
ior respects the security requirements. The application and the analysis of the designed
test cases are performed by tclwebtest tool [TclWebTest Tool (2009)].

This chapter is organized as follows. In section 1.2 we discuss the related work on for-
mal modeling and testing of secure systems with timed constraints. Section 1.3 exposes an
overview of our methodology to specify and test the securityof Web-based systems. In sec-
tion 1.4, we apply our methodology to an industrial case study (called Travel) and formally
specify its functional behavior. Section 1.5 presents our security integration methodol-
ogy as well as its corresponding tool. In section 1.6 and 1.7,we automatically generate
security-target test cases using TestGen-IF tool and perform them using tclwebtest tool.
Finally, section 1.8 presents the conclusion and introduces future work.

1.2 Related Work

Many models are proposed in the literature for the formal specification of Web applications
from their functional point of view. These models sometimesinclude functional time con-
straints. In [Syriani and Mansour (2003)] for instance, theauthors present a methodology
that specifies Web-based systems using the SDL formal language [Gaudinet al. (2007)].
This language is based on Extended Finite State Machines (EFSM) model [Lee and Yan-
nakakis (1996)] and is well adapted for describing communicating systems.

Others studies are based on timed automata theory [Alur and Dill (1994)] and allows
specifying functional system requirements with timed pre and post conditions. This paper
is based on the IF language [Bozgaet al.(2004b)] because it allows providing the main con-
cepts to design Web-based systems with time constraints. Moreover, several tools allowing
the simulation and the generation of test sequences exist and are open source. However a
main issue here to guarantee the system reliability, is thatthis functional specification has

1France Telecom is the main telecommunication company in France.

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

4 Book Title

to be completed by integrating system security aspects.
To tackle this problem we have introduced in an earlier publication [Mallouli et al.

(2007)] a formal approach that permits to augment a functional description of a system
with security rules expressed with the Or-BAC language [Abou El Kalamet al. (2003)]
(Organisationnal Based Access Control). We described security rules that specify the obli-
gation, permission or prohibition for a user to perform someactions under given conditions
calledcontext. This context does not involve time aspects since we only specified rules
without considering them. We applied this approach to a Weblog case study in order to
validate its security and the results were satisfactory.

To be able to include timed security rules (for instance, a file system may have to spec-
ify the prohibition for a user to access to a specific documentif he/she is not authenticated
or if his/her session of 10 minutes has been expired), we propose in this paper to rely on
the Nomad language [Cuppenset al. (2005)] that supports time constraints. We integrate
the defined Nomad security rules that the system should respect, with its IF formal specifi-
cation through the use of specific algorithms described in section 1.5. The obtained system
specification is called a secure system specification.

Many tools [Jard and Jéron (2005); Vieira and Cavalli (2007)] allowing automatictest
generation [Merayoet al. (2007)] from IF specifications exist in the literature. In this
paper, we rely on our own generation tool, called TestGen-IF, that efficiently constructs
tests sequences with high fault coverage. The tool avoids the state explosion and deadlock
problems encountered in exhaustive or exclusively random searches used in classical tools.
The execution of the generated tests are performed using tclwebtest tool [TclWebTest Tool
(2009)], well adapted to check the stability and scalability of Web applications.

1.3 Testing Methodology Overview

In this framework, we present the proposed testing methodology to test security rules. This
methodology manipulates three different inputs:

• A functional specification of the Web application based on the IF formal language.
• A specification of the security policy that the application has to respect (based on the

Nomad language).
• And finally an implementation of the Web-based system.

The aim of this framework is to generate a new specification ofthe Web-based system
(called secure specification) that takes into account the security policy, and then to generate
a complete test suite to check whether the implementation ofthe system conforms to this
secure functional specification.

To reach this goal we automatically integrate different types of security policy rules de-
scribed using the Nomad language within the initial functional system specification. Then,
we define an end-to-end methodology for testing Web applications as presented in Figure
1.1. The main steps of our testing methodology are thespecificationof a secure system
based on the IF language, theautomatic test generationbased on TestGen-IF tool (gener-

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

Modeling and Testing Secure Web Applications 5

F u n c t i o n a l
R e q u i r e m e n t s

S e c u r i t y
R e q u i r e m e n t s

A u t o m a t i c T e s t
G e n e r a t i o n

A b s t r a c t T e s t C a s e s

I F M o d e l

S e c u r e I F M o d e l

W e b
A p p l i c a t i o n

T c l w e b t e s t S c r i p t sT e s t e r

V e r d i c t

N o m a d

Fig. 1.1 Testing Methodology Overview

ated test cases are described in aldebaran standard notation [Fernandezet al.(1996)]), their
instantiation toexecutable test casesand theapplicationof these test cases on a real Web
application using tclwebtest language. The analysis of theWeb application is performed
using a dedicated tool called ACS-Automated-Testing incorporated in the OpenACS plat-
form [OpenACS Community (2009)].

1.4 Functional Specification of Web Applications using IF Language

1.4.1 Modeling Communicating Systems

The objective of modeling a Web-based system is to provide anoperational specification
of a system from the functional point of view which can include time constraints. In par-
ticular, it helps to provide a better common understanding of the system. In addition, this
operational model can also be used as input to existing validation tools, such as interactive
or random simulators, model-checkers or (conformance) test generation engines.

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

6 Book Title

To achieve the modeling goal, we rely in this approach on TEFSM model supported by
IF language [Bozgaet al. (2004b)] because it provides the main concepts to design real-
time systems. Moreover, several tools allowing its simulation and the generation of test
sequences exist and are open source. A TEFSM modeling of a system consists of a set
of processes, each one denotes a TEFSM that can communicate with other processes via
FIFO channels.

Definition 1.1. A TEFSM M is a 7-tuple M =< S, s0, I, O,~x,~c, Tr > where:

• S is a finite set of states;
• s0 is the initial state;
• I is a finite set of input symbols (messages possibly with parameters);
• O is a finite set of output symbols (messages possibly with parameters);
• ~x is a vector denoting a finite set of variables;
• ~c is a vector denoting a finite set of clocks;
• and Tr is a finite set of transitions.

A transition tr is a 4-tuple tr=< si ,sf ,G,Act > where:

• si and sf are respectively the initial and final state of the transition;
• G is the transition guard which is composed of predicates (Boolean expression) on

variables~x and clocks~c;
• and Act is an ordered set (sequence) of atomic actions including inputs, outputs, vari-

able assignments, clock setting, process creation and destruction.

The execution of any transition is spontaneous i.e. the action(s) associated with this
transition occur simultaneously and take no time to complete (which is not the case of the
model presented in [Merayoet al. (2008)]). The time progress takes place in some states
before executing the selected transitions. More details about time progress can be found in
[Bozgaet al. (2004b,a, 1999)].

S 0 S 1

i npu t A , P , T , se t ck1 = 0 , ou tpu t X

i n p u t B , w h e n c k 1 > 6 , T " , o u t p u t Y

i n p u t A

 P

 T’

o u t p u t X

_

S 2S 3
i npu t B , when ck2>2, T ’ ’ ’ , ou tpu t X

i n p u t C

se t ck2=0 ,

o u t p u t Z
i npu t A , ou tpu t Z

Fig. 1.2 Example of a Simple TEFSM with Four States.

We illustrate the notion of TEFSM through a simple example described in Figure 1.2.
This TEFSM is composed of four states (S0, S1, S2 and S3) and six transitions that are
labeled with three inputsA, B andC, three outputsX, Y andZ, one guard (or predicate)P
on variables, two clocksck1 andck2 and four tasksT, T ′, T ′′ andT ′′′.

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

Modeling and Testing Secure Web Applications 7

The TEFSM operates as follows: starting from stateS0, when the inputA occurs, the
predicateP is checked. If the condition holds, the machine performs thetask T, starts
the clockck1, triggers the outputX and moves to stateS1. Otherwise, the same output
X is triggered but it is actionT ′ that is performed and the state loops on itself. Once the
machine is in stateS1, it can come back to stateS0 when the clockck1 exceeds the value
6 and receives the inputB. If so, taskT ′′ is performed and outputY is triggered. On the
reception of the inputC, the clockck2 is started, the outputZ is triggered and the machine
moves to stateS2. Once the machine is in stateS2, it can go to stateS3 when the clockck2

exceeds the value 2 and receives the inputB. If so, taskT ′′′ is performed and outputX is
triggered. In StateS3, on the reception of the inputA, the machine triggers the outputZ
and comes back to the initial stateS0.

In the following sections, iftr = < si ,sf ,G,Act > anda ∈ Act, then we can denoteAct
by (be f ore(a); a; a f ter(a)) to express that actiona is performed within the transitiontr
and that there is possibly other actions before or aftera (be f ore(a) anda f ter(a) may be
empty).

1.4.2 IF Formal Language

The Intermediate Format (IF) language can be considered as acommon representation
model for other existing languages. It was originally developed to sit between languages as
SDL, Promela [Gallardoet al. (2004)] or Lotos [ISO (1989)]. It has been extended to deal
with UML notation as well [Cavarraet al. (2002)]. IF is based on communicating timed
automata TEFSM, and it is used to describe and validate asynchronous systems.

In IF, a system is a set of processes communicating asynchronously through a set of
buffers. Each process is an TEFSM that models the behavior ofa given component. A
process can send and receive messages to and from any buffer.

The semantic of time is similar to the one of communicating extended timed automata.
That is:

• A time behavior of a system can be controlled through clocks.
• The time progresses in some state before selecting and executing some transitions.
• Transitions take zero time to be executed.

In order to control the time progress or the wait time in states, IF implements the notion
of urgency in the transitions. A transition may have priority over others, or may be delayed.
In this context, a transition may be described as following:

deadline {eager, delayable, lazy};

provided <expression>;

when <constraint>;

input <signal (expression)>;

{statement};

{action};

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

8 Book Title

if <expression> then {statement} endif;

while <expression> do {statement} endwhile;

nextstate <state id>;

stop;

In the sample above, “Eager”, “Delayable” and “Lazy” concerns the priority of the
transitions related to the progress of time, where:

• Eager: the transition has priority over the time. The time can not evolve except if the
transition is fired. In other words, these transitions must be executed as soon as they
are enabled and waiting is not allowed.

• Delayable: the time has priority over the transition. This means that the time may
evolve until the time constraint becomes true. When it is enabled, waiting is allowed
as long as time progress does not disable it.

• Lazy: the transition and the time have the same priority. In this case does not matter
what comes first: the transition may be fired or the time may evolve. These transitions
are never urgent. When a lazy transition is enabled, the transition may be executed or
the process may wait without any restriction.

Several tools may interact with IF. Some concern the automatic transformation of sys-
tem specifications into IF Format (asSDL2IF, or UML2IF). Other tools have tackled the
system analysis and verification using the IF format such as TReX [Annichiniet al.(2001)].
Other possibilities are the simulation of the system (IF-2.02 and IFx1), or even the test gen-
eration using TGV tool.

