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Abstract. Ad hoc networks are exposed more than traditional networks
to security threats due to their mobility and open architecture aspects.
In addition, any dysfunction due to badly configured nodes can severely
affect the network as all nodes participate in the routing task. For these
reasons, it is important to check the validity of ad hoc protocols, to ver-
ify whether the running implementation is conform to its specification
and to detect security flows in the network. In this paper, we propose
a formal methodology to collect and analyze the network traffic trace.
Observers running on a set of nodes collect local traces and send them
later to a global observer that correlates them into a global trace thanks
to an adapted time synchronization mechanism running in the network.
The global trace is then analyzed to study the conformance and the se-
curity of the running routing protocol. This analysis is performed using
dedicated algorithms that check the collected trace against a set of func-
tional and security properties specified in an adapted formal language.

Keywords: Ad Hoc Networks, Monitoring, Trace Collection and Corre-
lation, Conformance Testing, Security Analysis, Nomad Logic.

1 Introduction

Mobile ad hoc networks (MANET) are infrastructureless networks composed of
a set of wireless mobile nodes. Nodes send packets directly to destinations that
are in their coverage zone. When destinations are farther than the coverage range
intermediate nodes cooperate to establish the communication path. This open
and cooperative network aspect and the limited resources of mobile nodes make
it difficult to define an efficient testing methodology to validate the conformance
of existing routing protocols (like AODV [11], OLSR [6] or DYMO [5] etc.) and
to guarantee the respect of predefined security properties.

Formal testing allows to insure the respect of the functional behavior and
the security requirements of a system; it can be either active or passive. Active
testing permits to validate a system implementation by applying a set of test
cases and analyzing the system reaction. It implies that we have a global control
on the network architecture which is difficult to perform in a dynamic topology
such as ad hoc networks. Besides, the active testing becomes difficult to perform
when the network is built from components (nodes) that are running in their



real environment and cannot be interrupted or disturbed. In this situation, there
is a particular interest in using monitoring techniques that consist in testing
passively during the run time the traffic flow in a deployed network. This testing
consists in analyzing collected data according to some functional and security
requirements described in a formal language.

In this paper, we use monitoring to collect distributed traces using local ob-
servers (called also probes) without interfering with the network under test. Two
type of networks are considered. The first consists of a controlled area where a
set of dedicated probes is installed to monitor the network. While the second
is an open area network where the nodes perform themselves the trace collec-
tion task. In both cases, the local traces are sent to a global observer which
is responsible for the traces correlation and analysis tasks. The correlation is
performed based on an accurate time synchronization protocol [14] designed for
ad hoc networks. This protocol follows the receiver to receiver mechanism that
eliminates the major sources of synchronization inaccuracy. Whereas, the anal-
ysis consists of checking whether the trace is conform to a set of functional and
security properties that we describe in a formal language adapted to distributed
communicating systems. This checking is performed using a set of appropriate
algorithms that we developed for this end. Once a property violation is detected,
we identify the irregular node(s) behind it. Our mechanism allows to spot dis-
tant attacks that can only be discovered by the analysis of the global trace. More
precisely, the main contributions of this paper are:

1. Definition of a precise method to collect distributed traces to cover the whole
network. The collection methodology differs depending on the network na-
ture (controlled or open areas).

2. Definition of a method for correlating local traces to obtain a global network
trace. This correlation rely on an adapted time synchronization mechanism
for ad hoc networks that permits to synchronize all the local observers.

3. Analysis of this global trace using specific algorithms to study the confor-
mance and the security requirements of the considered routing protocol. The
proposed algorithms allow to check a set of functional and security properties
specified in Nomad formal language [7] on the collected trace.

4. Demonstration of the reliability of our approach by applying it on different
ad hoc network scenarios running OLSR routing protocol to detect recurrent
failures and attacks.

