VeriDevOps Software Methodology: Security Verification and
Validation for DevOps Practices

Eduard Paul Enoiu
Milardalen University
Vasteras, Sweden
eduard.paul.enoiu@mdu.se

Andrey Sadovykh
SOFTEAM
Paris, France
andrey.sadovykh@softeam.fr

ABSTRACT

VeriDevOps offers a methodology and a set of integrated mecha-
nisms that significantly improve automation in DevOps to protect
systems at operations time and prevent security issues at develop-
ment time by (1) specifying security requirements, (2) generating
trace monitors, (3) locating root causes of vulnerabilities, and (4)
identifying security flaws in code and designs. This paper presents
a methodology that enhances productivity and enables the con-
tinuous integration/delivery of trustworthy systems. We outline
the methodology, its application to relevant scenarios, and offer
recommendations for engineers and managers adopting the VeriDe-
vOps approach. Practitioners applying the VeriDevOps methodol-
ogy should include security modeling in the DevOps process, inte-
grate security verification throughout all stages, utilize automated
test generation tools for security requirements, and implement a
comprehensive security monitoring system, with regular review
and update procedures to maintain relevance and effectiveness.

KEYWORDS

security, verification, testing, monitoring, DevOps

ACM Reference Format:

Eduard Paul Enoiu, Dragos Truscan, Andrey Sadovykh, and Wissam Mal-
louli. 2023. VeriDevOps Software Methodology: Security Verification and
Validation for DevOps Practices. In The 18th International Conference on
Availability, Reliability and Security. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

In today’s fast-paced software development world, the need for
security is more crucial than ever before. However, security is often
seen as an afterthought, and it is only addressed after an application
has been deployed, making it difficult and costly to fix any issues.
This is where DevOps [9] comes into play since it helps to combine

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ARES’23, August 29 - September 01, 2023, Benevento, Italy

© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9517-5/23/03.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Dragos Truscan
Abo Akademi University
Turku, Finland
dragos.truscan@abo.fi

Wissam Mallouli
Montimage
Paris, France
wissam.mallouli@montimage.com

the speed and agility of software development with the reliability
and security of operations.

SecDevOps [11] is a software development methodology that
merges DevOps practices with security principles, aiming to estab-
lish a seamless and cohesive approach to software development
and security. The primary objective of SecDevOps is to incorpo-
rate security measures at every phase of the software development
lifecycle (SDLC), encompassing planning, design, deployment, and
maintenance stages. In traditional software development, security
is typically treated as a separate and isolated step within the SDLC
[10]. However, this approach often results in discovering security
vulnerabilities late in the process, leading to delays, increased ex-
penses, and compromised security. To overcome these challenges,
SecDevOps advocates for the integration of security throughout the
entire SDLC. This approach emphasizes collaboration, automation,
and continuous monitoring to ensure that security is an intrinsic ele-
ment of the software development process. By adopting SecDevOps,
organizations can proactively address security concerns, minimize
risks, and enhance the overall security posture of their software
applications. SecDevOps is increasingly being embraced to enhance
the security of software applications. Through the seamless inte-
gration of security throughout the SDLC, SecDevOps empowers
organizations to deliver secure software in a faster and more effi-
cient manner.

To integrate security into the DevOps process effectively, it is
recommended to employ security verification, automated security
verification, and security monitoring techniques. Security verifica-
tion [3] is a method of demonstrating that a system or application
is secure through assurance and reasoning. Automated security
testing [5] involves using software tools to automatically generate
and execute tests in order to detect any security vulnerabilities
in an application. Finally, security monitoring [13] involves con-
tinuously tracking an application’s performance and behaviour to
detect any attacks or potential security breaches. Together, these
methods make it possible for the VeriDevOps methodology to pro-
vide a comprehensive approach to security in DevOps, enabling
teams to identify and address security issues throughout the devel-
opment process rather than after deployment. In this methodology,
security is integrated into every stage of the DevOps pipeline, from
planning and development to testing, deployment and monitoring.

The VeriDevOps methodology combines multiple techniques to
embed security throughout the DevOps lifecycle. It begins by using

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ARES’23, August 29 - September 01, 2023, Benevento, Italy

Natural Language Processing (NLP) to improve security require-
ments, eliminating poorly written specifications and enhancing
their understandability. Modern NLP methods are further lever-
aged to extract, classify, and semantically search related security
recommendations from natural language texts. A requirements-as-
code paradigm is implemented to encapsulate requirements and
their verification methods within object-oriented classes, enabling
executable requirements, traceability, and reuse. To detect security
incidents, monitoring tools analyze network traffic and system logs.
Real-time detection tools enhance this process, inspecting network
traffic at the packet level with pre-trained neural network models
for the swift identification of threats. At the development level,
metamorphic testing is employed when systems lack explicit test
oracles, assessing the impact of input transformations on outputs.
Lastly, specific methodologies are used to undergo validation and
generate regression test cases. Collectively, these techniques create
a comprehensive, secure, and efficient DevOps process.

