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ABSTRACT
The advent of 5G technology introduces new - and potentially
undiscovered - cybersecurity challenges, with unforeseen impacts
on our Economy, Society, and Environment. Interestingly, Intrusion
Detection Mechanisms (IDMs) can provide the necessary network
monitoring to ensure - in big extent - the detection of 5G-related
vulnerability risks and cyberattacks. Yet, how to realize the attack
surface of 5G networks in respect to the detected risks, and, conse-
quently, how to optimize the cybersecurity levels of the network,
remains an open critical challenge. In respect, this work focuses
on deploying multiple distributed Security Agents (SAs) that can
run different IDMs over various network components, and pro-
poses a cybersecurity mechanism for optimizing the network’s
attack surface in respect to the Quality of Service (QoS). The pro-
posed mechanism relies on a new closed-form utility function to
describe the trade-off between cybersecurity and QoS, and uses
multi-objective optimization to improve the selection of each SA
detection level. We demonstrate via simulations that before opti-
mization, an increase in the detection level of SAs brings a direct
decrease in QoS as more computational resources are utilized for
IDM processing. Thereby, after optimization, we demonstrate that
our mechanism can strike a balance between cybersecurity and QoS
while showcasing the impact of importance of different objectives
of the joint optimization.
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1 INTRODUCTION
5G paves the way for a fully connected world. By blending dif-
ferent types of technologies and advances it offers various types
of services such as smart home, V2V communication, smart park-
ing, UAV integrated communication, fog/edge computing, industry
4.0, blockchain-based services to name some [5]. However, apart
from the pre-5G security threats (that still need to be addressed),
new security challenges have been introduced in 5G mainly due
to (i) the utilization of 5G enabling technologies such as software
defined networking, network function virtualization, mobile edge
computing, network slicing etc; and (ii) high degree of 5G network
heterogeneity including internet of things and end-user devices,
service requests, new stakeholders andmission-critical applications,
etc. [9].

Network-based Intrusion Detection Mechanisms (IDMs) are de-
signed to identify attacks, to generate alerts and to report any
detected suspicious behaviour or attacks that jeopardize the in-
tegrity, availability and confidentiality of a 5G system network [6].
In this work, we consider the deployment of Security Agent (SA)
in a network, where each SA is enabled to execute IDM functional-
ity for monitoring 5G components/nodes against cyberattacks and
vulnerability risks. The SAs can perform the system monitoring
at different detection levels; hence, they differ on how they iden-
tify the potential intrusions. The higher is the detection level, the
higher is the efficiency/accuracy of the SA in terms of detecting the
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network vulnerabilities/attacks. However, monitoring the system to
identify the potential vulnerabilities or attacks results in increasing
the consumption of resources. These resources include, but are not
limited to, network bandwidth, computational resources, and mon-
etary cost. On the other hand, maintaining high level of Quality
of Service (QoS) when significant amount of data is generated in
the network is of high importance to preserve intact the 5G user
experience. Thereby, a classical dilemma arises since although IDMs
can provide high security services, they can often decrease the QoS
performance due to the additional network resources required for
IDM processing. [19]. Hence, the system faces a trade-off between
maximizing the IDM monitoring performance (i.e. for keeping the
network cybersecure) while minimizing the resource cost (i.e. for
preserving the user QoS).

We note a large body of literature investigating the problem of
intrusion detection in 5G networks, in-vehicle networks, vehicu-
lar communication, Internet of things, and small-cells [7, 8, 10–12].
Moreover, there have been several works studying how to secure the
system by providing countermeasures considering the security and
QoS [4, 15, 16, 18]. These efforts rely on either multi-objective Ge-
netic Algorithm (GA) optimization, or game-theoretic approaches
to provide cybersecurity remediation. However, there is no attempt
towards addressing the problem of SA detection level selection
problem as intended in this work. The significance of such trade-off
stands paramount to realize and optimize the cybersecurity net-
work, because it accounts for the network’s states/conditions and
system preferences at different time instants towards selecting the
detection level of the SAs for IDM.