The remainder of this paper is organized as follows. In section 2, we discuss
the related work tackling with monitoring in ad hoc networks. Section 3 presents
the distributed collection of the ad hoc network traffic in a case of controlled net-
work and an open area network. In section 4, we expose the approach to correlate
the local traces in order to obtain the global network trace. Section 5 presents
the methodology to analyze this global trace by comparing it to the functional
and security requirements described in Nomad formal language. In section 6 we
apply our methodology on OLSR routing protocol and the conclusion id given
in section 7.



2 Related Work

Many papers [1,3,12,13] tried to tackle monitoring methodologies in ad hoc net-
works. In [13] the authors present DAMON, a distributed system for monitoring
multi hop mobile networks. DAMON uses agents to collect the network traffic
and sends collected measurements to data repositories. It was implemented in
an AODV based ad hoc network. WiPal [1] is a merging tool dedicated to IEEE
802.11 traces manipulation which enables merging multiple wireless traces into
a unique global one. Although DAMON and WiPal collect the network trace,
they provide no process for its analysis.

The authors in [9] propose an intrusion detection scheme based on Extended
Finite State Machines (EFSM) [8]. Indeed, they provide a formal model of the
correct behavior of the routing protocol and detect specific deviations of the
routing protocol implementation using a backward checking algorithm [2]. This
work can only detect local attacks that violate the EFSM model of OLSR pro-
tocol (which is not the case of a big range of attacks).

The authors in [10] make use of a combination of deontic and temporal logic
to specify the correct behavior of a node and to express complex security pro-
perties. They investigate different attacks targeting the link sensing mechanism
of routing protocols and describe security policies to prevent them. Contrary
to our methodology, this work considers only the local traffic trace of a given
node. It does not allow to detect remote and distributed attacks. Moreover, it
can only discover the existence of an incoherence in the collected traffic with-
out determining the malicious node. In this paper we propose a different formal
end-to-end methodology to collect and analyze global ad hoc network traffic.

3 Distributed Traffic Collection in Ad Hoc Networks

Network monitoring is an interesting approach that allows to collect the required
information in order to analyze the behavior of the network. Monitoring in ad
hoc networks can be local with respect to a node or global with respect to the
network. In ad hoc networks, local monitoring is not sufficient to detect some
types of errors and security anomalies [9, 12]. For this reason we adopt in this
paper the global monitoring approach based on a distributed monitoring.

Controlled Area Network: In this type of network, nodes move inside a
defined limited area. Therefore, it is possible to place a set of wireless observers
responsible for capturing transited packets. These observers are placed to cover
the whole network area. They collect the communication traces and send them
to the global observer in the network. The choice of this node (global observer)
can be based on administrative preferences. The broadcast nature of the wireless
medium combined with the interferences problems represent a classical problem
in the monitoring of ad hoc networks. That’s why we chose to install the observers
in such a way they cover each zone portion twice or more. The advantage of
this method is the collection of real network traffic (attackers cannot alter the
collected traces).



Open Area Network In the case of an open area network, the observers
are the network nodes themselves. They perform a collaborative observation
action. Each network node collects its local traffic trace and sends it to the
global observer. We assume here that all the nodes have the collector program
running on their systems. As the observers are the network nodes, it is possible
for a node (attacker) to alter its collected trace. The traffic analyzer module on
the global observer must take this property in consideration. This is the major
difference with the limited area network where the collect is made by dedicated
observers.

4 Traces Correlation Mechanism

The global observer receives the local traces collected by the local observers
in order to analyze them. The first step toward performing this analysis is to
correlate the traces and order them chronologically. We use a receiver to receiver
network wide synchronization mechanism that we designed for wireless multi hop
networks. Using this mechanism all the nodes in the network run with the same
clock value allowing thus to perform the trace correlation. In the following we
briefly describe the synchronization mechanism in section 4.1 and then describe
the correlation procedure in section 4.2.