1.4.3 Case Study: Travel Web Application

To prove the effectiveness of our framework we carried out a case-study using a Travel
application which is an internal service used by France Telecom company to manage ‘mis-
sions’ (business travels) carried out by its employees. In our case study we only consider,
at first, a simple Travel application where a potential traveler can connect to the system
(using a dedicated URL) to request a travel ticket and a hotelreservation during a specific
period according to some business purposes (called mission). This request can be accepted
or rejected by his/her hierarchical superior (called validator). In the case it is accepted, the
travel ticket and hotel room are booked by contacting a travel agency. The specification of
this Travel Web application is performed using the IF language.

Further, we defined some specific security rules to boost the system security. These
security rules are inspired from France Telecom’s securitytest campaign and are formally
specified using the Nomad model.

2http://www-omega.imag.fr/

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

Modeling and Testing Secure Web Applications 9

q 7

g r a n t _ c h o i c e
(m _ r e c v , p _ r e c v)

i := 0

(w h i l e i < N B _ T R A V E L E R)

r e q _ v a l i d a t i o n (m _ r e c v , p _ r e c v) t o
({bas i c_ t rave le r } i)

i := i +1

(end wh i l e)

q 8

s e n d _ v a l i d a t e _ n o t i f i c a t i o n
(v _ r e c v , m _ r e c v)

r e c v _ v a l i d a t e _ n o t i f i c a t i o n
(v _ r e c v , m _ r e c v)

s e n d _ u n v a l i d a t e _ n o t i f i c a t i o n
(v _ r e c v , m _ r e c v)

r e c v _ u n v a l i d a t e _ n o t i f i c a t i o n
 (v _ r e c v , m _ r e c v)

Fig. 1.3 An IF State in the TravelMission Process: q7 and q8 States

1.4.4 Travel IF Specification

Modeling Web applications allows software engineers to specify, understand and maintain
their complex architecture in an optimized manner. To perform this formal specification,
we use the IF language to model the functional behavior of theTravel communicating Web
application. This specification provides the metrics in thetable 1.1.

Table 1.1 IF Travel System Specification
Processes States Transitions Signals Variables

basictraveler 5 12 13 11
travelermission 7 12 11 8

basictravel 2 7 7 8
travel mission 9 11 14 6

The IF model is composed of four processes. Each process communicates with the
other using a set of signals:

• basic travel andtravel missionare two processes that describe the Travel system be-
havior. basic travel allows to communicate with a basic user of the system whereas
travel missionallows to manage the ‘missions’ requested by a potential traveler.

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

10 Book Title

• basic travelerandtraveler missionare two processes that describe the user behavior.
The first process simulates a basic traveler that can change its profile, delegate its
rights, and request the creation of a mission or its validation. Whereastraveler mission
describes a potential traveler that can choose the details of its business travel.

The IF specification of the Travel system is finite but large. For matter of space, we only
present, in Figure 1.3, two states (q7 andq8) from thebasic travel process. In the stateq7,
the system asks for a validation relating to a mission request (output reqvalidation()). State
q8 has two transitions. The input in the left transition (resp.right transition) is received
from the mission validator that sent an acceptance (resp. a reject) notification to the Web-
based system. This notification is transmitted to the potential traveler using the output
signal (output recv(un)validatenotification()).

1.5 Secure Specification of Web Applications

1.5.1 Security Rules Specification Using Nomad Language

We rely in this approach on Nomad formal language [Cuppenset al. (2005)] to specify,
without any ambiguity, the set of security properties that the system has to respect. The
choice of this language was mainly motivated by the characteristics of Nomad that provides
a way to describe permissions, prohibitions and obligations related to non-atomic actions
within elaborated contexts and mainly time constraints. Bycombining deontic and tempo-
ral logics, Nomad allows to describe conditional privileges and obligations with deadlines,
thanks to the time concept it supports. Finally, it can also formally analyze how privileges
on non atomic actions can be decomposed into more basic privileges on elementary actions.

1.5.1.1 Nomad Formal Language: Syntax and Semantics

To meet the requirements of the functional model of the system, we define an atomic action
with the same concepts of TEFSM actions.

Definition 1.2. (Atomic action) We define an atomic action as one of the following actions:
a variable assignment, a clock setting, an input action, an output action, a process creation
or a process destruction.

Definition 1.3. (Non-atomic action) If A and B are actions, then(A;B), which means ”A is
followed immediately by B” is a non-atomic action.

Definition 1.4. (Formulae) If A is an action then start(A) (starting A), and done(A) (fin-
ishing A) are formula.

• If α andβ are formulae then¬α, (α ∧β) and(α ∨β) are formulae.

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

Modeling and Testing Secure Web Applications 11

• If α is a formula then Odα (α was true d units of time ago if d≤ 0, α will be true after
d units of time if d≥ 0) is a formulae too.

• If α is a formula then O<dα (within d units of time ago,α was possibly true if d≤ 0,
α is possibly true within a delay of d units of time if d≥ 0) is a formulae.

• If α andγ are formulae then(α|γ) is a formula whose semantics is: in the contextγ,
the formulaα is true.

In the rest of the chapter, we refer to operators “O” and “|” by timedandcontextual
operators respectively. Also, we use the notationO[<]d to cover both casesOd andO<d.
Notice also that using Nomad formalism, we deal with a discrete time. The choice of the
unit of time can be very important and depends on the studied system. In our work, we
use real time units like seconds, milliseconds or microseconds depending on the desired
precision.

Definition 1.5. (A security rule) Ifα andβ are formulae,R (α | β) is a security rule where
R denotes one of the following deontic operators:{P, F , O}. P (α | β) (resp.F (α |

β), O (α | β)) means that it is permitted (resp. prohibited, mandatory)to executeα when
contextβ holds.

1.5.1.2 Examples of Security Rules Specification

We present in this section some examples of security rules specifications according to No-
mad language:
Example 1:

P(start (input ReqWrite(user,file.doc))|

(O≤−5s done (output AuthOK(user)))∧
(¬ done (output DisconnectOK(user))))

This rule expresses a permission granted to any user to request to write in ‘file.doc’, if
earlier, within 5 seconds, he/she was authenticated in the system and his/her authentication
is still running.
Example 2:

O(start (output DisconnectOK(user))|
(O≤−30min¬ done (input (user)))∧

(¬ done(output DisconnectOK(user))))

According to this obligation rule, the system must disconnect a running connection of
any user if this latter remains inactive for 30 minutes.
Example 3:

F (start ((output AuthOK (user)))|
O≤−0.01s done (output AuthOK(user))∧
(¬ done(output DisconnectOK(user))))

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

12 Book Title

To avoid service deny, this prohibition rule means that the system must not allow any user
to get two simultaneous connections in the same millisecond.

1.5.2 Security Integration Methodology

The integration of security rules into a TEFSM model describing the behavioral aspects of
a system leads to a TEFSM specification that takes the security policy into account: we
call it ‘secure functional specification’. The integrationprocess is twofold. At first, the
algorithm seeks for the rules to be applied on each transition of the TEFSM specification.
Then, it modifies each transition by adding some states, transitions and clocks or by up-
dating transition guards. This modification depends on the nature of the rule (prohibition,
permission or obligation) and its syntax format.

1.5.2.1 Integration Process Assumptions

To integrate security rules into a TEFSM specifications, we have to make the following
assumptions:

• The initial TEFSM specification representing the behavior of the system is correct.
Indeed, it must be deadlock free and each state must be reachable from any other state.

• The initial TEFSM specification of the system does not take into account any security
requirements. It only specifies system behavior from its functional point of view.

• The security rules to integrate are consistent. We assume that it do not contain any
incoherent or redundant rules. Checking the consistency ofthe security policy is out
of the scope of this approach. We assume that this issue has been checked. There are
several techniques to achieve this goal (see for instance [Cuppenset al.(2006)]). Here
is an example of inconsistent security policy composed of two rulesO (start(A)| O−d

done(B))andF (start(A) | O−d done(B)). We cannot oblige the system to perform
actionA in a contextC = O−d done(B) if this action is forbidden in the same context.

1.5.2.2 Security Rules Classification

According to the Nomad syntax, there are several possible forms for security rules. It
would obviously be tedious to deal separately with each of these forms. Consequently, we
classify the Nomad security rules into two main classes described hereafter:

(1) Basic Timed security rules: we consider in this class security rules of the form
R(start(A)|O[<]ddone(B)) whereA andB are actions. To make easier the integration
of such rules, we also distinguish two subclasses:

(a) Basic security rules with atomic actions: actionsA andB are atomic.
(b) Basic security rules with decomposable actions: A or B or both are non-atomic

actions. They denote a sequential set of atomic actions.

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

Modeling and Testing Secure Web Applications 13

Section 1.5.2.3 gives the algorithms we have developed to integrate such basic security
rules into a TEFSM specification.

(2) General security rules: a general security rule denotes any rule that does not fit into
the first class. This means that the rule may contain several contextual or/and timed
operators or/and logical connectors. In section 1.5.2.4, we show that such a rule can
be decomposed and rewritten into one or several basic rules.In this way, integration
algorithms developed for the first class can be reused and applied to integrate general
security rules.

1.5.2.3 Integration of Basic Timed Security Rules

This section describes the integration of security rules ofthe form:

R (start(A|O[≤]ddone(B))

As stated in the previous section, we have to distinguish thecases of atomic and non-atomic
actions. The first part of this section describes the algorithms that allow the integration of
basic security rules that only contain atomic actions, whereas the second part deals with
non atomic actions.

Basic Security Rules with Atomic Actions

A basic security rule with atomic actions has the following form: R (start(A |

O[≤]ddone(B)) whereR∈ {F ,O,P} andA andB are atomic actions.

Prohibitions Integration

The prohibited action relates usually to an already existing action in the initial system.
Considering the TEFSM specification, actionB can appear on one or several transitions.
The basic idea of integrating such prohibition rule in a TEFSM model is to check the rule
context before performing the prohibited action. If this context is verified, the prohibited
actionA must be skipped. Otherwise, if the context is not valid, the action can be performed
without any rule violation. Since we deal with a timed context, we have to define a clock
to manage the temporal aspect of the rule.

First Case.In the following, we present the different steps to integrate a prohibition rule
in the form ofF (start(A) | O<−d done(B))within a TEFSM model where (d > 0). This
rule expresses that it is forbidden to perform actionA if within (d−1) units of time ago,B
was performed.B is the context action andA is the prohibited action. Three steps are to be
considered:

• The creation of a public clockCk that can be modified by all the TEFSM model pro-
cesses.

• ClockCk is set to 0 after each occurrence ofB in the TEFSM transitions. Intuitively,

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

14 Book Title

Ck measures the time elapsed from the last occurrence of actionB. Before the first
occurrence ofB, clockCk is simply inactive.

