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ABSTRACT

5G networks become increasingly pervasive, ensuring the robust-
ness and integrity of network functions. The adoption of HTTP/2
in 5G core functions brings notable performance benefits but also
introduces potential security risks. By analyzing HTTP/2 related
threats, this research aims to shed light on the security challenges
faced by 5G networks. The paper proposes effective security test-
ing methodologies using an open-source solution called 5Greplay
to detect these security breaches, enabling network operators to
protect against potential attacks, safeguard user privacy, and en-
sure uninterrupted service continuity. By addressing the specific
concerns of HTTP/2 related threats, this research contributes to
the overall security posture of 5G network functions and provides
valuable insights for the secure deployment of 5G networks in an
evolving threat landscape.
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1 INTRODUCTION

Security, trust and reliability are crucial issues in mobile 5G net-
works from both hardware and software perspectives [1]. These
issues are significant when considering implementations over dis-
tributed environments, e.g., corporate Cloud environments over
massively virtualized infrastructure as envisioned in the 5G service
provision paradigm. The virtualized nature of the infrastructure
introduces new vulnerabilities and risks. Proper isolation and seg-
mentation of virtual resources, secure hypervisor implementations,
and strong access controls are essential to prevent unauthorized
access or lateral movement within the infrastructure.

Reliability is another critical aspect, especially in mission-critical
applications such as autonomous vehicles, remote healthcare, and
industrial automation. High availability, fault tolerance, and re-
dundancy mechanisms should be in place to ensure uninterrupted
service delivery. Load balancing and failover mechanisms can help
distribute the network load and ensure smooth operations even in
the face of failures or network congestion [4].

To address these security, trust, and reliability concerns, rigorous
testing, auditing, and continuous monitoring are necessary. Regu-
lar security assessments, vulnerability scanning, and penetration
testing should be conducted to identify and mitigate potential risks.
Compliance with industry standards and regulations, such as those

set forth by 3GPP (Third Generation Partnership Project) [14] and
relevant security bodies, is also crucial to maintain a secure and
trusted 5G network environment.

Overall, addressing security, trust, and reliability issues in mobile
5G networks is a multifaceted task that requires a holistic approach,
involving both hardware and software considerations, in addition
to proper governance, policies, and ongoing monitoring.

This work is part of the SANCUS project!, whose proposed so-
lution aims to provide a modular framework integrating different
engines to enable next generation 5G system networks to perform
automated operations and intelligent analysis of their large-scale
firmware images, as well as validation of applications and services.
SANCUS also proposes a proactive risk assessment of network ap-
plications and services by maximising the overall system resilience
in terms of security, privacy and reliability, and an inclusive solu-
tion for modelling and emulating network container services and
applications, along with network-wide attacks, forensic investiga-
tions, and tests that require a safe environment without the risk
of proprietary data loss or adverse impact upon existing networks.
The strength of the SANCUS test engines is that they allow testing
not only large-scale network infrastructures, but also emulating the
end-users (IoT, routers, hotspots). One of the main components of
the SANCUS framework is the 5Greplay [11-13] solution designed
by Montimage.

5Greplay is an open-source 5G fuzzer and attack injector that
allows forwarding 5G network packets from one network interface
card (NIC) to another with or without modifications. It can be con-
sidered as a one-way bridge between the input NIC and the output
one. It can also take as input pre-captured 5G packets that are saved
in a PCAP-format file. Its behavior is controlled by user defined
rules and completed by a configuration file. The user defined rules
allow explicitly indicating which packets can be passed through
the bridge and how a packet is to be modified in the bridge. The
configuration file allows specifying the default actions to be applied
on the packets that are not managed by the rules, i.e., if they should
be forwarded or not. Thanks to its ability to create a variety of 5G
network traffic scenarios, 5Greplay enables the implementation of
cyberattacks, such as those identified by ENISA [2], as well as the
security test cases proposed by the 3GPP [14].

The paper is organized as follows. Section 2 illustrates the fun-
damentals of HTTP/2 protocol and the existing relations between
HTTP/2 and 5G. Section 3 presents the related work. We introduce
in Section 4 an extension of 5Greplay to deal with HTTP/2 pro-
tocol. Section 5 introduces the HTTP/2 related threats and attack
scenarios that have been conducted to experimentally evaluate our

Uhttps://www.sancus-project.eu/
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implementation. We also present some discussion on the obtained
results in this section. Finally, we conclude the paper in Section 6.