The main innovation in VeriDevOps is the direct use of secu-
rity requirements written in natural language for security test au-
tomation and monitoring. The ability to convert these natural lan-
guage security requirements into automated testing and monitoring
rules enables more seamless and continuous integration of security
within the DevOps lifecycle. Finally, using natural language for
security requirements fosters continuous feedback and learning
opportunities. By observing the outcomes of the automated tests
and monitoring, teams can improve and refine their security re-
quirements, leading to a more mature, robust, and secure system
over time.

2 RELATED WORK

As an example of a technique that can be used in DevOps security-
related practices, Kulik et al. [8] explore the use of formal meth-
ods in addressing cyber-security concerns in critical infrastructure
systems. It reviews three main classes - theorem proving, model
checking, and lightweight formal methods - and categorizes them
based on the type of computing systems they are applied to. The
article presents and compares solutions within each class and cate-
gory, discussing historical highlights and developments. It offers
a comprehensive overview of formal methods and techniques for
security-critical systems, simplifying the tool selection process for
system designers.

Another technique that can be used in a DevOps methodology
is model-based security testing (MBST) [16], which is a relatively
new field dedicated to systematically and efficiently specifying and
documenting security test objectives, test cases, and test suites,
while also automating or semi-automating their generation. This
paper presents a survey on MBST techniques, including security
functional testing, model-based fuzzing, risk- and threat-oriented
testing, and the use of security test patterns.

Granata et al. [6] address the complexity of software systems
due to expanding IT infrastructures and the accompanying chal-
lenges in managing software vulnerabilities and cybersecurity is-
sues. Even though security-oriented methodologies like SecDevOps
have emerged to identify security problems early in the software
development life cycle, their integration into standard or custom
software development life cycles, as well as, design evaluation and

risk management methodologies, remains difficult. To alleviate this,
Granata et al. propose MetaSEnD, a new meta-model that outlines
the main activities in a Secure Software Development Life Cycle (SS-
DLC), and demonstrate its application in a continuous integration
pipeline of a sample microservices application.

These approaches incorporate security principles into software
development but leave certain aspects unaddressed. In traditional
DevOps practices, there exists a critical disconnect where automa-
tion and security are not integral to the DevOps lifecycle - they
are often treated as separate processes. This forms a gap that can
lead to vulnerabilities in the software system. Furthermore, reliance
on manual security testing and monitoring methods can lead to
inefficiencies and potentially undetected vulnerabilities, further
expanding the gaps. VeriDevOps [15] fills these gaps by formaliz-
ing security requirements, generating trace monitors, locating root
causes of vulnerabilities, and identifying security flaws in code and
designs. VeriDevOps focuses on improving automation in DevOps
for system protection, offering a more comprehensive approach to
building secure, trustworthy systems efficiently and effectively.

3 VERIDEVOPS METHODOLOGY

VeriDevOps is a methodology that combines the principles of De-
vOps and early verification, test automation and monitoring to
ensure that software systems are secure and reliable. An overview
is shown in Figure 1. It aims to provide a systematic approach
to software development that ensures that security requirements
are met throughout various stages of software development. The
methodology involves the use of Natural Language Processing
(NLP), specification of security requirements, automatic quality
assurance to verify the correctness of software systems and the use
of DevOps practices to ensure that software systems are developed
and deployed securely and reliably.

VeriDevOps automates essential components of software devel-
opment with security considerations. This includes the specification
and analysis of security-related requirements, system testing and
monitoring, and the incorporation of these tools and techniques
into prevailing VeriDevOps practices in the industry.

The process starts with the analysis and formalization of a text-
based description of security requirements sourced from various
inputs. NLP and pattern/boilerplate usage are key technologies
in preventing the introduction of inconsistencies or ambiguities
into the specification. Additionally, methods for auto-translating
patterns into temporal logic are utilized.

Another vital aspect is the automated configuration of trace
monitors, founded on the specification of security requirements
using semi-structured or structured formalisms. These traces are
configured over time and monitored continually using these mod-
elled specifications. Runtime monitoring is employed to identify
anomalies and vulnerabilities.

Moreover, we auto-generate attack tests based on the specifi-
cation of security requirements. This includes identifying invalid
states and contradictory security requirements in natural language
requirement specifications and using this data to create negative
tests. These tests aim to push the system into invalid states, i.e.
potentially insecure behavior, thereby uncovering potential vulner-
abilities that positive test cases may not detect. One enhancement

VeriDevOps Software Methodology: Security Verification and Validation for DevOps Practices

test cases

ARES’23, August 29 - September 01, 2023, Benevento, Italy

4

— ~ J
Security Models
Lormal/structured/semi-structured

Figure 1: An Overview of the VeriDevOps Methodology

could involve establishing guidelines and a format for testers to
propose test scenarios that evaluate both security and energy prop-
erties, areas often overlooked in testing.

Lastly, VeriDevOps automates design and code checks according
to the specification of security requirements using semi-structured
and structured formalisms. These verification activities can be con-
ducted either by simulating the resulting model or by formally
verifying a system description.