• Before performing the prohibited actionA, we verify whether clockCk is already ac-
tivated. If so, we check its valuation to deduce ifA can be performed or not. If clock
Ck is not activated, that means that the system did not performB yet. In that case,A is
allowed.

S 0 S 1

B

B
A

S 2S 3

B , A

Fig. 1.4 Initial System Specification.

These steps are provided in pseudo-code in Algorithm 1.1. Toillustrate this algorithm,
we present an example of a prohibition rule integration in Figure 1.4 and 1.5. The initial
functional system illustrated in Figure 1.4 contains several occurrences of the atomic ac-
tions A andB. We want to integrate the ruleF (start(A) | O<−d done(B))that stipulates
that it is forbidden to perform actionA if within d units of time ago,B was performed.
Applying Algorithm 6, we obtain the secure system depicted in Figure 1.5.

S 0 S 1

B , s e t C k : = 0

B , s e t C k : = 0

p r o v i d e d

ac t i ve Ck ,

w h e n C k > d - 1 ,

 A

S 2S 3

S _ 0

B, se t Ck := 0

p r o v i d e d n o t

ac t i ve Ck ,

A

w h e n C k > d - 1 , A

Fig. 1.5 Secure System Specification.

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

Modeling and Testing Secure Web Applications 15

Algorithm 1.1 Prohibitions Integration (1/2)
Require: The TEFSM modelM =< S,s0, I ,O,~x,~c,Tr > and the prohibition security ruleF

(start(A)| O<−d done(B))
1: Define a new integer variable k:=0;
2: Define a new clockCk within M
3: for each (transitiontr such that (tr ∈ Tr∧ tr =< Si ,Sj ,G,Act >)) do
4: if B∈ Act then
5: tr := < Si ,Sj ,G,(be f ore(B);B;set ck:= 0; A f ter(B)) >
6: if ((A∈ Act) ∧ A∈ A f ter(B)) then
7: /* tr is of the form< Si ,Sj ,G,(be f ore(B);B;C;A;A f ter(A)) >*/
8: Create a new stateS k and a new transitionTrk
9: tr := < Si ,S k,G,(be f ore(B);B;C) >

10: trk := < S k,Sj ,{when Ck> d−1}, (A;A f ter(A)) >
11: k++;
12: end if
13: else
14: if (A∈ Act) then
15: Create a new transitionTrk
16: tr := < Si ,Sj ,{G, provided not active Ck}, (be f ore(A);A;A f ter(A)) >
17: tr1 = < Si ,Sj ,{G, provided active Ck, when Ck> d−1},(be f ore(A);A;A f ter(A)) >
18: k++;
19: end if
20: end if

21: end for

Second case.This part gives the steps to follow in order to integrate, within a TEFSM
specification, a prohibition rule of the formF (start(A)| O−d done(B))whered > 0. This
rule expresses that it is forbidden to perform actionA if B was performedd units of time
ago. The first solution that comes to mind consists in defining-like in the first case- a new
clockCkwhich is set to 0 each time actionB is executed. Then, the guard of each transition
that executes actionA is reinforced by the guard{Ck 6= d} to make the transition fireable
only if the elapsed time from the execution of actionB is different fromd (It may be more
or less). This solution is represented by a declination of Algorithm 6 by replacing{when
Ck> d−1} with {when Ck6= d}.

Table 1.2 A Transitions Sequence Example with Time
Progress.

Transition Arrival State Si Duration in Si

Tr1 S0→ S2 S2 2
Tr2 S2→ S0 S0 3
Tr3 S0→ S1 S1 2
Tr4 S1→ S2 S2 Not relevant

Figure 1.6 illustrates the application of this algorithm onthe example of the initial
TESM presented in Figure 1.4. However, a deep analysis of thepresented solution shows
that this latter is only conceivable if the interval betweentwo successive executions of ac-

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

16 Book Title

tion B is longer thand. Indeed, let us assume that TEFSM system in Figure 1.6 follows the
sequences of transitions shown in table 1.2 and that clockCk progresses after its activation
in each stateSi according to a given valuation.

S 0 S 1

B , s e t C k : = 0

B , s e t C k : = 0

p r o v i d e d

ac t i ve Ck ,

w h e n C k < > d ,

 A

S 2S 3

S _ 0

B, se t Ck := 0

p r o v i d e d n o t

ac t i ve Ck ,

A

w h e n C k < > d , A

Fig. 1.6 First Intuition for Prohibition Rule Integration

Let us suppose thatd is equal to 5.gckdenotes a master clock that measures the system
global time. The progress of the secure system is described in Table 1.3.

Table 1.3 The Secure TEFSM System Progress
Tr State gck Ck Note
Tr1 S0 0 -1 Ck is not yet activated

S2 0 -1 Transitions are instantaneous
Time progress (2 units of time)

Tr2 S2 2 -1 Ck is not yet activated
S0 2 0 1st execution ofB

Time progress (3 units of time)
Tr3 S0 5 3 Both clocks progress

S1 5 0 2nd execution ofB
Time progress (2 units of time)

Tr4 S1 7 2 Both clocks progress
S2 7 2 Action A is performed since

Ck 6= 5

We can notice that sinceCk is not equal to 5, actionA is ‘wrongly’ executed although
the time elapsed from the first execution of actionB is equal to 5. This is due to the reset
action (Ck := 0) executed at the second occurrence ofB. In other words, this re-set action
erases the previous execution ofB from the system memory.

To cope with this limit, we suggest the following second solution. Basically, we define a
clockgckthat denotes a master clock that measures the time elapsed from the beginning and
an integer variablec that indicates the next moment when the execution ofA is forbidden.
Thus, for each execution of actionB, the system creates a new processRHP (for Rule
Handler Process) that waits duringd units of time. Then, it updates the value ofc to state
the moment when the execution ofA is forbidden, then it stops (it kills itself). The global
clock gck is compared to the value ofc before performingA. The algorithm 1.2 formally

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

Modeling and Testing Secure Web Applications 17

Algorithm 1.2 Prohibition Integration (2/2)
Require: The TEFSM modelM =< S,s0, I ,O,~x,~c,Tr > and the prohibition security ruleF

(start(A)| O−d done(B))
1: Define a new integer variable k:=0;
2: In M, define a new public clockgckand a new public integer variablec
3: In the initial State, set gck := 0
4: c := -1
5: for each (transitiontr such that (tr ∈ Tr∧ tr =< Si ,Sj ,G,Act >)) do
6: if (B∈ Act) then
7: tr := < Si ,Sj ,G,(be f ore(B);B; f ork RHP((integer)gck+d);A f ter(B)) >
8: /*RHP is a new process that handles the c variable. It accepts an integer parameter*/
9: if ((A∈ Act) ∧ A∈ A f ter(B)) then

10: /* tr is of the form of< Si ,Sj ,G,(be f ore(B);B;C; A;A f ter(A)) >*/
11: Create a new stateS k and a new transitionTrk
12: tr := < Si ,S k,G,(be f ore(B);B;C) >
13: trk := < S k,Sj ,{when gck6= c}, (A;A f ter(A)) >
14: k++;
15: end if
16: else
17: if (A∈ Act) then
18: G := {G, when gck6= c}
19: end if
20: end if
21: end for
22: for RHP (T)do
23: In the initial stateS0, define a transitionTr1
24: tr1 := < S0, ,when gck= T, (c := T; stop) >

25: end for

defines these steps.
Applying this algorithm on the TEFSM of Figure 1.4 gives the secured TEFSM de-

picted in Figure 1.7.

S 0 S 1

B , f o r k R H P (g c k + d)

w h e n

g c k < > c ,

 A

S 2S 3

S _ 0

w h e n g c k < > c , A

B , f o r k R H P (g c k + d)

B , f o r k R H P (g c k + d)

P r o c e s s R H P (T)

S 0

w h e n

C k = T ,

c : = T

Fig. 1.7 Prohibition Rule Integration:F (start(A)| O−d done(B)).

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

18 Book Title

Permissions Integration

Like prohibitions, permission relate to actions which already exist in the initial func-
tional system. Though even the permission to perform an action A in a given contextC it
is equivalent to the prohibition to execute actionA whenC is not verified, the permission
integration algorithms are slight different form those developed for prohibition rules. We
give hereafter the steps to follow to integrate permissionsrules.

First case.In this section, we propose a methodology to integrate a permission rule in
the formP (start(A) | O<−d done(B))within a TEFSM model where (d ≥ 0). This rule
expresses that it is permitted to perform actionA if within (d−1) units of time agoB was
performed. Like in prohibitions integration, we need to define a new public clock variable
that can be modified by all the TEFSM model processes. This global clock is set to 0 after
each occurrence ofB. Before performing the granted actionA and in case where actionB
is not already executed in the same transition, we verify theclock valuation (if the clock is
already activated) to deduce ifA can be performed or not. In fact, if actionB is executed in
the same transition just before actionA, this latter later can be executed without violating
the permission rule.The steps to integrate a permission rule are described in pseudo-code
in algorithm 1.3.

Algorithm 1.3 Permission Integration (1/2)
Require: The TEFSM modelM =< S,s0, I ,O,~x,~c,Tr > and the permission security rule

P (start(A)| O<−d done(B))
1: Define a new clockCk within M
2: for each (transitiontr such that (tr ∈ Tr∧ tr =< Si ,Sj ,G,Act >)) do
3: if (B∈ Act) then
4: /* tr is of the formtr =< Si ,Sj ,G,{be f ore(B);B;A f ter(B)} > */
5: tr := < Si ,Sj ,G,{be f ore(B),B,set Ck:= 0, A f ter(B)} >

6: end if
7: if (A∈ Act) then
8: /* tr is of the formtr =< Si ,Sj ,G,{be f ore(A);A;A f ter(A)} > */
9: if (B /∈ Be f ore(A)) then

10: tr := < Si ,Sj ,{G, (provided not active Ck) ∨
(provided active Ck, when Ck≥ d)}, {be f ore(A);A f ter(A)} >

11: /*Create a new transitiontr1*/
12: tr1 = < Si ,Sj ,{G, provided active Ck, when Ck< d},

{be f ore(A)A,A f ter(A)} >

13: end if
14: end if
15: end for

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

Modeling and Testing Secure Web Applications 19

Algorithm 1.4 Permissions Integration (2/2)
Require: The TEFSM modelM =< S,s0, I ,O,~x,~c,Tr > and the permission security rule

P (start(A)| O−d done(B))
1: Define a new integer variable k:=0;
2: In M, define a new clock publicgckand a new public integer variablec
3: In the initial State, set gck := 0
4: c := -1
5: for each (transitiontr such that (tr ∈ Tr∧ tr =< Si ,Sj ,G,Act >)) do
6: if (B∈ Act) then
7: /* tr is of the formtr = < Si ,Sj ,G,{be f ore(B);B;A f ter(B)} > */
8: tr := < Si ,Sj ,G,{be f ore(B),B,

f ork RHP((integer)gck+d),A f ter(B)} >

9: (RHP is a new process that handles the c variable. It accepts an integer parameter)
10: if (A∈ A f ter(B)) then
11: /* tr is of the formtr = < Si ,Sj ,G, {be f ore(B),B,

f ork RHP((integer)gck+d), C,A,A f ter(A)} >)*/
12: Create a new stateSk and a new transitiontrk

13: tr := < Si ,Sk,G,{be f ore(B),B, f ork RHP((integer)gck+d),C} >

14: trk := < Sk,Sj ,{when gck= c},{A,A f ter(A)} >

15: k++;
16: end if
17: else
18: if (A∈ Act) then
19: /* tr is of the formtr = < Si ,Sj ,G,{be f ore(A);A;A f ter(A)} > */
20: tr :=< Si ,Sj ,{G, when gck= c},Act >
21: end if
22: end if
23: end for
24: for RHP (T)do
25: In the initial stateS0, define a transitiontr1
26: tr1 := < S0, ,when gck= T, {c := T, stop} >

27: end for

Second case. This part gives the steps to follow in order to integrate, within a TEFSM
specification, a permission rule of the formP (start(A)| O−d done(B))whered > 0. This
rule expresses that it is permitted to perform actionA if B was performedd units of time
ago. If this condition is not satisfied,A is denied. Like in the case of prohibition rule, we
need to define a global clockgckan integer variablec that indicates the moment when the
execution ofA is permitted. Thus, for each execution of actionB, the system creates a child
process that waits state duringd units of time. Then, it updates the value ofc to state the
moment when the execution ofA is granted, then it stops. The global clockgckis compared
thec value before performingA. The algorithm 1.4 formally defines these steps.