2 BACKGROUND

2.1 HTTP/2 protocol

The HTTP/2 protocol is the version following the HTTP/1.1 proto-
col. It has been designed to improve the efficiency and the through-
put of the online communications, and it introduces some important
updates. In particular, in order to solve the problem of the slow
responses in HTTP/1.1, it introduces the concept of multiplexing
of the streams.

Multiplexing is a technique that allows grouping different re-
quests and responses within so-called streams, thus eliminating the
need to re-establish new TCP connections each time. Each stream
is identified by a stream ID, and the protocol allows for multiple
streams in parallel. In order to handle this amount of data, HTTP/2
relies on its own flow control mechanism based on ad-hoc frames,
such as WINDOW_UPDATE frame.

Another important feature that differentiates HTTP/2 from pre-
vious versions is that, despite being an application protocol, it does
not use textual strings for communication, but employs binary data.
The framing speeds up parsing by the server and reduces overhead
but it makes data more difficult to interpret for developers. HTTP/2
improves the latency and reduces the amount of data exchanged be-
tween the clients and the servers using header compression. Since
the previous compression algorithms were prone to security is-
sues, HTTP/2 employs a new algorithm to compress the header,
namely Hpack. Hpack uses a static dictionary containing the stan-
dard header fields, a dynamic dictionary containing the values and
header fields received during communication, and finally Huffman
encoding to encode the strings in name-value format.

In terms of security, HTTP/2 provides a secure communication
through Transport Layer Security (TLS) protocol, which employs
cryptography to protect data exchanged between client and server.
HTTP/2 establishes the cypher suites allowed in order to avoid the
selection of weak or old algorithms [10].

2.2 HTTP/2 and 5G networks

In 5G networks, several network functions use HTTP/2 in their API
communications to enhance the performance and enable efficient
data exchanges. Some of the key network functions that employ
HTTP/2 in their API communication include:

e 5G Core Network Functions (NFs): Various network func-
tions within the 5G core network, such as the Access and
Mobility Management Function (AMF), Session Management
Function (SMF), User Plane Function (UPF), and Network
Slice Selection Function (NSSF), may use HTTP/2 in their
API communications. These network functions often inter-
act with each other using APIs for tasks such as session
establishment, user authentication, mobility management,
and network slicing management.

e Application Function (AF): The Application Function in the
5G core networks is responsible for hosting and managing
applications and services, and may use HTTP/2 for API com-
munications. This enables efficient exchange of data and
commands between the AF and other network functions,

allowing the AF to control and coordinate service delivery
over the 5G network.

Policy Control Function (PCF): The Policy Control Function
is responsible for policy enforcement and management in
the 5G core network, and may employ HTTP/2 in its API
communications. The PCF uses APIs to communicate with
other network functions, such as the AF and SMF, to enforce
policy rules, apply quality-of-service (QoS) parameters, and
manage resource allocation based on policy decisions.
Authentication Server Function (AUSF): The Authentication
Server Function in the 5G core network uses HTTP/2 for
its API communications. This allows interacting with other
network functions, such as the AMF and SMF, to authenti-
cate users, authorize access to services, and provide secure
identity management within the 5G network.

Charging Function (CHF): The Charging Function in the
5G core network is responsible for tracking and managing
the charging information related to the services used by
subscribers. It may utilize HTTP/2 in its API communications
with other network functions. By leveraging HTTP/2-based
APIs, the CHF can efficiently exchange charging data with
functions such as the Policy Control Function (PCF) and
Application Function (AF) to ensure accurate charging and
billing for the services consumed by users in the 5G network.
Network Exposure Function (NEF): The Network Exposure
Function enables external applications to interact with the
5G network and access network resources through APIs.
HTTP/2 may be used in the API communications between
the NEF and external applications, allowing efficient data
exchange and service provisioning.

Network Slice Management Function (NSMF): The Network
Slice Management Function is responsible for the creation,
orchestration, and management of network slices in 5G net-
works. HTTP/2 can be employed in the API communications
between the NSMF and other network functions to exchange
information related to slice instantiation, configuration, and
monitoring,.

Application Function (APP): Besides the AF mentioned ear-
lier, other application functions hosted within the 5G core
network may also use HTTP/2 for their API communica-
tions. These application functions can leverage the benefits
of HTTP/2 to enhance their interactions with other network
functions and deliver optimized services over the 5G net-
work.