VeriDevOps Methodology contains a set of comprehensive guide-
lines for the adopters of security verification methods and tools and
can also serve as teaching material for IT-oriented universities. The
methodology guides users in applying security requirements for
automated generation, protection, and prevention activities driven
by security specifications.

3.1 VeriDevOps Architecture

The VeriDevOps Methodology groups several interconnected tool
sets for Security Requirements Generation, Reactive Protection
at Runtime as well as for Prevention at Design and Development
(as shown in Figure 2). Those tool sets are highly interconnected
to achieve the goal of linking security requirements with design
analysis, verification at the code level and the runtime analysis of

systems. The VeriDevOps tool sets mix concrete tool components
provided and developed by VeriDevOps partners. These concrete
tools differ in licensing policies and maturity. While there are many
mature commercial and open-source tools, others are more experi-
mental. These tools should implement the interfaces and features
of the VeriDevOps Methodology and should be interchangeable to
a certain extent. The case studies will employ a mix of those tools
that better correspond to the requirements and will fit better with
the methodology or industry practice.

3.1.1 Requirements Specification. The VeriDevOps process involves
the examination and formalization of security requirements, which
are gathered from a range of textual descriptions. To avoid introduc-
ing inconsistencies and ambiguities into these specifications, we
utilize NLP and established patterns or boilerplates. Additionally,
we employ techniques that automatically translate these patterns
into temporal logic, further enhancing the clarity and consistency of
our security requirements. Several techniques can be implemented
in the VeriDevOps methodology, such as PROPAS and RQCode.
In addition, both manual and semi-automatic translation methods
can also be utilized to optimize the requirements formalization.
In addition, verification and analysis tasks can be performed ei-
ther by simulating the final model or by verifying the system’s

ARES’23, August 29 - September 01, 2023, Benevento, Italy

Security
requirements
suT
Source code

Functional
requirements

‘ Manual

n
(RQCode)

Manual
translation

]

Formalised security
requirements
(TCTL)

Requirements

Functional

dol Verify security
CompleteTest (UPI::A éL - ?&%‘?&?} PyLC Modelio

[

Security
Conformant
model

Verified
PLC
program

Audited set of

Prevention at development RQCODE

requirements

Formalized Security

(SOOR Requirements)

L Vulnerabil

Functional
model (FSM)

GW2UPPAAL

Verified FSM
Graphwalker
model

Vulnerability localization

l Test generation
Tests
MetaTester ‘ CompleteTest ‘ TGraphwalker

1

|

|

1

1

1

1

1

1 Protection at operations
I Countermeasures
1

1

1

1

1

1

Figure 2: An Overview of the VeriDevOps Methodology Architecture and Examples of Tool Components

description. Based on several natural languages and model smells,
we established a set of indicators (i.e., using NALABS) for security
requirement flaws and defined metrics to automatically detect these
smells in security artefacts.

3.1.2 Prevention at Development. Several techniques are used dur-
ing this phase for test modelling (e.g., UPPAAL, PyLC, Modelio,
GW2UPPAAL), automated test generation (e.g., MetaTester, Com-
pleteTest, Graphwalker) and vulnerability localization (e.g., Local-
izer, RCA). This information assists in generating positive and neg-
ative tests designed to push the system into certain states, thereby
exposing potential vulnerabilities. To enhance this process, it would
be beneficial to establish guidelines and a format that enables testers
to design test scenarios that assess not only security aspects but also
energy properties, as these are often overlooked areas in testing.

3.1.3 Protection at Operations. We deploy an automated setup of
monitoring tools (e.g., MMT, THOE, EARLY), which is based on the
specification of security requirements in natural language, semi-
structured or structured formalisms. Over time, these traces are
automatically configured and continually observed using formal
or semi-formal specifications. Runtime monitoring, a technique
that observes system behavior during operation, is implemented
to detect errors, monitor performance, ensure compliance, and
maintain system health, thereby providing a basis for potential
preemptive countermeasures.

4 AN INSTANTIATION OF THE VERIDEVOPS
METHODOLOGY

In this section, we illustrate the VeriDevOps methodology by se-
lecting several tools for requirements specification, verification,
and monitoring as depicted in Figure 3. We first describe the func-
tionality of these tools; then we exemplify their applicability with
concrete examples.

4.1 A Selection of Tools for the VeriDevOps
Methodology

4.1.1 NALABS: Detecting Bad Smells in Security Requirements. Nat-
ural language is often used to express requirements and test specifi-
cations in large-scale embedded system development. However, in
such contexts, requirement review is often done manually, which
can be a time-consuming and error-prone process. Poor-quality
specifications can have costly consequences on the requirement en-
gineering process, particularly if feedback loops are lengthy, result-
ing in artifacts that are difficult to maintain, understand, and trans-
fer to other system variants. To address this issue, NALABS [14]
(NAtural LAnguage Bad Smells) tool utilizes the concept of "smells"
to identify bad specifications related to safety and security require-
ments. By utilizing NALABS, DevOps engineers can improve the
quality and maintainability of their natural language specifications,
resulting in more efficient and effective requirement engineering
processes. In the development process, the quality of safety and se-
curity requirements expressed in text form is critical. Poor-quality
requirements can result in hard-to-detect errors or those identified
too late. NALABS can assist engineers in writing high-quality spec-
ifications, ultimately improving the overall quality of the security
requirements.