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

20 Book Title

Obligations Integration

To integrate an obligation security rule, we rely on a new processRHPthat ensures the
execution of the mandatory action. If the related mandatoryaction is not executed by the
initial specification, the process has the task to execute ititself.

First case.The integration methodology follows these steps for a rule that is in form ofO
(start(A)| O−d done(B))whered > 0:

• The definition of a new process that can be createdn times by the initial functional
specification.n is the maximum number of occurrences of the rule context action B
that can be executed duringd units of time.

• The new process has to set a clock and wait until the deadline is reached. At this
moment, it performs the mandatory actionA.

Algorithm 1.5 Obligations Integration (1/2)
Require: The TEFSM modelM =< S,s0, I ,O,~x,~c,Tr > and the obligation security ruleO (start(A)

| O−d done(B))
1: for each (transitiontr such that (tr ∈ Tr∧ tr =< Si ,Sj ,G,Act >)) do
2: if (B∈ Act) then
3: tr := < Si ,Sj ,G,(be f ore(B);B; f ork RHP A f ter(B)) >
4: /*RHP is a new process that handles the obligation rule*/
5: end if
6: end for
7: for RHP processdo
8: Define a new clock Ck
9: Define a new state Wait

10: Define two transitionsTr1 andTr2
11: tr1 := < S0,Wait, ,set Ck:= 0 >
12: tr2 := < Wait, ,when Ck> d−1,(A;stop) >

13: end for

Note that we assume that the initial systemS is not secure, that is it does not perform
the actionA, d units of time afterB. Otherwise, (ifA is performed byS), we can easily
define a boolean and public variablevar that is set to true whenA is executed at the right
moment. In that case, the external processRHPperformsA only if var = f alse.

In Figure 1.8, we present the integration of an obligation rule within the initial system
depicted in Figure 1.4. In this functional system, we can findseveral occurrences of atomic
actionB.

Second case.To add an obligation rule of the form ofO (start(A)| O<−d done(B)), we have
to associate with each occurrence of actionB an execution of actionA. This latter action
has to be performed within a delay of (d−1) units of time. To perform such an integration,
we have to follow the steps given hereafter (see Algorithm 1.6):

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

Modeling and Testing Secure Web Applications 21

S 0 S 1

B , f o r k R H P ()

B , f o r k R H P ()

S 2S 3

B, f o r k

R H P ()

P r o c e s s R H P

S 0

w a i t

se t
C k : = 0

w h e n C k = 5 , A

Fig. 1.8 Obligation Rule Integration :O (start(A)| O−d done(B)).

Algorithm 1.6 Obligations Integration (2/2)
Require: The TEFSM modelM =< S,s0, I ,O,~x,~c,Tr > and the obligation security ruleO (start(A)

| O<−d done(B))
1: In the initial state ofM, waitA := 0
2: for each (transitiontr such that (tr ∈ Tr∧ tr =< Si ,Sj ,G,Act >)) do
3: if (B∈ Act) then
4: tr := < Si ,Sj ,G,(be f ore(B);B;waitA ++; f ork RHP();A f ter(B)) >
5: end if
6: if (A∈ Act) then
7: tr := < Si ,Sj ,G,(be f ore(A);A; i f (waitA > 0) waitA−−;A f ter(A)) >
8: end if
9: end for

10: for RHP processdo
11: Define a new clockCk
12: Define a new state Wait
13: Define three transitionstr1 andtr2 andtr3
14: tr1 := < S0,Wait, ,set Ck:= 0 >
15: tr2 := < Wait, ,{when Ck= d−1,i f (waitA > 0)},(A;stop) >
16: tr3 := < Wait, ,{when Ck= d−1,i f (waitA = 0)},stop>

17: end for

• We define an integer variablewaitA that counts the number of occurrences of actionsB
that are waiting for an execution of actionA.

• We define a new processRHP where a clockCk is activated to wait(d−1) units of
time (till action A has to be executed). When the deadline is reached, processRHP
checks whether we are waiting for any execution of actionA (waitA > 0) and executes
A if necessary.

• VariablewaitA is updated as follows:waitA is incremented each time actionB is ex-
ecuted. If the valuewaitA is strictly positive, it is decremented each time actionA is
executed either by the initial specification or by processRHP.

Intuitively, processRHP has to wait for a possible execution of actionA during the
allowed time(0..(d−1)). In case where the initial specification does not execute such an

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

22 Book Title

action, processRHPmust execute it.
Figure 1.9 shows the integration of obligation rule of the form O (start(A) | O<−d

done(B)) within the initial system shown in Figure 1.4.

S 0 S 1

B , w a i t _ A + + ,

 f o r k R H P ()

S 2S 3

P r o c e s s R H P ()

S 0

w a i t

se t
C k : = 0

w h e n (c k = d - 1) , i f (w a i t _ A > 0) A

A ,

i f (wa i t _A>0)

w a i t _ A - -

B , w a i t _ A + + ,

f o r k R H P () ,

 A,

i f (w a i t _ A > 0)

 w a i t _ A - -

w h e n (c k = d - 1) , i f (w a i t _ A = 0)

B , w a i t _ A + + , f o r k R H P ()

Fig. 1.9 Obligation Rule Integration :O (start(A)| O<−d done(B)).

Basic Security Rules with Non-Atomic Actions

In this section, we consider the integration of security rules with non-atomic actions
(see definition 1.3). A non-atomic actionA is sequence of atomic actions{a1; . . . ;asize(A)}.
First, we define two different categories of non-atomic actions:

Definition 1.6. (1 Tr actions) a non atomic action A is 1Tr action with respect to a tran-
sition tr =< si ,sf ,G,Act > if and only if A⊆ Act. That means that it exists sequences of
actions X and Y such that (Act= (X;A;Y)). Both sequences X and Y may be empty.

Definition 1.7. (n Tr actions) a non atomic action A is kTr action with respect to the
ordered set of transitions Tr= {tr1, . . . , trk} if and only if the execution of A needs the
triggering of all the transitions of Tr in their order in Tr. More formally:

(1) ∀i.(1 ≤ i ≤ (k−1) ⇒ FS(tr i) = IS(tr(i+1))) where IS(tr) (resp. FS(tr)) denotes the
initial state (resp. Final state) of transition tr.

(2) A⊆ (Act(tr1); . . . ;Act(trk)). Act(tr) denotes the sequence of actions labeling transi-
tion tr.

Integration of Rules with1 Tr Actions

Let us consider a 1Tr non atomic actionAct with respect to a transitiontr, and a
security rule of the formR(A|O[<]−dB). The integration of security rules containing the
Act in the transitiontr is performed similarly to the case of atomic actions since wehandle
a unique transition. In other words, we can apply the algorithms we defined in section
1.5.2.3 by distinguishing the two following cases:

• B = Act: the activation of the possible clocks and the creation of eventual processes
are added to actions oftr immediately after the execution of actionAct.

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

Modeling and Testing Secure Web Applications 23

• A = Act : in that case, possible guards related to the clocks are added to the guard of
transitiontr.

Integration of Rules with nTr Actions

The handling of decomposable actions can be inspired from [Mallouli and Cavalli
(2007)]. In this section, we only considern Tr actions that are decomposable onn dis-
tinct transitionsTr = (tr1, . . . , trn). We also make the assumption that the subgraph formed
by transitionsTr does not contain any cycle. According to thisn transitions, we introduce
the following notations:

• The starting transitionST: includes the transition that the system has to follow to start
the action:ST= tr1.

• The ending transitionET: includes the transition that the system has to follow to end
the action:ST= trn.

• The intermediate transitions setITS: includes the remaining transitions:IT =

{tr2, . . . , trn−1} and may be empty.
• The outgoing transitions setOTS: includes the transitions whose initial states belong to

those of transitions (Tr−{tr1}) and whose final states are beyond the action. This set is
formally defined as follows:OTS= {tr|∃tr ′.(tr ′ ∈ Tr−{tr1} ∧ IS(tr) = IS(tr ′)∧ tr 6=
tr ′}.

S 1 S 2

S 3

S 4S 0

S 6 S 7

S 8S 5

S T E T

I T 1 I T 2

O T 1

O T 2

a

b
c

d

e

Fig. 1.10 An initial TEFSM specification with one nTr Action a;b;c;d.

In Figure 1.10, the action(a;b;c;d) is a 4Tr decomposable action. We have one start-
ing transition (ST), two intermediate transitions (IT1 andIT2), one ending transitions (ET)
and two outgoing transitions (OT1 andOT2).

For sake of space, this chapter only discusses the integration of a prohibition security
rule of the formF (start(A)|O<−ddone(B)) with A and/orB denoting decomposable ac-
tions. The other cases can be deduced based on the same methodology. To integrate a
security rule with decomposable actions we have to know whether the underlying system is
executing any decomposable action. Let(C = (c1; . . . ;cn)) be a decomposable action with
respect to transitionsTr = {tr1, . . . , trn}. A system is executing actionC if and only if it
is firing transitionsTr in the good sequence order. To memorize such a state, we definea

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

24 Book Title

variablevC that is initialized to false and updated in the TEFSM as follows:

• The action(vC := true) is added to the starting transitionST.
• The action(vC := f alse) is added to each outgoing transitiontr ∈ OTS. In fact if the

system fires a transition belonging toOTS, this means that the possible execution of
actionC is interrupted.