Network Data Analytics Function (NWDAF): The Network
Data Analytics Function collects and analyzes network data
to derive insights and enable intelligent network optimiza-
tions. HTTP/2 may be used in the API communications be-
tween the NWDAF and other network functions to exchange
data and analytics results, facilitating data-driven decision-
making within the 5G network.

Unified Data Management (UDM): The Unified Data Man-
agement function is responsible for managing subscriber
data in the 5G core network. HTTP/2 may be employed in
the API communications between the UDM and other net-
work functions to exchange subscriber-related information,
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Figure 1: Taxonomy of attacks against HTTP/2 (light blue: attacks against HTTP/2 only, blue: attacks against HTTP/2 that

apply also to HTTP/3) [5]

perform user authentication, and enable secure access to
subscriber data.

It’s important to note that the specific network functions and
their implementation may vary across different 5G deployments,
and the use of HTTP/2 in API communications is dependent on
the design choices and requirements of the network operators and
vendors involved. [16]

3 RELATED WORK

5G networks are a paradigm of next generation wireless technology.
They will be faster and able to handle more connected devices than
the existing 4G networks. They are composed of different enabling
technologies, such as Software-Defined Networking (SDN), Net-
work Function Virtualisation (NFV), Multi-access Edge Computing
(MEC), Cloud-native Core Network (CCN) and Network Resource
Slicing (NRS). Although these technologies have been the subject of
various research works on cybersecurity, they introduce a new set
of cybersecurity challenges that still need to be investigated. The

evolution of 5G mobile networks towards a service-based architec-
ture (SBA) comes with the emergence of numerous new testing
challenges and objectives. Regarding security testing, 5G issues
have been the subject of numerous studies [6-9]. Standardization
organisms list collections of threats and vulnerabilities that are
also investigated by academia and industrial researchers. However,
there is no specific tool on the market that allows easy 5G security
testing to verify if its components are protected against reported
security issues.

In particular, regarding cyberattacks, different techniques have
been developed capable of detecting and executing them. One of
the techniques used is fuzz testing, which is a software testing tech-
nique that consists of the injection of random, invalid or unexpected
data to cause the malfunctioning or a crash of the system.

The authors in [5] define a taxonomy for HTTP/2 cyberattacks
presented in Figure 1. The authors of this paper identified the main
types of HTTP/2 based cyberattacks:

o Amplification attacks are a very common DDoS attack which
seeks to consume the capacity of the target’s network link
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by reflecting low bandwidth traffic off a reflection source
which provides a larger data response. The use of header
compression by HTTP/2 may give an attacker a methodof
amplification as the headers will have to be decompressed
before processing.

e Cryptojacking is about consuming resources for mining cryp-
tocurrencies without the consent of the resources’ owner

o Denial of Service attacks

e Slow rate attacks are based on sending low-rate traffic that
contains resource-hungry instructions to a victim HTTP/2
server

e Smuggling exploits the inconsistency in parsing non-RFC-
compliant HTTP requests via two HTTP devices (generally
a backend server and HTTP-enabled firewall or a front-end
proxy). The HTTP request smuggling process is carried out
by creating multiple, customized HTTP requests that make
two target entities see two distinct series of requests.

e Privacy attacks

In this paper, we focus on how to use fuzz testing the generate
HTTP/2 attacks targeting 5G core functions. Notice that a moni-
toring solution called MMT-5G? is also developed to detect such
attacks.

4 GENERATION OF HTTP/2 ATTACKS USING
5GREPLAY

5Greplay is the Montimage tool used to replay or modify traffic to-
wards 5G components. The main workflow of 5Greplay is depicted
in Figure 2. The input of 5Greplay is network traffic, which is in the
form of a PCAP file or live network data, a set of mutation rules,
and a configuration file. Once a packet is processed by the tool, the
context written by the user in the mutation rules will determine
if the packet will be mutated or not. If the packet is to be mutated,
the specified action embedded in the mutation rules will determine
what type of mutation must be done in the packet. The packet is
then forwarded to the output NIC, together with the non-modified
packets, depending on the default action contained in the configura-
tion file. The output packets can also be saved as a PCAP file which
can be used for further investigations and repeating the tests.