4.1.2 ARQAN: Automated Security Requirements Analysis with NLP.
ARQAN! is the security analysis tool based on the modern NLP
methods such as Large Natural Language Models, Transfer Learn-
ing and BERT as exemplified in [7]. The main tasks for ARQAN are
to extract security requirements from texts in Natural Language,
classify the requirements as well as semantic search for related rec-
ommendations in Security Technology Implementation Guidelines
(STIG) database.

The ARQAN prototype is available at https://arqan.softeam-rd.eu:8501/

VeriDevOps Software Methodology: Security Verification and Validation for DevOps Practices

Security Requirements
or GitHub Issues

Security Standards,
Vulnerability DBs,
Recommendations

NALABS

Structured
Security Requirements

Metamorphic EARS Rec D-::::en da Monitoring
Relations Requirements Rules

tions

MetaTester ‘ PyLC ‘ ‘RQCODE‘ ‘ MMT ‘ ‘ EARLY ‘
| | e —

Alerts,
Countermeasures

Figure 3: Selected tools to exemplify the VeriDevOps method-
ology

4.1.3 RQCODE: Requirements as Code. RQCODE? is a novel ap-
proach that applies the Seamless Object-Oriented Requirements
(SOOR) paradigm to be implemented in Java language. The RQ-
CODE approach represents requirements as classes that contain
various representations, including the textual one: requirements de-
scription in natural language as well as methods for verifying these
requirements, such as an acceptance test. This allows for direct
traceability between a requirement and its implementation that can
be checked at any time through the execution of the included test.
Moreover, object-oriented implementation supports easy reuse of
requirements and tests by the standard means, such as inheritance,
provided by the language, e.g., Java. One requirement can be an
extension or a specialisation of another one. Each requirement can
be considered as a template for requirements of a similar kind, e.g.
by initialising a requirement class with different parameters.
RQCODE includes specific packages for the baseline concepts
and temporal patterns since they represent the foundation for writ-
ing requirements using well-known templates. For experimentation
purposes, we prototyped examples for Windows 10 and Ubuntu 18
related Security Technology Implementation Guides (STIG) [12].

4.1.4 MMT:. Montimage Monitoring Tool (MMT) is a monitoring
solution that allows capturing and analyzing network traffic. It can
be used to understand how the network is used (protocols, appli-
cations, and users) and detect potential security and performance
incidents. The MMT tool has a plugin architecture that allows its
easy extension in order to target new protocols and, more generally,
any input data to be analyzed. In the context of VeriDevOps, MMT
will be extended to analyse system and application logs provided by
industrial case studies, to check a set of predefined security proper-
ties to detect security incidents. It will also integrate an anomaly

2RQCODE is freely available at https:/github.com/VeriDevOps/RQCODE

ARES’23, August 29 - September 01, 2023, Benevento, Italy

detection mechanism that relies on ML/AI algorithms to identify
potential drifts and deviations from a learned baseline. A root cause
analysis to determine the origins of such security incidents and
anomalies will allow us to better select the countermeasure that
can be applied among a set of potential resilience catalogues.

4.1.5 EARLY. [1, 2] is a tool for real-time detection of ongoing
security attacks against a target by monitoring the incoming and
outgoing traffic at the packet level. The tool identifies network flows
(related sequences of network packets) in the network traffic and
classifies them as normal or malicious. The innovation in EARLY
comes from the fact that the tool can detect network attacks in real-
time, by inspecting only a portion of the packets, before the attack
completes. This allows to deploy countermeasures effectively and
efficiently. The engine of the monitoring tool uses neural network
models pre-trained for recognizing security attacks in different
application domains. The EARLY can be used either to detect known
attacks or anomalies in the network traffic. The tool uses a library
of pre-trained neural network models corresponding to different
application domains.

4.1.6 Meta-Localizer. is an integrated tool-supported approach
consisting of two modules. The first one, MetaTester [17], is used for
testing systems with a non-explicit test oracle. Metamorphic testing
(MT) was introduced as a solution to test systems without explicit
specifications of the test oracle. In MT, the behavioral or functional
properties of the system are defined by posing a hypothesis about
using generic relations known as metamorphic relations (MRs)
between different sets of inputs and their expected outputs. An MR
is composed of two parts: an input relation and an output relation.
An input relation represents the relation between the inputs of
the source and follow-up test cases, whereas an output relation
represents the relation between the expected outputs of the source
and follow-up test cases. A source test case is the first set of tests
performed using seed inputs. The seed inputs are transformed into
morphed inputs. The follow-up test cases are performed using these
morphed inputs. In addition, an implication between the outputs of
the source and follow-up test cases is needed to specify the impact
of input transformations on their corresponding outputs. To that
extent, the tool uses metamorphic relations (MRs) extracted from
security requirements and uses them for assigning test verdicts.
The second module, the Localizer, uses the passed and failed tests
produced by the MetaTester and identifies the piece of code of the
system under test that is more probable to be the source of the
vulnerability.