VariablevC being defined for each decomposable action, the integrationprocess pro-
ceeds as follows:

• B=C: the activation of the clock is done when the whole decomposable action is per-
formed, that is, when the system is firing the ending transitionET and whilevC is true.
So, we add action (set ck:=0) by stating that this action is only performed whenvC is
true.

• A=C: to forbid the execution of actionC in a given context, we chose to skip the last
action(s) in the transitiontrn when context condition holds. In our case for instance,
we add condition ((when ck ¿ d-1) or vC = f alse) to the ending transitionET. By this
way, we state that this transition is only fired if the time constraint is fulfilled or the
system is not running actionC.

S 1 S 2

S 3

S 4S 0

S 6 S 7

S 8S 5
a

b
c

d

v : = t r u e

v : = f a l s e

v : = f a l s e

v = t r u e
d ; s e t C k : = 0

C o n d
e

C o n d = (w h e n C k > d - 1) o r (v = f a l s e) o r (p r o v i d e d n o t a c t i v e C k)

v = f a l s e

Fig. 1.11 Secure TEFSM After Integration.

Figure 1.11 shows the integration of security ruleF (start(e)|O<−ddone(a;b;c;d)).
Variable v is added to know if the system is running or not the decomposable action
(a;b;c;d).

1.5.2.4 Integration of General Security Rules

So far, the integration algorithms we have described only deal with security rules with
a unique timed operator in the context part. Moreover, theserules do not contain any
logical operator. This section gives some features to extend our proposed approach by
considering more elaborated rules that may contain severallogical and timed operators.

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

Modeling and Testing Secure Web Applications 25

Table 1.4 Rewritten Rules for Some Elaborated Security
Rules

Rule Rewrite
R(A|C1∨C2) {R(A|C1),R(A|C2)}

whereR ∈ {F ,O,P}

R(A1∨A2|C) {R(A1|C),R(A2|C)}
whereR ∈ {F ,P}

O(A1∨A2|C) eitherO(A1|C) or O(A2|C)

R(A1∧A2|C) {R(A1|C),R(A2|C)}
whereR ∈ {F ,O,P}

F (A|¬B) P(A|B)

P(A|¬B) F (A|B)

F (¬A|B) O(A|B)

P(¬A|¬B) O(A|B)

R(A|O−d2O−d1C) R(A|O−(d1+d2)C)

whereR ∈ {F ,O,P}

R(A|O<−d2O<−d1C) R(A|O<−(d1+d2)C)
whereR ∈ {F ,O,P}

We especially tried to show that the integration of some of the elaborated rules comes
down to the integration of one or several more basic securityrules.

Table 1.4 gives some examples of rewritten rules that transform a subset of complex
rules into one of several simpler basic rules. These rules can be divided into two classes.
The first class concerns security rules involving logical connectors, the second deals with
the multiple uses of timed operators. Let us remark that the left and right parts of the third
rewritten rule are not equivalent. Such a rewrite rule can beviewed as a refinement rule. In
fact by integratingO(A1|C) (resp.O(A2|C)), we will obtain a final system whose behavior
is included in the behavior of a system that would verifyO(A1∨A2|C).

1.5.3 Correctness Proof of the Integration Approach

To ensure the correctness of the approach we proposed to integrate security rules within a
TEFSM functional model, we have to prove all the algorithm developed in section 1.5.2.3.
Most of them are obvious and easily proved. We only present inthis section one relevant
correctness proof related to algorithms 1.1 and 1.3.

1.5.3.1 Correctness Proof of Algorithm 1.1

By proving the correctness of algorithm 1.1, we precisely demonstrate that the integration
of prohibition rule of the form:F (start(A) | O<−d done(B)) where d> 0 produces to a
secure TEFSM specification. To achieve this goal, we define for each occurrence of action
B:

• tB as the instant of the execution actionB.
• k as the time elapsed after the execution of actionB.
• t is a time variable.

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

26 Book Title

• gck(t) is a global clock of the system. By definitiongck(t) = t
• ck(t) is the clock which is set to 0 after each occurrence of actionB.

We have to prove that we can not perform the actionA within d units of time after the
execution of actionB. Mathematically, we have to establish that for each positive integerk
the following predicate holds:

((k < d)∧ (gck(t) = tB +k)) ⇒¬start(A) (1)

To prove that actionA cannot be executed at the moment(gck(t) = tB + k), it is sufficient
to prove that at this moment all the transitionsTr of the secure system labeled by actionA
are impassable. That is all the guards of the transitionsTr are false. In the secure system,
the algorithm 1.1 adds the guard (when ck> d−1) before each execution ofA. Thus, we
have to prove, for each positive integerk, that:

((k < d)∧ (gck(t) = tB +k)) ⇒ ck(tB +k) < d (2)

To reach this aim, we propose to prove that:

((k < d)∧ (gck(t) = tB +k)) ⇒ ck(tB +k) ≤ k (3)

Indeed, if (3) is true which means that (ck(tB + k) ≤ k), and, knowing that (k < d) we
can easily deduce equation (2). To establish goal (3) let us proceed by induction onk:

(1) Basic case (k = 0): gck(t) = tB + 0 = tB. We have to prove that(ck(tB) ≤ 0). At the
instanttB, actionB is performed and according to algorithm 1.1, we launch the clock
ck (set ck:= 0) after the execution ofB. Thusck(tB) = 0, the goal is true since(0≤ 0).

(2) Induction hypothesis (k = n): let us make the assumption that the goal is true until the
rank k = n where (n < (d− 1)), that is, at the moment(gck(t) = tB + n), we have:
(ck(tB +n) ≤ n). Let assume that at moment(tB +n) the system is in the stateS.

(3) Induction case (k = n+1): let us prove that the inequality is true for(k = n+1), that
is, when the global clockgckincreased of one unit of time(gck(t) = t +n+1), we have
(ck(t +n+1) ≤ n+1). In the period betweengck(t) = tB +n andgck(t) = tB +n+1,
the system has executed a transitions setTS(may be empty) without any time progress
beginning from the stateSand ending in the stateS′ (may be equal toS). Note that we
consider thatS′ is the first state in the system whengck(t) > tB +n. Let us prove that:

(gck(t) = tB +n+1) ⇒ ck(tB +n+1) ≤ n+1 (4)

Note first that the only transitions that act on clockck are those labeled by actionB.
These transitions are modified by algorithm 1.1 by settingck to 0. We call themTrB.
Consequently, to establish (4), two cases are to be considered:

(a) TrB∩TS 6= /0: This means that at least oneB action is performed and the clockck
is set to 0. Then,ck(tB +n) = 0. We know that time does not progress inTSand
that in stateS′, clocksck andgck run simultaneously. We can then deduce that
ck(tB +n+1) = ck(tB +n)+1 = 0+1 = 1. Since 1≤ n+1, (4) is true.

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

Modeling and Testing Secure Web Applications 27

(b) TrB∩TS= /0: During the execution ofTS, the valuation ofck does not change
since no transition modifies its valuation. The clocksck andgck run simultane-
ously, both of them progress in stateS′. So,ck(tB +n+1) = ck(tB +n)+1. Since
ck(tB +n) ≤ n (induction hypothesis), we can deduce thatck(tB +n+1) ≤ n+1.
(In particular whenTS=φ , ¬(∃ Tr ∈ TS, and the system stays in the stateSduring
one unit of time)

1.5.3.2 Correctness Proof of Algorithm 1.3

By proving the correctness of algorithm 1.3, we precisely demonstrate that the integration
of permission rule of the form :P (start(A) | O<−d done(B)) where d> 0 produces a
secure TEFSM specification. To achieve this goal, We have to prove that we can perform
the actionA only if within d units of time actionB has been executed. To establish this
proof, we define for each occurrence of actionA:

• tA (resp.tB) as the instant of the execution of actionA (resp.B).
• Ck(t) is the clock which is set to 0 after each occurrence of actionB.

Mathematically, we have to establish that for each positiveintegerk the following predicate
holds:

∃k.((k < d)∧ (gck(t) = tA−k)∧done(B)) (1)

Let us reason about the form of the transitiontr that is triggered by the exe-
cution of action A. Since A belongs to actions oftr; tr is ,of the form tr =<

si ,sf ,G,Be f ore(A);A;A f ter(A) >. We distinguish then the following cases:

• B∈ Be f ore(A): goal (1) is satisfied fork = 0. Since the time does not progress during
the execution of transitions, actionsA andB are executed at the same time (tA = tB)even
if actionB has been executed before actionA.

• B /∈ Be f ore(A): since transitiontr contains actionA and according to algorithm 1.3,
transitiontr has been added by the integration process. Then, its guardG is of the
form (G′∧ provided active Ck, when Ck< d). Goal (1) is satisfied fork equal toCk
that denotes the elapsed time from the last execution of action B. Indeed clockCk is
active because predicate(provided active Ck) is true. Otherwise, actionA cannot be
executed. For the same reason, predicate(Ck< d) is true.

1.5.4 Travel Security Specification Using Nomad Language

France Telecom proposed a preliminary version of the case study Travel in which some
informal security requirements are provided. Based on these requirements, we formally
specified a set of 34 security rules using the Nomad language.For matter of space, we only
present the following three:

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

28 Book Title

• Rule 1:

F (start (out put reqcreatemission(t))|
O≤−2min done(out put reqcreatemission(t)))

This first prohibition rule expresses that two missions requests of the same traveler must
be separated by at least 2 minutes. This request can be performed in thebasic traveler
process.

• Rule 2:

P (start (out put reqpropositionlist(t,m))|

O≤−10min done(out put reqpropositionlist(t,m)))

This permission rule expresses that a traveler can request for another list of travel
propositions within a delay of 10 minutes if he/she already asked for a first list of
travel propositions. This request can be performed in thetraveler missionprocess.

• Rule 3:

O (start (out put reqvalidation())|
O−10080min done(out put reqvalidation())

∧ O≤−10080min ((¬ done(input recvvalidate- noti f ication()))
∧ (¬ done(input recvunvalidatenoti f ication()))))

This obligation rule expresses that if a traveler requestedfor the validation of his/her
mission and if he/she did not received an answer, the system must send, as a reminder,
another request to the potential mission validator. This reminder is sent within a delay
of (10080 min = 7 days). The requests and answers are made in the travel mission
process.

1.5.5 Automatic Rules Integration

A securuity rules integration module based on Nomand formallanguage has been imple-
mented using C language. This module is composed of four different sub-modules as
illustrated in figure 1.12.

• Specification parsing sub-module: a communicating system described using IF lan-
guage is composed of active process instances running in parallel and interacting asyn-
chronously through shared variables and signals via communication buffers (signal
routes instances) or by direct addressing. A process instance can be created and de-
stroyed dynamically during the system execution. It has local data and a private FIFO
buffer. Each IF process is described as a timed automation extended with discrete data
variables, communication primitives and urgency attributes on transitions. The parsing
methodology of the func-tional specification file is based onthe IF language syntax.
It allows to store the IF elements in a C structure. This transformation is required in
order to allow the integration of the security rules within the functional specification.