In respect, in this work we approach such trade-off by exploiting
multi-objective optimization approaches [2], and by introducing a
multi-objective optimization problem which considers both cyber-
security and QoS performances in a single closed-form function.
Our contributions are summarized in the following:

(1) Design of a new utility function in closed-form to correlate
the detection level selection problem with the QoS of the
network at hand;

(2) Formulation and justification of the detection level selec-
tion problem in the form of joint Security-vs-QoS optimiza-
tion problem, which, to our knowledge, has not yet been
attempted by relevant studies;

(3) Resolution of the optimal result using CPLEX programming
and discussion of its feasibility and applicability over small-
scale and large-scale network setting;

(4) Demonstration via simulations to showcase the performance
of the multi-objective optimization problem under various
utility functions and preference settings.

The rest of the paper is organized as follows. In Section 2, we
describe the system model, formulate the problem and discuss the
problem solving. In Section 3, we present the simulation results.
Section 4 concludes the paper.

2 SYSTEM MODEL AND PROBLEM
FORMULATION

Let us consider a heterogeneous architecture, which consists of
IoT devices, base stations, servers, and different core-level network
functions. All these nodes are vulnerable to the cyberattacks. In

order to provide a secure network, we consider some pre-deployed
SAs in the network to perform system monitoring. Each SA can
perform the system monitoring with a specific security detection
level. Each of these security detection levels enable the SA to detect
certain vulnerability types in the system. For instance, one security
level can be used for signature-based intrusion detection, another
one for anomaly-based intrusion detection and another one for
complex event processing or hybrid intrusion detection methods.
The higher is the detection level, the higher will be the efficien-
cy/accuracy of the SA in detecting the vulnerability/attack types;
however, the higher will be the system cost. Hence, there exists a
trade-off to be studied for the security detection level selection of
each SA, which is what we address in this paper.

Let us show the set of 𝑀 SAs as A = {𝑎1, . . . , 𝑎𝑚, . . . 𝑎𝑀 }. We
denote the security detection level of a SA as 𝐿𝑚 which equals 𝑙 ,
where 𝑙 ∈ {1, . . . , 𝑁 }, representing different detection levels. The
problem is assigning the proper detection level to each of the SAs
in order to detect the vulnerabilities in the system such that the
system utility function is maximized. The system utility function
in our joint security-vs-QoS optimization problem is composed of
two main functions of Υsec𝑚 and Υ

QoS
𝑚 , which are security and QoS

utility functions, respectively.
The efficiency of a security detection level can be evaluated as

the number of vulnerabilities it can detect out of the total number
of known vulnerabilities. However, we also consider the probability
that there might exist certain number of unknown vulnerabilities in
the system and define the following as the security utility function:

Υsec𝑚 (𝐿𝑚) = 𝜑 𝐾
′(𝐿𝑚)
𝐾 + 𝐾

(1)

where 𝐾 ′, 𝐾 , 𝐾 , and 𝜑 indicate the number of detected vulnerabili-
ties based on the selected detection level, total number of known
vulnerabilities, the number of unknown vulnerabilities, and a co-
efficient parameter for tuning the range of the values. Number of
unknown vulnerabilities are also a portion of the known vulnera-
bilities 𝐾 ∈ [0 %]] × 𝐾 .