4.1 Synchronization Mechanism Overview

The objective of the time synchronization mechanism is to support each network
node with the required timing information in order to build an adjustment func-
tion that transforms its local clock value to that of the reference node existing in
the network. Using the adjustment functions they calculated, nodes, all over the
network, run with similar clock values achieving therefore network wide synchro-
nization. The mechanism is based on receiver to receiver synchronization which
by definition eliminates the major sources of synchronization inaccuracy (send
time and access time). The mechanism consists of two complementary parts;
the sender nodes selection and the synchronization process. First, a hierarchy
of sender nodes is constructed in order to guide the synchronization process
in a multi hop environment. Sender nodes are responsible for transmitting ref-
erence messages. A reference message does not contain an explicit timestamp;
instead, receivers use its arrival time to compare their clocks. Using information
exchanged trough reference messages, each node constructs a table that contains
for each received reference message the mapping between its local reception time
and that of the reference node (or an already synchronized node). Then the node
performs least squares linear regression to estimate the best fit line relating the
node’s clock to the reference node’s clock. The estimated best fit line is an ad-
justment function that transforms the client’s local clock value to that of the
reference node. This adjustment function is given by equation 1 below:

Tsynch = (1 + F̃ ) × Tlocal + Õff (1)



Where F̃ and Õff are the estimated frequency error and offset parameters re-
spectively. The synchronization process uses time information exchanged through
reference messages to achieve first an initial estimate of the node’s adjustment
function. Then, by observing the offset estimate variation on longer time period,
it improves the frequency error estimation and therefore the time synchronization
accuracy. Details about the synchronization mechanism can be found in [14].

4.2 Global Trace Construction

Using the synchronization mechanism, network nodes run in phase with the ref-
erence clock value. This network virtual clock will assist the global observer in
correlating the different local traces received from the set of observers. In [14]
we showed that in a multi hop network the precision P of the synchronization
mechanism is in the order of few micro seconds (maximum of 5µsec for nodes
at 5 hops away of the time reference) which is by far less than the time differ-
ence between two message transmissions (a minimum of 100µsec) and the time
difference between the transmission time of a message and its reception time at
a neighbor node (higher than 20µsec). According to this accurate precision the
following properties are always satisfied:

– If two nodes, N1 and N2, in the same broadcast region, send two different
messages M1 then M2 at local times t1 and t2; then t1 ¡ t2.

– If a node sends a message at local time t1, a receiver receives the message
at local time t2 where t1 ¡ t2.

– If two messages M1 and M2 are collected at local times t1 and t2 where
|t1 − t2| < P then either M1 and M2 are the same message or M1 and M2
are independent (i.e. they are transmitted in two different broadcast zones).

5 Monitoring Methodology

5.1 Functional and Security Properties Formal Specification

We specify a set of properties that the network nodes have to respect using
Nomad formal language which allows to express privileges on non atomic actions.
It combines deontic and temporal logics and can describe conditional privileges
and obligations with deadlines. It can also formally analyze how privileges on
non atomic actions can be decomposed into more basic privileges on elementary
actions. More details about Nomad syntax and semantics are presented in [7].

Definition 1. Atomic action
We define an atomic action as the emission or the reception of a message between
two nodes using the following syntax:

Node1 ?or! Msg(Par1,Par2,...,Parn) Node2



where Node1 and Node2 represent the source or the destination of the mes-
sage. ’?’ and ’ !’ define a reception and an emission of a message by Node1.
Msg(Par1,Par2,...,Parn) represents the message exchanged between Node1 and
Node2 with its parameters. Node1, Node2, Msg, and Pari can be replaced by the
symbol ∗ to represent any node, any message or any parameter.

Definition 2. Non-atomic action
If α and β are actions, then (α; β), which means “α is followed immediately by
β” and (α; ∗; β), which means “α is followed by β” are non-atomic actions.

Definition 3. Formulae
If α is an action then start(α) (action α is being started) and done(α) (action
α is done) are formulae.

Some properties on actions and formulae:

– If A and B are formulae then (A ∧ B) and (A ∨ B) are formulae.

– If A is a formula then ¬A,⊕A (“Next in the trace,” A is true), ⊖A (“previ-
ously in the trace, A is true”) are formulae.

– If A is a formula then O≤dA (“d units of time ago, A was true if d < 0, or
in the next d units of time, A will be true if d > 0”) is a formula.