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

Modeling and Testing Secure Web Applications 29

Fig. 1.12 Secure Specification Building Module.

• Security rules parsing: security rules are specified using the Nomad formal language
that is suited to model permissions, prohibitions and obligations related to non-atomic
actions within different contexts. To simplify the development process and to address
forward compatibility issues, we defined an XML representation of the Nomad lan-
guage to use within the integration module. The XML schema ofsuch security rule is
defined and the XML parsing is possible based on Gnome XML2 library. It permits
to store the rules’ elements within a C structure that is an input for the security rules
integration sub-module.

• Security rules integration: the integration of the security rules within the IF functional
specification of the studied system is done according to the algorithms presented in
section 1.5.2. At first, the algorithm seeks for the rules to be applied on each state
transition of the specification. Then, it integrates the security rules within the initial
specification by adding or modifying guards, transitions and/or states to make the ex-
ecution instance of a given action possible/mandatory under a specific context. At
the end of the process, this integration will generate a new Cstructure describing the
system specification that takes into account the security requirements.

• Secure specification file generation: this last sub-module generates, in IF syntax, the
secure specification of the system under test (SUT) based on the C structure integrating
the security rules within the functional specification.

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

30 Book Title

1.5.6 Rules Integration Results

The table 1.5 shows some metrics about the modifications after the integration of some
specific rules: the modified and added transitions (M&A Transitions), the added variables
and clocks (Added Var & Ck), the added processes (Added Proc).

Table 1.5 IF Travel System Modifications According to Each Rule
Rule M&A Transitions Added Var & Ck Added Proc

1 1+1 1 0
2 2+1 1 0
3 4+3 4 1

q 7

g r a n t _ c h o i c e
(m _ r e c v , p _ r e c v)

i := 0

(w h i l e i < N B _ T R A V E L E R)

r e q _ v a l i d a t i o n (m _ r e c v , p _ r e c v) t o
({bas i c_ t rave le r } i)

i := i +1

(end wh i l e)

q 8

s e n d _ v a l i d a t e _ n o t i f i c a t i o n
(v _ r e c v , m _ r e c v)

r e c v _ v a l i d a t e _ n o t i f i c a t i o n
(v _ r e c v , m _ r e c v)

s e n d _ u n v a l i d a t e _ n o t i f i c a t i o n
(v _ r e c v , m _ r e c v)

r e c v _ u n v a l i d a t e _ n o t i f i c a t i o n
 (v _ r e c v , m _ r e c v)

w a i t _ a : = w a i t _ a + 1

fo r k
R H P (m _ r e c v , p - r e c v)

w a i t _ a : = w a i t _ a - 1 w a i t _ a : = w a i t _ a - 1

Fig. 1.13 Resulting Transitions After Security Integration

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

Modeling and Testing Secure Web Applications 31

As an example, let us consider the Travel specification part described in Figure 1.3.
These transitions are modified during the integration of thethird rule and leads to the cre-
ation of a new process forked in the transition triggered from stateq7. Figure 1.13 describes
the resulting transitions. The new variablewait a has 0 as a default value. Ifwait a is pos-
itive, this means that the system is waiting for a mission validation. The process RHP (for
Rule Handler Process) launches a clock in its first state. Whenthe clock valuation reach
the deadline of 7 days, the system verifies thewait a value, if (wait a¿0) the RHP process
sends another validation request. Otherwise (wait a ≤ 0 which means that the system
got through one of the transitions of the stateq8 and already received an answer from the
mission validator), the RHP process is stopped without performing any action.

1.6 Test Generation

1.6.1 TestGen-IF tool

To automatically generate test cases from the secure specification of Travel, we use the
TestGen-IFtest generation tool developed in our laboratory.

1.6.1.1 Test Generation Algorithm

TestGen-IFimplements a timed test generation algorithm based on a Hit-or-Jump explo-
ration strategy [Cavalliet al. (1999)]. This algorithm efficiently constructs test sequences
with high fault coverage, avoiding the state explosion and deadlock problems encountered
respectively in exhaustive or exclusively random searches. It allows to produce a partial
accessibility graph of the system under test (SUT) specification in conjunction with the IF
simulator [Bozgaet al. (2004b)].

At any moment, a local search is conducted from the current state in a neighborhood
of the reachability graph. If a state is reached, and one or more test purposes are satisfied
(a Hit), the set of test purposes is updated and a new partial search is conducted from this
state. Otherwise, if a search depth limit is reached withoutsatisfying any test purpose, a
partial search is performed from a random graph leaf (a Jump). This algorithm terminates
when all the test purposes are satisfied or when no transitionis left to explore. The test case
is the path constructed on the fly from the initial state of theSUT specification containing
all the hit and jump states.

1.6.1.2 TestGen-IF Architecture

The active testing tool is illustrated by Figure 1.14. The Properties (Test Purposes) box
represents the timed system objectives to be tested (see Section 1.6.2.1). The Automatic
Test Generation box represents the test generation procedure combined with the IF specifi-
cation (.if file) and the test purposes (.tp file). It is up to the user to choose the exploration
strategy of the generated partial graph he wants to perform during the test generation: in
depth (DFS) or in breath (BFS) [Cavalliet al. (2006)]. During this generation, when a test

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

32 Book Title

purpose is satisfied, a message is displayed to inform the user. The number of test purposes
already found and the number of those missing are also provided. Based on this approach,
a test case is generated (represented by the Test Case box). Atest suite is composed of a
finite set of test cases (or scenarios) described in a standard format. It is used to stimulate
the implementation under test (IUT) to validate its reaction.

I F S p e c i f i c a t i o n o f I U T A u t o m a t i c T e s t G e n e r a t i o n

P r o p e r t i e s
(T e s t P u r p o s e s)

T e s t C a s e

T T C NA l d e b a r a n F o r m a t

T E S T G E N - I F T O O L

S t a t e s
T i m e

C o n s t r a i n t s
S i g n a l s

M e s s a g e s

i n p u t

i n p u t

o u t p u to u t p u t

E x e c u t i o n o f t e s t s c e n a r i o s o n
t h e i m p l e m e n t a t i o n o f t h e s y s t e m

V e r d i c t

Fig. 1.14 Basic architecture of the TestGen-IF tool.

1.6.1.3 TestGen-IF Implementation

TheTestGen-IFtool is based on the IF-2.0 simulator [Bozgaet al. (2004b)] that allows to
construct the accessibility graph from an IF specification.This simulator is developed by a
research team at Verimag [Verimag Lab (2009)], for modelingand simulating asynchronous
timed systems such as telecommunication protocols or distributed applications.TestGen-
IF uses the IF-2.0 simulator libraries which provide some functionalities for on-the-fly
state-space traversal. It is implemented in the same implementation language as the IF-2.0
simulator, i.e. C++ language.

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

Modeling and Testing Secure Web Applications 33

As output ofTestGen-IFtool, two files can be generated:

• The “output.stat” file containing statistics about the test generation process (number of
jumps, visited states, generation duration, test case length, depth limit value, strategy
exploration, etc.);

• And the “output.sequence” file (in Aldebaran [Fernandezet al. (1996)] or TTCN
[J. Grabowski and Willcock (2003)] format) containing the timed test sequence. This
last output is represented in Figure 1.14 by the Aldebaran format and TTCN boxes.

The test cases are generated from the output file ”output. sequence” by filtering the
generated test sequences according to the input actions, output actions and delays (i.e.,
progress of time) of the system under test. The test generation with TestGen-IFderives its
benefits fromHit-or-Jumpcharacteristics. It is faster that classical test generation tools and
less memory consuming. In addition, it avoids the state explosion and deadlock problems.

1.6.2 Fixing the Test Objectives

1.6.2.1 Test Purposes Formulation

In order to formulate timed test purposes using TestGen-IF tool, several options are permit-
ted:

• State constraint purposes: expressing that a system can be in a specific state;
• Action constraint purposes: corresponding, in particular, to signals actions (e.g., input

signal, output signal) and describe that an action can be executed in a state (optionally)
at a specific time;

• Clock constraint purposes: expressing that a clock can havea specific value, optionally
in a specific state.

For instance, the constraint “action= input sg in state= s when clock c= d” describes
that the signalsg is to be received in the states when the clockc = d. Timeouts and
deadlines can be usually described by clock constraint, whereas the flow requirements can
be described using states and actions constraints.

1.6.2.2 Test Purposes for the Travel Application

The automatic test generation only targets security issuesand, as a result, it is less time
consuming. In this work we defined a set of test purposes describing security properties.
In the following, we provide both informal and formal test purposes (according to the
TestGen-IF formulation) relating to the rules described insection 1.5.4.

• Rule 1: A potential traveler wants to request for two missions. He/She is obliged to
perform the two requests within a delay greater than 2 minutes. The timed test purposes
of the rule 1 are formulated as:

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

34 Book Title

TP1 = {t p1, t p2}
tp1 = {signal= output ”req createmission”}
tp2 = {signal= output ”req createmission” when clock ck1 = 2}

• Rule 2: A potential traveler tries to choose his/her missionparameters (date, flight,
hour, etc.) among a set of propositions provided by the Travel Web application. In the
case he/she requests for more propositions, the system allows him/her to request a new
list within a delay of 10 minutes. Otherwise, his/her session will expire. The timed test
purposes of the rule 2 are formulated as:

TP2 = {t p1, t p2, t p3, t p4}
tp1 = {signal= output ”req createmission”}
tp2 = {signal= output ”req propositionlist” }
tp3 = {signal= input ”recv propositionlist” }
tp4 = {signal= informal ”other propositionrequest”}

• Rule 3: Once a mission is created, it has to be validated by a specific user called val-
idator. The system sends the mission parameters to the validator and waits for his/her
acceptance/rejection. If the validator does not send any notification within a delay of
7 days, the system generates a validation request reminder.The timed test purposes of
the rule 3 are formulated as:

TP3 = {t p1, t p2, t p3, t p4}
tp1 = {signal= output ”grant createmission”}
tp2 = {signal= input ”req propositionlist” }
tp3 = {signal= output ”req validation”}
tp4 = {signal= output ”req validation” in state relaunch}

1.6.3 Test Generation with TestGen-IF

Our objective is to automatically generate test sequences according to our test purposes. To
reach this aim we used, for Travel test generation, two users(one being the validator) and
two missions. We also defined adequate interval values for data variables in order to reduce
the accessibility graph size and to avoid state explosion problems.

A set of timed test cases are generated based on the IF specification of Travel Web
application and the timed test purposes for each rule, usingTestGen-IF. These test cases
are then filtered according to the observable actions (input, output and delays) relating to
the system under test. For instance, the filtered timed test case for the rule 3 is presented in
the following page.