[ ] 0 Filtering the packet?
Forwarding the packet?
MODIFY the packet

Default action to apply
to unfiltered packets
Rules

no
X<--

1
- >é¥e-s- ->] ooy F---,
1

I Mutation of
es 1 Network traffic
Network Y «

7 forward ¥
B -

1
1| 5Greplay drop

T
1
1
N
x

Figure 2: 5Greplay main architecture
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5Greplay relies on MMT-DPI part of the open-source MMT secu-
rity monitoring framework developed by Montimage called MMT?.
This framework includes (among other tools) probes (MMT-Probe)
to analyse structured communications, the C library that imple-
ments the Deep Packet Inspection (DPI) technique (MMT-DPI),
another C library to define rules and algorithms to detect anom-
alies (MMT-Security), and a web application to display statistics and
alarms (MMT-Operator). MMT-DPI analyses network packets in
order to classify the network protocol being used or the application
a packet belongs to, and extracts network and application based
events, such as, protocols attribute values, network and application
QoS parameters. DPI is an advanced technique [15] that classifies
packets by examining the contents of packets passing through a
given checkpoint and a set of signatures in the headers and pay-
loads in order to obtain more accurate results. MMT-DPI has a
plugin architecture for easily adding new protocols and analysis
techniques (including machine learning techniques). It provides a
set of public APIs for integration with third party probes.

Here, a plugin of MMT-DPI was developed to parse and mutate
the HTTP/2 protocol packets. The plugin checks if the first charac-
ters coincide with the protocol’s signature, and if so, identifies the
HTTP/2 protocol at the application layer. After the identification,
the plugin gets the application layer offset and extracts HTTP/2
attribute values useful for the attacks:

*

HTTP/2_HEADER_LENGTH: three bytes indicating the size
of the header

HTTP/2_TYPE: one byte that defines the type of the frame.
The most common types are DATA, HEADERS, PRIORITY,
RST_STREAM,SETTINGS, PUSH_PROMISE, GOAWAY, WIN-
DOW_UPDATE.

HTTP/2_HEADER_STREAM_ID : odd number that identifies
the stream of the communication in the header
HTTP/2_PAYLOAD_LENGTH : three bytes indicating the
size of the payload

HTTP/2_PAYLOAD STREAM_ID: odd number that identi-
fies the stream of the communication in the payload
HTTP/2_PAYLOAD_DATA: pointer to the beginning of the
data in the payload.

*

*

*

*

*

Once that key attributes are extracted through MMT-DPI, 5Gre-
play can use them for generating the attack traffic. In particular, for
DOS attacks, 5Greplay modifies for each stream the Stream ID in
the header and in the payload with increasing numbers, otherwise
the server will reject the request. In fuzzing attacks, instead, 5Gre-
play uses the HTTP/2_PAYLOAD_DATA pointer to access to the
packet’s payload and inject random symbols.

5 ATTACK SCENARIOS

After the integration of the HTTP/2 plugin in MMT-DPI, several
attacks have been executed against an HTTP/2 server. The setup
of the experiments involved the creation of the server using the
javascript programming language that simulates a response for
each of the possible incoming requests. The javascript language
was chosen for the creation of the server because, unlike other
languages, the latter provides better support and more complete
documentation for the HTTP/2 protocol. Both the aforementioned
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server and 5Greplay were deployed inside a VirtualBox virtual ma-
chine running on the Ubuntu version 22.04 operating system. In
order to carry out the attacks, several rules formatted in XML have
been implemented. Within the rules it was necessary to indicate
the HTTP/2 attributes to recognize, in order to filter the packets
suitable for the specific attack. In addition to this, it was some-
times necessary to use embedded C functions in the XML code for
processing the extracted data.

5.1 Scenario 1: Flooding Attacks

Flooding attacks, subclass of the better known DOS attacks(Denial
of Service), involve the use of legitimate requests repeated thou-
sands of times in order to saturate the server bandwidth and inhibit
its correct functioning. Here, this type of attack consisted in flood-
ing POST and GET methods, the WINDOW_UPDATE type packets
or the Settings. The flooding of POST and GET methods consist in
sending a large number of requests. The WINDOW_UPDATE and
Settings attacks aim exploiting the streams mechanisms introduced
by HTTP/2 to maintain a high number of active connections with-
out actually using them. In addition to the aforementioned attacks,
the Compression attack was implemented. This attack exploits the
feature introduced by HTTP/2 to compress packets.