4.1.7 PyLC [4]: is a method developed for converting PLC (Pro-
grammable Logic Controller) programs into Python code. This
method incorporates three separate unit-testing validation mech-
anisms to verify the translation process. Our evaluation of this
method, applied to various industrial PLC programs, demonstrates
its effectiveness and efficiency. The ultimate goal is to use PyLC
to produce search-based test cases for PLC programs to be utilized
in regression testing during the development of industrial control
systems.

4.1.8 Additional Tools. The VeriDevOps methodology utilizes a
diverse set of tools for assuring the security and quality of software.

ARES’23, August 29 - September 01, 2023, Benevento, Italy

The system should be protected from brute force attack on ssh #7199

agilebotanist opened this issue 2 weeks ago - 3 comments

e agilebotanist commented 2 weeks ago
No description provided

@
53 i-\ agilebotanist added the {festingh |abel 2 weeks ago

) github-actions | bt | added the (Empep label 2 weeks ago

github-actions | bot | commented 2 weeks ago

Recommended STIG:

& W-218313

& The Ubuntu operating sy

oA

» W-278310

o The Ubuntu ocperating system must immediately terminate a

period of inactivity.

m must use SSH to protect the confidentiality and integrity of transmitted infarmation
unless othenwise protected by alternative physical safeguards, such as, at a minimum, a Protected Distribution System

o The Ubuntu operating system must enforce S5H2 for network access to all accounts.

netwark connections associated with S5H traffic after a

Member

Milestone

Mo milestene

Motifications

Ru
‘You're receiving notificat

thread

1 participant

B Lock conversation

42 Pin 'ss.e@

Figure 4: Automating Security Requirements Analysis with ARQAN

For a complete list of tools, we refer the reader to the report on the
architecture and implementation evaluation available 3.

4.2 TIllustrative Examples

In modern software development practices, requirements are spec-
ified in natural language. In DevOps practice, requirements are
registered as feature request issues in an issue tracking system. The
developer’s team analyses the feature requests and schedules them
in a backlog - a detailed list of tasks, often with an assignment to a
concrete responsible developer.

However, manual analysis of requirements may lead to misin-
terpretation or an assignment to the wrong person or team. The
security requirements that come from standards such as IEC 62443,
NIST SP 800-53 or even OWASP Application Security Verification
Standard may be very generic. This leaves developers without clear
guidelines for implementing and verifying security measures. This
may lead to inadequate security protection implemented in the IT
system.

Consider the following generic requirement: The system should
be protected from brute force attack on ssh. The developer has to
correctly interpret this requirement, implement the protection mea-
sures, and verify that the implementation satisfies this requirement.

3https://www.veridevops.eu/veridevops/download/deliverables

This may be quite complicated since the requirement is very general.
VeriDevOps proposes to integrate the automated recommending
tools that would analyse the requirement for quality (i.e., NALABS)
and possibly provide guidelines (i.e., ARQAN) from the existing
repository, such as Security Technology Implementation Guidelines
(STIG).

The following concrete recommendation was detected with the
semantic search by ARQAN for the Ubuntu operating system:

e V-219313. The Ubuntu operating system must use SSH to
protect the confidentiality and integrity of transmitted infor-
mation unless otherwise protected by alternative physical safe-
guards, such as, at a minimum, a Protected Distribution System
(PDS).

e V-219308. The Ubuntu operating system must enforce SSHv2
for network access to all accounts.

e V-219310. The Ubuntu operating system must immediately
terminate all network connections associated with SSH traffic
after a period of inactivity.

o V-219306. The Ubuntu operating system must monitor remote
access methods.

o V-219265. The Ubuntu operating system must generate audit
records for successful/unsuccessful uses of the chsh command.

VeriDevOps suggests integrating these methods in the Contin-
uous Integration and Deployment (CI/CD) pipelines so that its

VeriDevOps Software Methodology: Security Verification and Validation for DevOps Practices

Text NW

Components shall provide, or integrate into a system |23
that provides, the capability to enforce password
minimum and maximum lifetime restrictions for all
users,

ARES’23, August 29 - September 01, 2023, Benevento, Italy

NV Optionali Subjectivi NR NR2 Weaknes:

ra

The authenticators on which the component rely 12
shall be protected via hardware mechanisms,

The wireless access management requirements are 15
network-component-specific and be located as
requirements for network-components

For components that utilize password-based 32
authentication, those components shall provide or
integrate into a system that provides the capability
to enforce configurable password strength according
to internationally recognized and proven password
guidelines.