– (A|C) is a formula: ‘In the context C the formula A is true’.

Definition 4. Deontic modalities
If A is a formula then modality O ( “A” is mandatory), F ( “A” is forbidden)
and P ( “A” is permitted) are formulae.

5.2 Trace Analysis Approach

To run the distributed monitoring process, the global observer needs two different
input files: the traces files collected by the local observers and the properties file
where are specified expected functional and security properties.

Fig. 1. Monitoring Architecture.



First, the global observer verifies through a syntax checking module that the
desired behavior is well specified according to the Nomad format. This avoids
syntax-related bugs in the test engine module.

Second, the collected traces files have to be analyzed using a pre-processing
module that performs the following tasks: (i) filtering the traces files keeping only
the relevant information for the protocol(s) under test. The basic idea is to keep
in the traces only the messages and parameters corresponding to the specified
properties to check. (ii) correlation of the traces files and the construction of a
unique global trace file. (iii) parsing the global trace and creating a trace table
which constitutes the target of the ‘Test Engine’ module queries. Each line of
the trace table corresponds to an emission or a reception of a message in the
network.

Finally, the trace analysis is performed using three algorithms according to
the property type: permission, prohibition or obligation. These three algorithms
are based on the same concept: each line in the trace table can correspond to
(i.e. can be an instantiation of) one or many atomic actions described in one or
many properties.

5.3 Properties Checking Algorithms

In this section we describe the general idea of the properties checking algorithms
and provide in particular the overview of the algorithm verifying the prohibition
properties on a network traffic trace.

Prohibitions Handler: The algorithm that allows checking prohibition pro-
perties begins first by parsing the trace table (build from the trace file) line by
line to check if any context of any prohibition property is verified. For each line
L, it verifies if L is an instantiation of an action A described in the context of
the prohibition property Pr. If it is the case, it checks if the the chronological
order of the actions described in this context is verified (using the procedure
Check Context), then it can deduce if the whole context is verified or not. If the
context is verified, the algorithm has to ensure that the action described in the
first part of the prohibition rule (the prohibited action) is not present in the trace.
If it finds such action (using Check Prohibited Activity procedure), the verdict is
FAIL. Otherwise, it concludes that the current rule is verified, the verdict in this
case is: PASS. If the trace length is not long enough to ensure the verification, the
output verdict is INCONCLUSIVE. The algorithm 1 presents the pseudo-code
of the procedure used to check the prohibition properties on a trace and deduce
the appropriate verdict. For each property Pr , we define ‘Pr.action’ as the pro-
hibited action of the property and ‘Pr.context’ as the context of the property.
‘Pr.action’ (respectively ‘Pr.context’) is composed of one or many chronologi-
cally ordered actions ‘Pr.act.actioni’ (respectively ‘Pr.context.actionj’) where i

(respectively j) is the number of atomic actions in the prohibited action (respec-
tively context).



Algorithm 1 Prohibition Properties Handler

Require: PPS[Pr] : Prohibition Properties Set + Tr[l] : the trace table.
1: for each property Pr of PPS do

2: Context(Pr) = ‘not verified’
3: end for

4: for each line l of Tr do

5: for each property Pr of PPS do

6: if (Context(Pr)=‘verified’) then

7: verdict[Pr] := INCONCLUSIVE
8: if (Prohibition deadline Reached) then

9: verdict[Pr] := PASS
10: Context(Pr)=‘not verified’
11: else

12: if (l=instantiation(Pr.act.actioni)) then

13: verdict [Pr] := Check Prohibited Action (Pr.action)
14: if (verdict [Pr] := ‘FAIL’) then

15: Memorize error and position in the trace
16: Context(Pr)=‘not verified’
17: else

18: Memorize verified parts of the prohibited activity /* (in this case
verdict [Pr] := ‘INCONCLUSIVE’) */

19: end if

20: end if

21: end if

22: end if

23: if (l=instantiation(Pr.context.actioni)) then

24: Context(Pr) = Check Context(Pr.context)
25: if (Context(Pr) = ‘verified’) then