MMT-5G6

HTTP2
 E— R
2 :-'# o ‘ Ny s

Peap file

Traffic

‘ 5Greplay
-y
L=
L=

Replication/Fuzzing rule

Figure 3: Flooding and fuzzing attacks in 5Greplay.

5.1.1  Flooding of POST and GET. As can be seen from the image 3,
a PCAP file containing the communications trace in Nokia’s 5G core
is provided as input to 5Greplay. The rule to replicate packets with
POST and GET methods uses a C function embedded in the code
in order to incrementally modify the stream ID each time. In this
way, the multiplexing mechanism is exploited in order to saturate
the connection with server. After that, the packet is forwarded to
the server for thousands of times. The architecture of the attack is
presented in Figure 3.

The result of the execution can be seen using Wireshark as shown
in Figure 4. Besides this, an example of an XML rule related to DOS
using POST methods is shown in Figure 5. A property identifier
and a brief description of the property is given for identifying each
rule. The rule is defined to filter all POST method packets using the
condition http2.header_method == 131, where 131 is the hpack
encoding for POST methods. The rule also calls the embedded func-
tion "em_modify_then_forward" in order to modify the stream ID
of the request in the header and payload of each iteration. Through
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this function, users can set the number of requests to send to the
server using the parameter nb-copies . The function also sends a
WINDOW _UPDATE frame after two thousand iterations in order
to enlarge the server receiving window and to avoid the rejection
of the requests.

Info

T HEADERS[1]: POST /nausf-auth/vi/ue-authentications, DATA[1], Javascript Object Notation (application/json)

| HEADERS[3] : POST /nausf-auth/v1/ue-authentications, DATA[3], Javascript Object Notation (application/json)

| HEADERS[5]: POST /nausf-auth/v1/ue-authentications, DATA[5], Javascript Object Notation (application/json)

| HEADERS[7]: POST /nausf-auth/vi/ue-authentications, DATA[7], JavaScript Object Notation (application/json)

( HEADERS[9]: POST /nausf-auth/vi/ue-authentications, DATA[9], JavaScript Object Notation (application/json)

I HEADERS[11] : POST /nausf-auth/vi/ue-authentications, DATA[11], JavaScript Object Notation (application/json)
| HEADERS[13] : POST /nausf-auth/vi/ue-authentications, DATA[13], JavaScript Object Notation (application/json)
| HEADERS[15] : POST /nausf-auth/vi/ue-authentications, DATA[15], JavaScript Object Notation (application/json)
| HEADERS[17] : POST /nausf-auth/vi/ue-authentications, DATA[17], JavaScript Object Notation (application/json)
| HEADERS[19] : POST /nausf-auth/vi/ue-authentications, DATA[19], JavaScript Object Notation (application/json)
| HEADERS[21] : POST /nausf-auth/vi/ue-authentications, DATA[21], JavaScript Object Notation (application/json)
| HEADERS[23] : POST /nausf-auth/vi/ue-authentications, DATA[23], JavaScript Object Notation (application/json)
| HEADERS[25]: POST /nausf-auth/vi/ue-authentications, DATA[25], Javascript Object Notation (application/json)
| HEADERS[27]: POST /nausf-auth/vi/ue-authentications, DATA[27], Javascript Object Notation (application/json)
| HEADERS[29]: POST /nausf-auth/vi/ue-authentications, DATA[29], Javascript Object Notation (application/json)
| HEADERS[31]: POST /nausf-auth/vi/ue-authentications, DATA[31], Javascript Object Notation (application/json)
| HEADERS[33]: POST /nausf-auth/vi/ue-authentications, DATA[33], Javascript Object Notation (application/json)
| HEADERS[35]: POST /nausf-auth/vi/ue-authentications, DATA[35], Javascript Object Notation (application/json)
| HEADERS[37]: POST /nausf-auth/vi/ue-authentications, DATA[37], Javascript Object Notation (application/json)
| HEADERS[39]: POST /nausf-auth/vi/ue-authentications, DATA[39], Javascript Object Notation (application/json)
| HEADERS[41]: POST /nausf-auth/vi/ue-authentications, DATA[41], JavaScript Object Notation (application/json)
| HEADERS[43] : POST /nausf-auth/vi/ue-authentications, DATA[43], JavaScript Object Notation (application/json)
| HEADERS[45] : POST /nausf-auth/vi/ue-authentications, DATA[45], JavaScript Object Notation (application/json)
| HEADERS[47] : POST /nausf-auth/vi/ue-authentications, DATA[47], JavaScript Object Notation (application/json)
| HEADERS[49] : POST /nausf-auth/vi/ue-authentications, DATA[49], JavaScript Object Notation (application/json)
| HEADERS[51] : POST /nausf-auth/vi/ue-authentications, DATA[51], JavaScript Object Notation (application/json)
| HEADERS[53] : POST /nausf-auth/vi/ue-authentications, DATA[53], JavaScript Object Notation (application/json)

Figure 4: Packets after being replicated by 5Greplay.