On the other hand, a high security detection accuracy requires a
system to consume resources to enable this functionality for the
SAs. We consider that the SAs consume network bandwidth, com-
putational resources and they incur some monetary cost in order to
perform the system monitoring. Let us denote the bandwidth that
a SA with a specific detection level (i.e. 𝐿𝑚) consumes as 𝐵(𝐿𝑚).
This bandwidth is consumed by the SA in order to perform the sys-
tem monitoring for the vulnerabilities detection according to the
selected level. Similarly, let us show the consumed computational
resources by a SA as [ (𝐿𝑚). Furthermore, as introduced before,
higher security detection levels can affect the system in terms of
monetary cost as well. Hence, we also consider the system mon-
etary cost and denote it as Ψ(𝐿𝑚). The joint QoS utility function
can be written as

Υ
QoS
𝑚 (𝐿𝑚) = −

(
𝛼1�̃�(𝐿𝑚) + 𝛼2[̃ (𝐿𝑚) + 𝛼3Ψ̃(𝐿𝑚)

)
(2)

It should be noted that ∗̃ represents the normalized value and 𝛼∗
represents the weight of each of the QoS objectives (

∑3
𝑖=1 𝛼𝑖 = 1).

The joint security-vs-QoS utility function for SA detection level
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selection can be written as

Υ𝑚 (𝐿𝑚) = 𝛽1Υ
sec
𝑚 (𝐿𝑚) + 𝛽2Υ

QoS
𝑚 (𝐿𝑚) (3)

where 𝛽1 and 𝛽2 represent two non-negative weights for the se-
curity and QoS utility functions (

∑2
𝑖=1 𝛽𝑖 = 1). The optimization

problem can be written as

P1 : max
L𝑚

{
𝑀∑︁

𝑚=1
Υ𝑚 (𝐿𝑚)

}
(4)

where L𝑚 ∈ R𝑀 represents the detection level decision vector for
the SAs. Let us transform P1 and write it as

P2 :max
X

{
𝛽1𝜑

𝐾 + 𝐾

𝑀∑︁
𝑚=1

𝐿∑︁
𝑙=1

𝐾 ′
𝑚,𝑙
𝑥𝑚,𝑙−

𝛽2

𝑀∑︁
𝑚=1

𝐿∑︁
𝑙=1

(
𝛼1�̃�𝑚,𝑙 + 𝛼2[̃𝑚,𝑙 + 𝛼3Ψ̃𝑚,𝑙

)
𝑥𝑚,𝑙

}
(5)

subject to

C2.1 :
𝐿∑︁
𝑙=1

𝑥𝑚,𝑙 ≤ 1 ∀𝑚, (6)

C2.2 :
𝛽1
𝛽2

≥

(
𝛼1�̃�𝑚,𝑙 + 𝛼2[̃𝑚,𝑙 + 𝛼3Ψ̃𝑚,𝑙

)
·
(
𝐾 + 𝐾

)
𝐾 ′
𝑚,𝑙

· 𝜑 , (7)

C2.3 : 𝛽1 + 𝛽2 = 1, (8)

where X ∈ R𝑀×𝐿 is the decision matrix where each element is
binary (i.e., 𝑥𝑚,𝑙 ∈ {0, 1}). Constraint (6) assures each SA is assigned
only one detection level. In order to find the feasibility condition
of P2, we set 𝜕𝑓

𝜕X = 0, which yields constraint (7). Constraint (8)
denotes that the sum of the two objective coefficients equals one.

The optimization problem assigns the detection level to the SAs
such that the trade-off between maximizing the security detection
efficiency and the QoS is addressed. The optimization problem runs
every time the decision needs to be made, which can be every time
instant or periodically. P2 is a Binary Integer Programming problem.
The problem can be solved by using standard solvers such as CPLEX
with low execution time on a modest hardware. CPLEX is widely
used in the literature for problem solving [1, 3]. In the following
section, we present the results of our study.

3 SIMULATION RESULTS
In this section, we present the numerical results obtained by com-
puter simulations, which are performed inMATLAB. Before delving
into details about the choice of parameter values, it is important to
mention that in the European research project SANCUS [13, 17], a
taxonomy is developed to systematically document and assess the
impact of various 5G security attacks, which pose a threat to the
network. This taxonomy first identifies the security and privacy
threats in 5G. Later it introduces efficiency of each of the security
levels in identifying the network threats. In this paper, we use syn-
thetic values to demonstrate the performance of the formulated
multi-objective optimization problem.