26: Calculate prohibition deadline
27: else

28: if (Context(Pr) = ‘not yet verified’) then

29: Memorize verified parts of the context
/* (Context (Pr) = ‘not yet verified’ if some actions of the context
are verified and are in the right chronological order. But the whole
context is not yet verified. We have to check next messages in the
trace, to deduce if the tested system is in the right context or not.) */

30: else

31: Erase memorized parts of the context if exist
/* (This is case when the context is no more verified) */

32: end if

33: end if

34: end if

35: end for

36: end for



Permissions Handler The permission to perform an action in a particular
context does not mean that action must be systematically executed when this
context is verified. In the case of checking permission properties, we first look in
the traces file (the trace table) if the permitted activity exists; then, we ensure
that the context was true to conclude that the property is respected (verdict
PASS), otherwise the verdict is FAIL. If the trace is not long enough to check
the context, the verdict is INCONCLUSIVE.

Obligations Handler For obligation properties the approach is very similar to
that used for testing prohibition properties. We start first by checking whether
the context of the property is verified. Then, we check if the action specified in
the first part of the property (mandatory action) is present in trace. If it is the
case, the verdict is PASS otherwise it is FAIL. If the trace is not long enough,
the verdict is INCONCLUSIVE.

5.4 Irregular Node Determination

Once a property violation is detected, the monitor has to analyze the source
of the violation in order to deduce the irregular node. The methodology of this
determination is the following:

– Identification of the corresponding trace section: a violation is in general due
to some messages in the global trace that does not respect a given property.

– Identification of the nodes implicated in a detected violation: in the case of
a message reception related violation, the node claiming the reception, the
assumed sender and its neighbors are implicated. In the case of an emission
related violation, the assumed sender node and its neighbors are implicated.

– Identification of the implicated trace part: going backward in the trace from
the position of the message causing the property violation to extract the
messages related to the nodes implicated in the violation. The number of
extracted messages depends on the studied protocol. In wireless networks,
messages can be lost because of the interference and collisions problem. For
this reason, ad hoc protocols like OLSR and AODV wait a certain number
of periods before announcing a link break. In our study, we go backward in
the trace for a certain period that guarantees the protocol convergence. For
example, OLSR waits 3 periods of 2 seconds each before announcing a link
break with a neighbor from which he has not received Hello messages. To
guarantee that OLSR has converged (i.e. the link break is advertised) we go
backward one more period; this means we extract the messages exchanged
in the last 8 seconds.

– Construction of coherent nodes sets: the extracted trace part is analyzed
to detect coherent and non coherent nodes within those implicated in the
violation. We compare each pair of implicated nodes to detect if they are
coherent or not. The set with the highest number of nodes is considered
as the regular set whereas the remaining set (or sets) contain the irregular
nodes. We assume that the number of irregular nodes in the network is lower
than the number of regular nodes in all the broadcast regions.



6 Case Study : OLSR

We tested our methodology on OLSR ad hoc routing protocol in an open area
network. We started first by extracting from the RFC some OLSR properties
that we described in Nomad formal language. Then we changed in NS2 the
behavior of OLSR in order to model typical attacks against OLSR like Hello
message poisoning, link spoofing and black hole attack. We added in NS2 a
special module that allows each node to collect its local network trace. This
module gives the attacker the possibility to alter its local trace. A standalone
module is also developed to correlate the collected local traces and analyze the
obtained global trace using the algorithms presented in the previous sections.