Components shall provide the capability to support |27
the management of all accounts directly or
integrated into a system that manages accounts
according to IEC 62443-3-3 5R 1.3,

system level identification and authentication

accordance with applicable security policies and 12
procedures. This capability be provided
locally by the component or by integration into a 14 0

system.

Identity and authenticate all users (humans, software |12
processes and devices), prior to

allowing them access to the system or assets. 8

Figure 5: Examples of security requirements handled by NALABS. Detected findings are highlighted and categorized according

to their metrics.

requirements are correctly classified as related to security as soon
as possible. This would help to assign an appropriate response and
provide relevant guidelines. For example, in Figure 4, a security
requirement was added to the GitHub issue tracker. The system
has correctly classified this requirement as related to security and
added the corresponding label. Next, a set of relevant Security Im-
plementation Guides (STIGs) was automatically provided with the
semantic search method. The recommendation provides practical
instructions on testing the security requirement and fixing possible
issues. The system also browses the repository of the implemented
RQCODE requirements tests for the identified STIGS. It is possible
to import the existing RQCODESs to the own repository or to create
a feature request for the necessary but missing STIG.

In addition, the same requirement for SSH brute force protection
can be enforced by deploying and configuring MMT and EARLY
for detecting anomalies when the SSH service is accessed, as will
be discussed later.

NALABS focuses on utilizing bad smells to identify specification
quality defects in industrial settings. NALABS interface (as shown
in Figure 6) examines the quality of natural language specifications,
the creation of smell metrics, and the automated measurement
of these smells using specific dictionaries. Key aspects explored
include vagueness, referenceability, optionality, subjectivity, weak-
ness, readability, and complexity metrics. These metrics provide
insights into issues such as understanding requirements, nesting
and referencing in documents, use of optional words, presence of
subjective language, the introduction of uncertainty, readability
scores, and the size and complexity of requirements.

Hello <name> user | Thisis NALABS talking.

Maximunm Allowed Subjectivity Score

0.00
I will allow a small amount of subjectivity.

Please provide files with requirements to scan:

@@ DrEamddrp files here Browse files

Lim le

simple_requirement_examples.xlsx

D simple_requirement_examples.json 0.8K2

simple_requirement_examples.xisx

You want me to process simple_requirement_examples.json
which is of type application/json

D Requiremet

Figure 6: Automating Security Requirements Bad Smells De-
tection with NALABS quality checker.

We show in Figure 5 several security requirements. For example,
two of the requirements include optionality smells (e.g., the use of
the "can" and "may" words).

The MetaTester tool is used to generate metamorphic tests and
verify their conformance with the metamorphic relations. For ex-
ample, for the security requirement extracted previously: "System
should be protected from brute force attack on SSH", we can define
a metamorphic relation, such as "Authenticating with wrong cre-
dentials should result in the same response.” In this case, tests are
generated for different combinations of username and password.
Instead of checking the output of each test, we check that all the
outputs are equal. In case the latter condition does not hold, it

ARES’23, August 29 - September 01, 2023, Benevento, Italy

Waiting for Early tool to start at @.0.0.0:9400 ...
e

m Pestination IP

192.168.10.15 31. B Normal

Figure 7: EARLY tool screen caption when detecting a brute
force attack.

means that a successful authentication has occurred. The MetaT-
ester has also been applied to Load Position System (LPS) module in
an industrial case study to test whether the markers of the load are
properly identified in the presence of environmental (e.g., water)
reflections. In this case, the metamorphic tests were generated and
verified with the following metamorphic relation: "The same correct
markers of the load should be correctly identified both in the absence
and in the presence of reflections from the environment". From the
execution of the tests, we were able to identify two classes of in-
correct classifications false positives — the system identified the
reflections as the real ones and false negatives — the system did not
identify any markers in the presence of reflections although the
former were present in the input. More details on the approach and
its results can be found in [17].

The same security requirement is used for monitoring the system
against SSH brute force attacks. Based on this requirement, the
monitor component of Early is configured to use the model trained
for SSH-related attacks, including the brute force attack. During
the monitoring process, whenever such an attack is detected, an
alarm is automatically triggered to deploy countermeasures, e.g.,
blocking of the remote host (as shown in Figure 7).

We show the combination of two techniques, EARS and PyLC,
for addressing the challenges of requirement formalization and
automated test generation. The EARS approach focuses on formal-
izing natural language requirements using a semi-structured syntax.
At the same time, PyLC is a framework that integrates Pynguin, a
search-based testing tool for Python, to generate test cases for PLC
programs automatically. Our results demonstrate the applicability
of EARS in formalizing security requirements and developing test
cases for PLC programs to find vulnerabilities. Furthermore, the
generated test cases are executed using CODESYS Test Manager,
ensuring consistency between the Python and original PLC envi-
ronments. We provide a snippet of the generated test cases based on
the EARS syntax in Figure 8. Finally, further improvements, such as
exploring alternative search-based algorithms and allocating larger
test generation budgets, are suggested to enhance test coverage and
mutation analysis, particularly for more extensive PLC programs.