Table 1.6 Some Test Generation Metrics
Rule Strategy Maxdepth Jumps Test Case Length Visited States Duration

1 BFS 10 0 9 291 0.2s
2 BFS 10 1 16 7844 10s
3 BFS 10 2 23 26552 1m25s

Notice that the input/output signals described in each testcase are relative to the system
under test. In our case it is the Travel system designed by thetwo processesbasic traveland

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

Modeling and Testing Secure Web Applications 35

travel mission. The test cases generated by TestGen-IF tool are abstract but usable; they
are produced in aldebaran standard notation facilitating their portability and their automatic
execution. Some metrics about this test generation relating to three rules are presented in
Table 1.6.

TEST CASE FOR THE RULE 3

(1) ?givetravelerid{0} / !req connect{0,0}
(2) ?reqconnect{0,0} / !grant connect{0,0}
(3) ?grantconnect{0,0}
(4) !req createmission{0}
(5) ?reqcreatemission{0}
(6) !grant createmission{{0,0,0,{travelermission}0,{travel mission}0}}
(7) ?grantcreatemission{{0,0,0,{travelermission}0,{travel mission}0}}
(8) !req propositionlist{0,{0,0,0,{travelermission}0,{travel mission}0}}
(9) ?reqpropositionlist{0,{0,0,0,{travelermission}0,{travel mission}0}}

(10) ?givechoicelist{{{0},1}} /
!recv propositionlist{0,{0,0,0,{travelermission}0,{travel mission}0},{0},1}

(11) ?recvpropositionlist{0,{0,0,0,{travelermission}0,{travel mission}0},{0},1}
(12) !reqchoice{0,{0,0,0,{travelermission}0,{travel mission}0},0}
(13) ?reqchoice{0,{0,0,0,{travelermission}0,{travel mission}0},0}
(14) !grantchoice{{0,0,0,{travelermission}0,{travel mission}0},0}

!req validation{{0,0,0,{travelermission}0,{travel mission}0},0}
(15) ?grantchoice{{0,0,0,{travelermission}0,{travel mission}0},0}
(16) delay = 10080
(17) !reqvalidation{{0,0,0,{travelermission}0,{travel mission}0},0}

1.7 Test Cases Instantiation and Execution

In order to execute the generated test cases to a real Web application, they need to be
transformed into an executable script capable of communicating via http (or https) with
the implementation under test. In this work, we conceived and implemented a tool called
generaTCL to translate abstract test cases into executableone (in TCL scripts) and we
connected this tool to tclwebtest framework [TclWebTest Tool (2009)] to apply them on
Travel Web application.

1.7.1 Tclwebtest tool

Tclwebtest is a framework to build tests for Web applications. It provides an API for issuing
http requests and processing results. It assumes specific response values, while taking care
of the details such as redirects and cookies. It has the basicHTML parsing functionality to
provide access to elements of the resulting HTML page that are needed for testing, mainly
links and forms.

The execution of a test case written intclwebtestsimulates a user that is interacting
with the Web application through a Web browser. By executingthe instantiated test cases,
it is possible to add, edit or delete data of the Web application, fill some forms or follow a
specific link. Figure 1.15 illustrates thetclwebtestcode for logging into the Travel appli-
cation by requesting the register page, then filling the e-mail and password, and submitting
this information.

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

36 Book Title

::twt::do request "http://tavel-example.org/register"
tclwebtest::form find ~n login
tclwebtest::field find ~n username
tclwebtest::field fill "user@mymail.com"
tclwebtest::field find ~n password
tclwebtest::field fill "mypassword"
tclwebtest::form submit

Fig. 1.15 Example of Tclwebtest Code.

1.7.2 Test Cases Instantiation

The test cases generated by TestGen-IF tool are provided in astandard notation and are a
set of:

• Delays: a delay represents an amount of time that the tester has to wait for, before
performing any input action.

• Input signals: the tester has to stimulate the Web application by applying a set of http(s)
requests called inputs.

• Output signals: the tester has to access to the Web system answer to analyze it and
check if it conforms to the expected reaction as described inthe formal specification of
the system.

1.7.2.1 Delay Instantiation

A delay in the test case can be easily translated in TCL scriptlanguage. It is transformed
directly into the code ‘after n’ wheren is the real delay in millisencond (ms). For instance,
‘delay 10;’ is translated into ‘after 10*1000*60;’ if we consider a delay of ten minutes.
(See Algorithm 1.7, lines 3 to 5)

1.7.2.2 Input Instantiation

To automatically instantiate the abstract test cases provided by TestGen-IF tool, it is manda-
tory to know the types of HTML elements that correspond to input signals of the Web sys-
tem under test (that correspond to the output signals of the tester). In this work, the Web
system will be limited to receive just three types of inputs from a user via a regular browser:
(i) a URL set in the address bar, (ii) a link in the body of the page or (iii) the submission of a
form in the body of the page. Actions such as drag-and-drop and other Ajax functionalities
are not considered in this work.

The first step of our methodology consists in mapping the signals into the three types of
inputs that the Web application can receive. It is importantto highlight that some IF signals
can be mapped just to one single interaction with the Web application, e.g. following a
link, but other signals are mapped to a set of interactions, e.g. submitting a form.

For example, considering the form submission, there are several interactions that must
be performed by tclwebtest, i.e. filling text fields, selecting radio buttons, selecting check-
boxes and finally submitting the form. In these cases the signal is mapped to an HTML

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

Modeling and Testing Secure Web Applications 37

element (e.g. a form) but also to each signal parameter (e.g.text fields).
To perform the mapping, we propose two tables containing required information of the

input signals and their parameters to transform them into tclwebtest script asking to follow
a link, submit a form or request a new URL. Both, thesignal info tableand theparame-
ter info tableare illustrated in Tables 1.7 and 1.8. To access the information they contain,
we can take advantage of standard SQL queries. For each signal, the tablesignal info table
stores the following data:

• signal: the name of the input signal in the IF specification,
• html element:the HTML type of the element that correspond to the signal,
• html name: the name or id of the HTML element. For example, in the case of alink,

the name is the link caption.

Table 1.7 SignalInfo Table Example
signal html element html name
req connected form login
req disconnect link logout

Then, for each parameter of an input signal, the informationstored in this table 1.8 is:

• parameter:name of the parameter signal in the IF specification,
• of signal: name of the input signal that uses this variable,
• html element:the HTML type of the element that correspond to the parameter,
• type: the type of the variable expected by the htmlelement, e.g. integer, string, etc.
• html name:the name or id of the htmlelement.

Table 1.8 ParameterInfo Table Example
parameter of signal html element type html name
user req connected textfield integer username
password req connected texfield integer pass

The second step of the methodology is to translate the systeminputs to tclwebtest script
for each test case. These inputs are built dynamically and can be divided into three cate-
gories: following a link, submitting a form or setting a URL in the browser. The inputs
translation methodology is presented in pseudo-code in Algorithm 1.7 (lines 6 to 36). By
performing this algorithm the following parts of the test case will be built:

• The script of the test preamble: a sequence of inputs (operations) that will lead the
system to a state where the test case can be executed. During this preamble, system
outputs are not analyzed. For example, to test the creation of a mission, the user needs
to be authenticated by the Travel system.

• The script that will stimulate the system to test it.

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

38 Book Title

Algorithm 1.7 Instantiation Methodology
Require: An abstract test caseTC, signal info table and parameterinfo table tables. Letact be a delay or an observable action

in TC and letsg(d1,d2, ...,dk) be a signal instance ofsg(x1,x2, ...,xk). d j is denotedin j if sg is an input signal andoutj if sg
is an output signal. (0< j < k+1)

1: for each (acti ∈ TC) do
2: /*(where i ∈ N, 0< i < n+1 such thatn is the number of actions and delays inTC)*/
3: while (acti = delay n)do
4: tcl script: after n;
5: end while
6: while (acti = inputsgi(in1, in2, ..., ink)) do
7: if (html element(sgi)= url) then
8: tcl script: do request url;
9: end if

10: if (html element(sgi)= link) then
11: tcl script: follow link;
12: end if
13: if (html element(sgi)= form) then
14: tcl script: form find~n html name(sgi);
15: for (eachparameterx j of sgi) do
16: /*(where j ∈ N, 0< j < k+1)*/
17: tcl script: field find~n html name(xi);
18: while (html element(x j) = textfield)do
19: tcl script: field fill in j ;
20: end while
21: while (html element(x j) = textarea)do
22: tcl script: field fill in j ;
23: end while
24: while (html element(x j) = checkbox)do
25: if (in j = 1) then
26: tcl script: field check htmlname(x j);
27: else
28: tcl script: field uncheck htmlname(x j);
29: end if
30: end while
31: while (html element(x j) = radiobutton)do
32: tcl script: field selectin j ;
33: end while
34: end for
35: tcl script: submit form;
36: end if
37: end while
38: while (acti = outputsgi(out1,out2, ...,outk)) do
39: if (html element(sgi)= link) then
40: tcl script: assert{[response url] == htmlname(sgi)};
41: end if
42: if (html element(sgi)= form) then
43: tcl script: response body;
44: tcl script: form find~n html name(sgi);
45: for each (parameterx j of sgi) do
46: tcl script: assert{[field get value find~n html name (x j)]== outj} ;
47: end for
48: end if
49: call deduceverdict procedure;
50: end while

51: end for

1.7.2.3 System Output Instantiation

The last step of the methodology consists in developing the scripts that analyzes the re-
sponse (or reaction) of the Web application (Algorithm 1.7,lines 37 to 49). This script also
assigns the verdict (pass or fail). Basically it checks whether the platform did what it was
supposed to do. The system outputs (or reaction) can be classified into two categories:

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

Modeling and Testing Secure Web Applications 39

• Observable outputs: Tclwebtest is basically dedicated fortesting Web application inter-
faces accessible by Web user. It offers some basic HTML parsing functionalities and
commands for the manipulation of the HTML elements of Web pages (in our case, on
consider system output pages). The reaction of the system can be provided in one or
many HTML pages of the Web-based system. In general, it is a notification message
that stipulates that the desired action succeeded or failed, for instance an authentication.
Sometimes, this reaction can be more difficult to discover such as when reloading the
current page or navigating to another Web application page.In all cases, we need to de-
fine the two tables 1.7 and 1.8 for the output as well as their parameters and follow the
same methodology developed in the input instantiation case. To analyze system Web
pages, we useresponseandfind commands to locate the HTML elements we want to
test. Then we rely onassertcommand to compare the displayed Web page values and
the output signal parameters and deduce the adequate verdict.

• Non observable outputs: the system may react to a user operation by performing an
action which is non-observable from this user’s point of view (and as a result of the
tester). For example, we can consider the adding/edition/deleting of information in a
specific data base or the sending a notification email to a specific user. In these cases,
no automatic solution has yet been elaborated.

In the Travel case study, all our test cases consider observable system reactions that can
be defined automatically.