We run a simulation with 100 mobile nodes located in a topology of 1500x1500
for 1200 seconds. Among these nodes, 5 are attackers and 2 of them can alter
their local trace to simulate collaborative attack. In total 20 different attacks
were launched. The simulation provided us the local traces that the standalone
module correlated and analyzed. The global trace was around 5 million of lines.
The analysis of the global trace gave 21 fail and 2 inconclusive verdicts. The
inconclusive verdicts are due to incomplete execution trace due to multiple link
breaks. The 21 fail verdicts correspond to the attacks and one false negative due
to nodes mobility. In the next subsections, we emphasize on 2 of these attacks:

6.1 Hello messages poisoning

One of the first properties to check is the correct logical order of HELLO mes-
sages exchange. That is a node cannot announce a symmetrical link to any neigh-
bor without having previously received a HELLO message claiming an asymmet-
ric link from that node. The connectivity establishment process must respect the
following properties:

– Pr1 : F (start (n ? Hello(n : Asym)I) — O≤2sec¬ done(n ! Hello()∗))
– Pr2 : F (start (n?Hello(n : Sym)I) —

O≤2sec (¬ done(n!Hello(I : Asym)∗)∧ ¬ done(n!Hello(I : Sym)∗)))
– Pr3 : F (start (n?Hello(n : MPR)I) —O≤2sec¬ done(n!Hello(I : Sym)∗))

In figure 2, node I sends a Hello message claiming a symmetrical link to node
A after receiving an empty Hello from it. In addition to this protocol violation
I may insert a fake entry in its trace claiming the reception of an asymmetrical
Hello message from A. In both cases, our methodology detected the violation:

1. I has not changed its local trace: In this case I violates the property Pr2.
We can conclude that I is the malicious node.

2. I changed its local trace by claiming the reception of an asymmetrical Hello
message from A. In this case the trace violates the property Pr4 which
indicates that a message must have been emitted in order for a node to
receive it.

– Pr4 : O (⊖ done (Node1 ! M(p) Node2) — start (Node2 ? M(p)Node1))



6.2 Link Spoofing with Distant Node
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Fig. 2. A distant Link Spoofing Attack on OLSR.

In figure 2, we illustrate an example of a link spoofing attack on OLSR. The
intruder I can insert Hello messages claiming a non existing symmetrical link to
C. Consequently, the intruder might be selected as a MPR by A and the traffic
from A to C will be disrupted to the intruder. If we analyze the global traffic in
this part of the network, we notice one of these two cases :

1. Node I has not changed its local trace: Node I can not claim a symmetrical
link to C according to the protocol specification violating thus property Pr2.
We can conclude that I is the malicious node.

2. Node I has changed its local trace to claim the reception of a Hello message
M from C specifying a symmetric link. Here, the trace violates the property
Pr5 which indicates that if a node C receives a message from node N ,
all the symmetric neighbors of N (VS(N)) must have received the same
message. Therefore, we are in a message reception related violation; node I

claiming the reception, the assumed sender C and its neighbors B, D and
E are implicated. We split these nodes into two sets {I} and {B, D, E},
the first claims the reception of the Hello message from node C where this
message does not appear in the traces of the nodes in the second set. We can
conclude that I is the irregular node. We note again that we are assuming
that the number of irregular nodes is lower than that of regular ones in any
neighborhood.

– Pr5 : ∀ B ∈ VS(N), O (done (B?M(p)N) — done (C?M(p)N))

We highlight here that this property expresses a distributed network behavior
that allows to detect distant attacks. This detection can only be made through
checking the global trace.

7 Conclusions and Future Work

This paper proposes a distributed monitoring approach to detect functional and
security flows in ad hoc networks. It considers two types of networks : an open
area network and a controlled area network. Dedicated observers collect the local



network traffic in a controlled area network whereas this collection is performed
by the nodes themselves in an open area network. In both cases, the local traces
are sent to a global observer. This latter is responsible for the local traces cor-
relation and their analysis. The correlation is performed based on an accurate
synchronization mechanism designed for ad hoc networks.

Our analysis rely on two main features : (1) functional and security properties
specified using an instantiation of Nomad model, and (2) a correlated trace of the
network traffic. Based on dedicated algorithms, we prove that our methodology
allows to detect a large range of flows and errors.

As future work, we are investigating several approaches to improve the pas-
sive testing algorithms in order to perform online monitoring, possibly by in-
cluding vulnerability cause graphs [4] of the implementation under test. We are
also studying the different reactions that the network has to perform following
a property violation detection.
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