5 RECOMMENDATIONS FOR PRACTITIONERS

Here are some recommendations that practitioners can use when
applying the VeriDevOps methodology for security verification,
automated testing, and monitoring in DevOps:

Enhancing DevOps Security Through Effective Management
of Security Requirements:

A2 rrea

EARS.RQ1.UniqueUserAccount [0.0]

= 1) EARS_RQ1_Unique_User_Account
Configuration parameters (0/0)
user

user_account I Variable: ‘ Device. Application. UniqueUserAccount.user_account(2)

Expected Output
= { EARS_RQ1_Non_Unique_User_Account

o, TestActon Extended Settings

A
Title: Juser_account Action: |writeVariable (TestManager.p,

value: [ss5

user
user_account

Expected Qutput

Figure 8: The generated test cases based on the EARS syntax
as shown in CODESYS IDE.

o Incorporate specifications for security requirements into the
DevOps process by using both semi-structured and struc-
tured formal methods. This will help to guarantee that se-
curity requirements are effectively handled. A variety of
VeriDevOps tools * are available that can facilitate this pro-
cess of expressing requirements.

o Ensure that the security requirements are sufficiently clear
and detailed to enable verification. For example, several
VeriDevops tools (e.g., [12, 14]) can be used to streamline the
requirement writing process, making it more consistent and
efficient, but also providing immediate feedback, aiding in
refining requirements.

Integrating Security Requirements Analysis and Verification
into the Entire DevOps Process:

e Use bad smells detectors (e.g., [14]), NLP and security re-
quirements patterns (e.g., [12]) to specify and analyze se-
curity requirements in short feedback loops. Ensure that
security requirements are specified clearly and unambigu-
ously regardless of the formalism used e.g., natural language,
semi-structured patterns, models.

e Use automated tools (e.g., ARQAN, RQCODE) to validate the
security models against security requirements.

Using Automated Tools to Generate and Select Security Tests:

o Integrate security testing into the DevOps pipeline. Several
tools for active prevention, such as PyLC[4], which have
applications ranging from security test generation to combi-
natorial security testing.

o Adopt different testing techniques, such as metamorphic
testing, for systems without an explicit oracle. In our VeriDe-
vOps approach, we proposed the use of MetaTester. [17]

Implementing security monitoring systems to detect and
respond to security threats:

e Monitor all critical components of the DevOps pipeline, in-
cluding code repositories, build servers, and deployment
environments.

e Use automated tools (e.g., EARLY [2]) to detect anomalies and
security attacks. Regularly review and update the security
monitoring system to ensure it remains effective.

“More details on these VeriDevOps tools can be found at
https://cordis.europa.eu/project/id/957212/results

VeriDevOps Software Methodology: Security Verification and Validation for DevOps Practices

6 CONCLUSIONS

In conclusion, security verification, automated testing, and moni-
toring are essential methods in the DevOps process for ensuring the
security and reliability of software applications. By incorporating
these methods into VeriDevOps methodology, teams can detect and
address security vulnerabilities at every stage, from planning and
development to testing and deployment.

Security verification enables teams to demonstrate the security of
an application through automated verification. Automated testing
allows for the quick and efficient detection of security vulnerabili-
ties, saving time and resources. And monitoring enables teams to
continuously track an application’s behaviour and performance,
ensuring that any potential security breaches are detected and
addressed in real-time.

By utilizing the VeriDevOps methodology, DevOps teams can
not only enhance the security of their applications but also improve
the overall quality and reliability of their software. It’s important
to remember that security is not a one-time event but a continuous
process that requires ongoing attention and investment. With the
integration of security verification, automated testing, and moni-
toring into the DevOps process, teams can ensure that their appli-
cations are secure and reliable, providing peace of mind for both
themselves and their users.

ACKNOWLEDGMENTS

This work has received funding from EU’s H2020 research and
innovation program under grant agreement No 957212.

REFERENCES

[1] Tanwir Ahmad and Dragos Truscan. 2022. Early GitHub Repository. https:

//github.com/VeriDevOps/Earlytool

Tanwir Ahmad, Dragos Truscan, Juri Vain, and Ivan Porres. 2021. Early Detection

of Network Attacks Using Deep Learning. In IEEE International Conference on

Software Testing, Verification and Validation Workshops (ICSWT). IEEE, Online.

https://doi.org/10.1109/ICSTW55395.2022.00020

[3] Matteo Avalle, Alfredo Pironti, and Riccardo Sisto. 2014. Formal verification of
security protocol implementations: a survey. Formal Aspects of Computing 26
(2014), 99-123.

[4] Mikael Ebrahimi Salari, Eduard Paul Enoiu, Wasif Afzal, and Cristina Seceleanu.
2023. PyLC: A Framework for Transforming and Validating PLC Software using

[2

[

ARES’23, August 29 - September 01, 2023, Benevento, Italy

Python and Pynguin Test Generator. In Proceedings of the 38th ACM/SIGAPP
Symposium on Applied Computing. 1476-1485.