5.1.2  WINDOW_UPDATE and Setting Attacks. Like other protocols,
HTTP/2 provides flow control to adjust the sending frequency
based on the server’s ability to receive messages correctly. The
frame used to establish the number of bytes that the sender can
send is WINDOW_UPDATE, and the maximum number established
by the RFC[10] is 23! — 1. In this case, the client sends a number
to indicate the maximum size of a frame that can be transmitted
through the window_size_increment field. Each time that a client
sends WINDOW _UPDATE, the server updates its window in order
to receive more data, implying resource consumption [3, 17].

The Settings frame follows a Magic frame and is used to estab-
lish an HTTP/2 connection. In this case, the attributes of inter-
ests are SETTING_MAX_CONCURRENT _STREAM, used to set
the maximum number of parallel streams that can be instanti-
ated, and SETTINGS_INITIAL WINDOW _SIZE, used to dimen-
sion the window of the receiver. The attack involves changing
SETTING_MAX_CONCURRENT_STREAM to a high number so
that the server will have to instantiate many threads, and at the
same time changing SETTINGS_INITIAL_ WINDOW _SIZE to a low
value to slow down the responses. After the configuration phase,
the attack involves sending a certain number of GET requests, in-
terleaved by WINDOW_UPDATE frames, so that the server doesn’t
deny any of the requests. In this way, the bandwidth and computa-
tional resources of the server are consumed by the server.

5.1.3  Compression Attack. HTTP/2 introduces a compression mech-
anism in order to optimize the communications and reduce the
packet sizes. Although compression represents an advantage in
many respects, it can be used maliciously as it consumes a lot of
computing resources. In the specific case here, the attack plans to:

(1) Extract a packet from the PCAP file

(2) Decompress the packet and extract the information
(3) Add a large number of characters to the path

(4) Compress the packet again

(5) Send it to the server
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1 <beginning>

2 <embedded_functions><![CDATAL

s #include <tcpip/http2.h>

i #include <stdlib.h>

s static unsigned long int number_request = 0;

¢ void on_load(){
number_request = get_http2_env_nb_copies();

s}

s static void em_modif_then_forward(

10 const rule_info_t *rule, int verdict, uint64_t timestamp,

1 uint64_t counter, const mmt_array_t * const trace ){

for(int i=0; i<number_request; i++){

3 //stream ID must be an odd number

. set_numeric_value( PROTO_HTTP2, HTTP2_HEADER_STREAM_ID, (i
*2+1) );

forward_packet();

6}

17}

15 11></embedded_functions>

19 <property value="THEN" property_id="13" type_property="
FORWARD" description="Modify stream id" if_satisfied="
em_modif_then_forward">

20 <event value="COMPUTE" event_id="1" description="Modify
stream ID"

21 boolean_expression="( http2.header_method == 131 )" />

22 </property>

23 </beginning>

Figure 5: 5Greplay rule for the POST flooding attack

This operation is repeated a large number of times and causes the
server to waste computational resources to decompress the header,
allocate memory and interpret information relating to a path that
does not exist. The overhead can result in server slowdown and
service degradation. The library chosen for the compression and the
decompression of the headers is nghttp2, an open-source and flexi-
ble solution in C language. Nghttp2 provides a high performance
implementation of HTTP/2 and broad support through accurate
documentation and an active community of developers.

5.2 Scenario 2: Fuzzing Attacks

Fuzzing is a technique used to change the real data with some
random values or characters, including those not allowed by the
protocol specifications. It allows testing the resilience of the server.
In the case here, the path characters are changed in a random way.
The goal of the fuzzing is to test the resilience of the server to
invalid data. In the context of 5Greplay, two fuzzing attacks have
been developed.