1.7.2.4 Test Cases Instantiation Tool: generaTCL

TheGeneraTCLtool, illustrated in the Figure 1.16, is used to concretize the abstract test
cases translating them into an executable script able to interact with the IUT. In the con-
cretization process, some details of the implementation (as the username and password of
a real user) are added to the abstract test cases. These details are needed to perform the
interaction tester-IUT.

1.7.3 Test Cases Execution

The test cases execution was performed on a prototype implementation of the Travel Web
application (developed on OpenACS platform) to verify thatthe specified security require-
ments are respected. It is important to highlight that some time settings in this prototype
have been changed so that the application of the tests where faster than in the real sys-
tem. For example, we changed 10080 minutes (7 days) in the third rule to 3 minutes to
avoid waiting so long. Therefore in this case study we verifythe behavior of the system
concerning this rule using a delay of 3 minutes rather than using 7 days.

The execution of the test cases is performed using a dedicated testing tool proposed by
the OpenACS community [OpenACS Community (2009)]. This tool is called the ACS-
Automated-Testing tool that allows executing the instantiated test cases, interacting with
the Web-based application under test and, also, displayingthe verdict of each test case.

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

40 Book Title

Fig. 1.16 Basic Architecture of the GeneraTCL tool

The ACS-Automated-Testing tool is, in itself, a Web application but we will refer to it just
asthe testerto avoid confusions between this system and the Web application to be tested.

As a result of the execution of the designed test cases on the prototype, we obtained
positive verdicts for thirty test objectives, while, four test objectives were violated (fail
verdict). For example, a problem has been detected according to the system respect to the
first rule that expresses a prohibition. If a potential traveler requests for a first mission and
then waits for 2 minutes, he/she is not allowed by the system to request for another mission.
We analyzed the implementation of the Web-based system and noticed that a mistake was
encrusted in the code. Instead of 2 minutes, the Travel system waited much longer before
allowing a second mission request.

The Travel application was analyzed to detect the four errorsources. Once the mistakes
corrected, all the test cases were applied again on the Web application. This time, all the
verdicts were positive which demonstrates the efficiency ofour methodology.

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

Modeling and Testing Secure Web Applications 41

1.8 Conclusion

In this chapter, we have presented a formal approach to integrate timed security rules,
expressed according to Nomad language, into a TEFSM specification of a system. Roughly
speaking, a security rule denotes the prohibition, the obligation or the permission for the
system to perform an action in a specific timed context. To meet this objective, we have
distinguished two categories of security rules: basic rules and elaborated rules. To deal
with basic rules, we have described a set of algorithms that allows to add them to a TEFSM
specification describing the behavior aspect of a system. Then, we have defined a rewritten
process that permits to transform an elaborated rule into one or several basic ones one which
the previous integration algorithm can be reused. A proof that demonstrates the correctness
of the prohibition integration algorithm is given.

Notice that our approach can be improved by minimizing the number of introduced
clocks. Indeed, some dependent rules can be integrated simultaneously by using a unique
clock. For instance, rulesP(start(A)|O−5done(B)) andP(start(A)|O−3done(B)) can be
integrated by adding a single clockCk that the system checks whether its valuation verifies
(Ck= 3∨Ck= 5) before performing actionA.

Indeed, we presented a framework for the modeling and the testing of Web applications
from their security point of view. Our approach consists in automatically integrating secu-
rity rules described in using the Nomad formal language within an IF specification. This
integration leads to an IF secure specification that takes the system security requirements
into account. Afterward, we presented an approach to derivetest cases from this IF secure
specification using TestGen-IF tool developed in our laboratory and to transform them into
executable test cases (using TCL script language). We applied the generated test cases to
an industrial Web-based system provided by France Telecom to study its respects to its se-
curity policy. Relying on our end-to-end framework, we discovered several security flaws
that we were able to correct obtaining thus a secure Web system.

As future work, we want to extend the test purposes formulation by adding data con-
straints and complex clock constraints to express more elaborated test objectives. We also
intend to adapt test generation algorithms to include thesenew test purposes types. In ad-
dition, we want to investigate the automatic analysis of non-observable system reactions in
the context a white box testing [Tuyaet al. (2008)].

1.9 Acknowledgements

The research leading to these results has received funding from the European Community
Seventh Framework Programme (FP7/2007-2013) under grant agreement no 215995 and
the French ANR project WebMov.

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

Bibliography

Abou El Kalam, A., Baida, R. E., Balbiani, P., Benferhat, S., Cuppens, F., Deswarte, Y., Miège,
A., Saurel, C. and Trouessin, G. (2003). Organization Based Access Control, in4th IEEE
International Workshop on Policies for Distributed Systems and Networks (Policy’03) (Lake
Come, Italy).

Alur, R. and Dill, D. L. (1994). A theory of timed automata,Theoretical Computer Science126, 2,
pp. 183–235, URLciteseer.ist.psu.edu/alur94theory.html.

Annichini, A., Bouajjani, A. and Sighireanu, M. (2001). TReX: A Tool for Reachability Analysis
of Complex Systems, in G. Berry, H. Comon and A. Finkel (eds.),CAV, Lecture Notes in
Computer Science, Vol. 2102 (Springer), ISBN 3-540-42345-1, pp. 368–372.

Bozga, M., Fernandez, J.-C., Ghirvu, L., Graf, S., Krimm, J.-P., Mounier, L. and Sifakis, J. (1999).
IF: An Intermediate Representation for SDL and its Applications, inSDL Forum, pp. 423–440.

Bozga, M., Graf, S. and Mounier, L. (2002). IF-2.0: A Validation Environment for Component-Based
Real-Time Systems, inCAV, pp. 343–348.

Bozga, M., Graf, S., Mounier, L. and Ober, I. (2004a). IF Validation Environment Tutorial, inSPIN,
pp. 306–307.

Bozga, M., Graf, S., Ober, I., Ober, I. and Sifakis, J. (2004b).The IF Toolset, in M. Bernardo and
F. Corradini (eds.),SFM, Lecture Notes in Computer Science, Vol. 3185 (Springer), ISBN
3-540-23068-8, pp. 237–267.

Cavalli, A., Lee, D., Rinderknecht, C. and Zadi, F. (1999). Hit-or-Jump: An Algorithm for Embedded
Testing with Applications to IN Services, inFormal Methods for Protocol Engineering And
Distributed Systems(Beijing, China), pp. 41–56.

Cavalli, A. R., Maag, S., Mallouli, W., Marche, M. and Quemener, Y.-M. (2006). Application of Two
Test Generation Tools to an Industrial Case Study. inTestCom, pp. 134–148.

Cavarra, Crichton, Davies, Hartman, Jeron and Mounier (2002). Using UML for Automatic Test
Generation, in TACAS.

Cuppens, F., Cuppens-Boulahia, N. and Ghorbel, M. B. (2006). High-Level Conflict Management
Strategies in Advanced Access Control Models, inWorkshop on Information and Computer
Security (ICS)(Timisoara, Roumania).

Cuppens, F., Cuppens-Boulahia, N. and Sans, T. (2005). Nomad:A Security Model with Non Atomic
Actions and Deadlines, inCSFW, pp. 186–196.

Damianou, N., Dulay, N., Lupu, E. and Sloman, M. (2001). The Ponder Policy Specification Lan-
guage, inPOLICY ’01: Proceedings of the International Workshop on Policies forDistributed
Systems and Networks(Springer-Verlag, London, UK), ISBN 3-540-41610-2, pp. 18–38.

Fernandez, J.-C., Garavel, H., Kerbat, A., R. Mateescu, L. M. and Sighireanu, M. (1996). CADP: A
Protocol Validation and Verification Toolbox, in R. Alur and T. A. Henzinger (eds.),The 8th
Conference on Computer-Aided Verification, CAV’96(Springer Verlag, New Jersey, USA).

43

October 30, 2009 17:3 Atlantis Press Book - 9.75in x 6.5in ap-book975x65

44 Book Title

Gallardo, M. D. M., Merino, P. and Pimentel, E. (2004). A Generalized Semantics of PROMELA for
Abstract Model Checking,Formal Asp. Comput.16, 3, pp. 166–193.

Gaudin, E., Najm, E. and Reed, R. (eds.) (2007).SDL 2007: Design for Dependable Systems, 13th
International SDL Forum, Paris, France, September 18-21, 2007, Proceedings, Lecture Notes
in Computer Science, Vol. 4745 (Springer), ISBN 978-3-540-74983-7.

ISO (1989).Information Processing Systems, Open Systems Interconnection, LOTOS - A Formal
Description Technique based on the Temporal Ordering of Observational Behaviour, Interna-
tional Standard IS-880.

J. Grabowski, G. R. I. S. A. W., D. Hogrefe and Willcock, C. (2003).An Introduction to The Testing
and Test Control Notation (TTCN-3), inComputer Networks 42(3), pp. 375–403.

Jard, C. and J́eron, T. (2005). TGV: Theory, Principles and Algorithms,STTT7, 4, pp. 297–315.
Lee, D. and Yannakakis, M. (1996). Principles and Methods of TestingFinite State Machines - A

Survey, inProceedings of the IEEE, Vol. 84, pp. 1090–1126.
Lobo, J., Bhatia, R. and Naqvi, S. A. (1999). A Policy Description Language, inAAAI/IAAI, pp.

291–298.
Mallouli, W. and Cavalli, A. R. (2007). Testing Security Rules with Decomposable Activities, inthe

10th IEEE International Symposium on High Assurance Systems Engineering (HASE)(Dallas,
Texas, USA), pp. 149–155.

Mallouli, W., Orset, J.-M., Cavalli, A., Cuppens, N. and Cuppens, F. (2007). A Formal Approach for
Testing Security Rules. inSACMAT(Nice, France).

Merayo, M. G., Ńuñez, M. and Rodrı́guez, I. (2007). Generation of Optimal Finite Test Suites for
Timed Systems, inTASE, pp. 149–158.

Merayo, M. G., Ńuñez, M. and Rodrı́guez, I. (2008). Formal Testing from Timed Finite State Ma-
chines,Computer Networks52, 2, pp. 432–460.

OpenACS Community (2009). http://www.openacs.org/, .
Syriani, J. A. and Mansour, N. (2003). Modeling Web Systems Using SDL, in A. Yazici and C. Sener

(eds.),ISCIS, Lecture Notes in Computer Science, Vol. 2869 (Springer), ISBN 3-540-20409-1,
pp. 1019–1026.

TCL Script Language (2009). http://www.tcl.tk/, .
TclWebTest Tool (2009). http://tclwebtest.sourceforge.net/, .
Tuya, J., Dolado, J. J., Cabal, M. J. S. and Riva, C. D. L. (2008).A Controlled Experiment on White-

Box Database Testing,ACM SIGSOFT Software Engineering Notes11, 1.
Verimag Lab (2009). http://www-verimag.imag.fr/ ˜ async/if/, .
Vieira, E. R. and Cavalli, A. (2007). Toward Test Suite Automatic Generation with Delayable Tran-

sitions and Timing-Fault Detection, inRTCSA.