Vahid Garousi and Frank Elberzhager. 2017. Test automation: not just for test
execution. IEEE Software 34, 2 (2017), 90-96.

Daniele Granata, Massimiliano Rak, and Giovanni Salzillo. 2022. MetaSEnD: A
Security Enabled Development Life Cycle Meta-Model. In Proceedings of the 17th
International Conference on Availability, Reliability and Security. 1-10.

Vladimir Ivanov, Andrey Sadovykh, Alexandr Naumchev, Alessandra Bagnato,
and Kirill Yakovlev. 2022. Extracting Software Requirements from Unstruc-
tured Documents. In Recent Trends in Analysis of Images, Social Networks and
Texts (Communications in Computer and Information Science), Evgeny Burnaev,
Dmitry I. Ignatov, Sergei Ivanov, Michael Khachay, Olessia Koltsova, Andrei
Kutuzov, Sergei O. Kuznetsov, Natalia Loukachevitch, Amedeo Napoli, Alexander
Panchenko, Panos M. Pardalos, Jari Saraméki, Andrey V. Savchenko, Evgenii
Tsymbalov, and Elena Tutubalina (Eds.). Springer International Publishing, Cham,
17-29. https://doi.org/10.1007/978-3-031-15168-2_2

Tomas Kulik, Brijesh Dongol, Peter Gorm Larsen, Hugo Daniel Macedo, Steve
Schneider, Peter WV Tran-Jergensen, and James Woodcock. 2022. A survey of
practical formal methods for security. Formal Aspects of Computing 34, 1 (2022),
1-39.

Leonardo Leite, Carla Rocha, Fabio Kon, Dejan Milojicic, and Paulo Meirelles.
2019. A survey of DevOps concepts and challenges. ACM Computing Surveys
(CSUR) 52, 6 (2019), 1-35.

M Mahalakshmi and Mukund Sundararajan. 2013. Traditional SDLC vs scrum
methodology—-a comparative study. International Journal of Emerging Technology

and Advanced Engineering 3, 6 (2013), 192-196.
Vaishnavi Mohan and Lotfi Ben Othmane. 2016. Secdevops: Is it a marketing

buzzword?-mapping research on security in devops. In 2016 11th international
conference on availability, reliability and security (ARES). IEEE, 542-547.

Ildar Nigmatullin, Andrey Sadovykh, Nan Messe, Sophie Ebersold, and Jean-
Michel Bruel. 2022. RQCODE - Towards Object-Oriented Requirements in the
Software Security Domain. In 2022 IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW). 2—6. https://doi.org/10.
1109/ICSTW55395.2022.00015 ISSN: 2159-4848.

Rick Rabiser, Sam Guinea, Michael Vierhauser, Luciano Baresi, and Paul Griin-
bacher. 2017. A comparison framework for runtime monitoring approaches.
Journal of Systems and Software 125 (2017), 309-321.

Kostadin Rajkovic and Eduard Enoiu. 2022. Nalabs: Detecting bad smells in natural
language requirements and test specifications. arXiv preprint arXiv:2202.05641
(2022).

Andrey Sadovykh, Gunnar Widforss, Dragos Truscan, Eduard Paul Enoiu, Wis-
sam Mallouli, Rosa Iglesias, Alessandra Bagnto, and Olga Hendel. 2021. VeriDe-
vOps: Automated Protection and Prevention to Meet Security Requirements in
DevOps. In 2021 Design, Automation Test in Europe Conference Exhibition (DATE).
1330-1333. https://doi.org/10.23919/DATE51398.2021.9474185 ISSN: 1558-1101.
Ina Schieferdecker, Juergen Grossmann, and Martin Schneider. 2012. Model-based
security testing. arXiv preprint arXiv:1202.6118 (2012).

Gaadha Sudheerbabu, Tanwir Ahmad, Filip Sebek, Dragos Truscan, Jiiri Vain, and
Ivan Porres. 2022. A Two-phase Metamorphic Approach for Testing Industrial
Control Systems. In Proceedings of IEEE International Conference on Emerging
Technologies and Factory Automation, ETFA 2022. IEEE, Stuttgart, Germany. https:
//doi.org/NA

https://github.com/VeriDevOps/Earlytool
https://github.com/VeriDevOps/Earlytool
https://doi.org/10.1109/ICSTW55395.2022.00020
https://doi.org/10.1007/978-3-031-15168-2_2
https://doi.org/10.1109/ICSTW55395.2022.00015
https://doi.org/10.1109/ICSTW55395.2022.00015
https://doi.org/10.23919/DATE51398.2021.9474185
https://doi.org/NA
https://doi.org/NA

	Abstract
	1 Introduction
	2 Related Work
	3 VeriDevOps Methodology
	3.1 VeriDevOps Architecture

	4 An Instantiation of the VeriDevOps Methodology
	4.1 A Selection of Tools for the VeriDevOps Methodology
	4.2 Illustrative Examples

	5 Recommendations for Practitioners
	6 Conclusions
	Acknowledgments
	References