Table 1 summarises the used simulation parameters. Number
of detected vulnerabilities for each SA is a value in the range [0

Table 1: Simulation Parameters

Parameter Value
Number of detection levels (𝑁 ) 5
Number of SAs (𝑀) 20
Number of known vulnerabilities (𝐾 ) 95
Ratio of unknown to known vulnerabilities (]) % 5
Consumed bandwidth for the detection levels
(𝐵(𝐿𝑚)) [3.3-33]

Consumed computational resources for the de-
tection levels ([ (𝐿𝑚)) [3.3-33]

Consumed monetary cost for the detection lev-
els (Ψ(𝐿𝑚)) [3.3-33]

Figure 1: QoS utility for different 𝛼 values

100] according to the selected level, i.e., the higher/lower detection
levels, the higher/lower number of detected vulnerabilities, which
also differs across SAs. The values for consumed bandwidth, com-
putational resources and monetary cost are normalized in the range
of [3.3 33], where for lower/higher detection levels lower/higher
values are selected, where these values vary across the SAs. These
upper and lower values are selected for each objective since they
allow the three QoS objectives to be in the same range as the secu-
rity objectives to avoid biased results. It is worth mentioning that
the same results can also be obtained by any other ranges.

3.1 Impact of 𝛼 on the QoS utility
In this section, we evaluate the impact of QoS objectives coefficients
i.e., 𝛼 , on the simulation results. We have studied scenarios with
different values of 𝛼 and the result is depicted in Figure 1. As seen,
different values of 𝛼 results in different QoS utility values. The
impact of the monetary cost on the utility function is the highest
and the impact of the bandwidth on the utility function is the lowest
according to the generated values for each objective. However, in
order to consider all of the objectives with the same level of priority,
we select equalizing the objectives coefficients (i.e., 𝛼𝑖 = 0.3, 𝑖 =
1, 2, 3) for the rest of the simulation results.
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Figure 2: Security-vs-QoS trade-off for different 𝛽 values

Table 2: SAs detection level selection for 𝛽1 = 0.8, 𝛽2 = 0.2

Agent
Selected
detection
level

Agent
Selected
detection
level

Agent 1 5 Agent 11 5
Agent 2 5 Agent 12 4
Agent 3 5 Agent 13 5
Agent 4 5 Agent 14 5
Agent 5 5 Agent 15 5
Agent 6 4 Agent 16 5
Agent 7 4 Agent 17 5
Agent 8 5 Agent 18 5
Agent 9 5 Agent 19 5
Agent 10 4 Agent 20 5

3.2 Impact of 𝛽 on the security-vs-QoS trade-off
In this section, we evaluate the trade-off between the joint objec-
tives coefficients (i.e., 𝛽). As seen in Figure 2, higher value of 𝛽1,
i.e., higher security priority, results in higher efficiency in terms
of detecting the vulnerabilities (higher utility). This is due to the
fact that the SAs tend to select the highest security levels for moni-
toring. On the other hand, higher value of 𝛽2 (i.e. 𝛽2 = 0.5) leads
to selecting low security levels in order to lower the system costs;
however, this decreases the system efficiency in terms of detect-
ing the vulnerabilities and might put the system at higher risk. To
conclude, when the system is under high attack, the best case can
be setting 𝛽1 = 0.9, and when the system is under low attack a
more balanced case by setting 𝛽1 = 𝛽2 = 0.5 addresses the trade-off
better according to the results. Please note that higher values of 𝛽2
would not be possible as they violated the feasibility condition in
C2.2.

3.3 SAs Detection level selection
In this section, we demonstrate the selection of the SAs detection
level for different 𝛽 values.