In the first attack, the headers of the POST packets are decom-
pressed. For this, the information relating to the path is extracted
and the data included in path header field is changed with random
characters. After modification, the package is compressed and sent
to the server. This kind of attack is more difficult to recognize since
a decompression must be performed before checking for illegal
characters.

The second attack involves modifying the content of the payload.
In particular, information about the JSON files is changed within the

POST packets, and legitimate data is modified using random charac-
ters, including some that are not allowed by the JSON specification.
The set of characters involved in this attacks includes the letters
of the alphabet, numbers, symbols like ’%’) \" and so on. These
latest attacks join other fuzzing attacks developed for 5Greplay and
described in [12], and target 5G core functions(e.g., AMF, SMF). In
order to access to payload data the plugin in MMT-DPI accesses to
the header length and adds this value to the HTTP/2 protocol offset
and returns a pointer.5Greplay uses the pointer and the payload
length previously extracted to modify the data as described before.

In addition to the offensive security tools, Montimage provides
a very effective tool for attack detection called MMT-Security. The
tool takes rules written in XML language as input to raise alerts. In
this regard, three rules have been developed: one for recognizing
DOS attacks, one for recognizing Compression attacks and the last
one for recognizing Fuzzing attacks. The rule for DOS recogni-

Montimage Monitoring Tool

MMT-Probe

ol Alerts

| o= tatistics. Display
|HTTPE MMT-DPI

Pcap attack
file
MMT-Security \
Securtity Virdic I

T C
s

MMT-Operator

Graphs

Detection Rules

Figure 6: Montimage Monitoring tool Architecture

tion counts how many POST/GET requests or WINDOW_UPDATE
packets are sent in a given time range, e.g., between 0 and 100 ms.
An alert is raised if the packets counted exceed the user-defined
threshold. This threshold must be suitably sized since an exceed-
ingly large number may not raise alerts when an attack occurs,
while a too small number may raise alerts even during correct con-
ditions. The rule for Compression attacks checks the dimension
of the header. If the header size exceeds a threshold, an alert is
raised. Finally, the rule for detecting fuzzing checks if there are any
unusual characters inside the payload.

The MMT-Probe processes the network traffic using the MMT-
Security library and rules, and sends extracted data and alerts to an
application (MMT-Operator) that processes them in order to create
statistics and notifications. MMT-Probe output is a sequence of files
in JSON or CVS format containing information about events that
have been observed during a user-configurable period of time. MMT-
Operator is a web application with a user-friendly GUI that displays
the statistics using graphs and alerts in different dashboards, and
allows managing the MMT-Probes. Figure 6 shows the architecture
of Montimage Monitoring Tool. Figure 7 shows an alert related to
a Fuzzing attack.
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Figure 7: Fuzzing attack detection in MMT-Operator

5.3 Results

The table 1 resumes the tests using 5Greplay, where the second
column specifies the number of messages sent to the SUT (Sys-
tem Under Test) and the third column indicates the number of
alerts raised. When traffic is replayed, HTTP/2 tends to aggregate
multiple requests in the same packet, exploiting the mechanism
of TCP segmentation. For this reason, sometimes the packet sizes
increase, and MMT-Security rule raises the following warning mes-
sage: "WARN_SEC: Report 1262 for 700.4098 is too big (req. 65477,
avail. 33206 bytes), must increase "input.max_message_size". De-
spite this, alerts are correctly generated. The threshold for DOS
detection is set to 50 packets in the time range between 0 and 100
ms.

Table 1: Result of the detection.

Attacks Messages | Alerts
Setting attack 1272 62
Flooding of GET 173 19
Flooding of POST 168 21
Compression attack 100 60
Flooding of WINDOW_UPDATE 28852 28440
Path Fuzzing 14175 2519
Payload Fuzzing 113 62

6 CONCLUSION

This paper analyzes the security issues regarding HTTP/2 adop-
tion for 5G networks. The introduction of HTTP/2 increases the
5G performance and flexibility, but also introduces new security
issues. In this paper we propose security testing methodologies that
have been implemented in an open-source tool, 5Greplay. This tool
allows testing 5G network components using fuzzing and attack
injection techniques. To illustrate this, this paper analyzes the dif-
ferent attacks introduced by HTTP/2, implements them, and shows
how they can be detected by MMT. It is used in the SANCUS frame-
work offering network operators with an integrated solution for
the detection, prevention, protection and response against potential
attacks, the safeguard of privacy, and network service continuity.
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