Table 3: SAs detection level selection for 𝛽1 = 0.7, 𝛽2 = 0.3

Agent
Selected
detection
level

Agent
Selected
detection
level

Agent 1 5 Agent 11 5
Agent 2 4 Agent 12 4
Agent 3 5 Agent 13 4
Agent 4 5 Agent 14 5
Agent 5 5 Agent 15 5
Agent 6 4 Agent 16 5
Agent 7 4 Agent 17 5
Agent 8 5 Agent 18 5
Agent 9 5 Agent 19 5
Agent 10 4 Agent 20 5

Table 4: SAs detection level selection for 𝛽1 = 0.6, 𝛽2 = 0.4

Agent
Selected
detection
level

Agent
Selected
detection
level

Agent 1 5 Agent 11 5
Agent 2 4 Agent 12 4
Agent 3 5 Agent 13 4
Agent 4 5 Agent 14 5
Agent 5 5 Agent 15 4
Agent 6 4 Agent 16 5
Agent 7 4 Agent 17 5
Agent 8 4 Agent 18 5
Agent 9 5 Agent 19 4
Agent 10 4 Agent 20 5

Table 5: SAs detection level selection for 𝛽1 = 0.5, 𝛽2 = 0.5

Agent
Selected
detection
level

Agent
Selected
detection
level

Agent 1 5 Agent 11 1
Agent 2 4 Agent 12 5
Agent 3 2 Agent 13 2
Agent 4 4 Agent 14 4
Agent 5 1 Agent 15 3
Agent 6 1 Agent 16 1
Agent 7 4 Agent 17 4
Agent 8 4 Agent 18 3
Agent 9 1 Agent 19 2
Agent 10 4 Agent 20 1

When prioritizing the security, the SAs select the highest de-
tection level since this maximizes the objective function in P2, as
this is the case for scenario where 𝛽1 = 0.9. On the other hand,
when the two objectives have equalized coefficients, each of the
SAs select a different detection level, depending on the security and
QoS values. The results of the detection level selection for 20 SAs
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with different values of 𝛽 coefficients is demonstrated in Tables 2
to 5.

3.4 Discussion on large-scale scenario
As demonstrated, the problem P2 can be easily solved using the
CPLEX optimization solver which exploits the Simplex algorithm as
one of the methods for problem solving. However, when the num-
ber of variables increases, the number of iterations and complexity
grows exponentially which makes it unsuitable for large-scale sce-
narios [14]. While for large-scale scenarios obtaining the optimal
results is difficult, sub-optimal solutions can be easily achieved by
exploiting heuristic or meta-heuristic solutions. For instance, by
adopting a GA and considering point mutation, one-point crossover
and roulette wheel selection, the complexity can be in the order
of 𝑂 (𝑔𝑛𝑚), where 𝑔 is the number of iterations, 𝑛 the population
size and𝑚 the individuals size. In our future work, we aim to study
larger-scale scenarios and propose heuristic and meta-heuristic
solutions. Moreover, we aim to address the SA placement problem
in order to optimize the locations of SAs for achieving a higher
vulnerability detection efficiency.

4 CONCLUSION
In this work, we studied the problem of SA detection level selec-
tion where the SAs perform the system monitoring for intrusion
detection. We considered a scenario with 20 SAs where each of
them can perform the system monitoring with several detection
levels. Higher detection levels provide higher vulnerability detec-
tion accuracy, however, they also lead to a higher system cost. As a
result, there exist a trade-off to be addressed for this problem. We
have formulated the joint security-vs-QoS optimization problem
and obtained the optimal results using the CPLEX optimization
solver. Furthermore, we have studied the impact of importance
of different objectives of the joint optimization in the simulation
results. In our future work, we aim to target larger scale scenarios
where we can propose heuristic or meta-heuristic solutions to cope
with the network size grows. Moreover, we anticipate to optimize
the placement of the SAs for achieving a higher intrusion detection
efficiency.
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