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ABSTRACT
Artificial intelligence has been greatly improved nowadays,
providing innovative approaches in cybersecurity both on offensive
and defensive tactics. AI can be specifically utilized to automate and
conduct penetration testing, a task that is usually time-intensive,
involves high-costs, and requires cybersecurity professionals of
high expertise. In this research paper, we utilize an AI penetration
testing framework to validate, discover and analyze the techniques
that were used. To this end, we conducted a validation process in
a realistic environment and to collect the relevant datasets from
the execution of the cyberattacks. Finally, the behavior of the AI
penetration testing was analyzed in order to adapt and upgrade
further. Overall, the research paper provides contributions to
dataset generation and a methodology to understand the details of
the attack simulation.
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1 INTRODUCTION
Artificial Intelligence (AI) has made a great advancement nowadays
and more specifically Reinforcement Learning (RL) which has
been a leading method. In cybersecurity, RL and AI can play an
important role, both for offensive and defensive purposes [4].
Traditionally, penetration testing, is usually performed manually
[20]. For example, managing an exploitation database and reporting
vulnerabilities requires great effort [3]. Therefore, the need for
skilled individuals to perform manual tests is increasing, and it is
difficult to find suitable professionals [8]. Therefore, automated
penetration testing is becoming increasingly important [2, 5, 20].

Furthermore, new threats arise from Adversarial Machine
Learning (AML) in cybersecurity [6, 12]. AML regards the
design and execution of adversarial attacks that can disrupt
AI systems, leading to incorrect decisions and outcomes. The
convergence of AI and cybersecurity has the potential to spark
groundbreaking initiatives [15, 17, 18]. Other researchers have
also been investigating the usage of AI on offensive procedures
[1, 7]. As cybersecurity threats continue to evolve, it is necessary
to advance on the methodologies to defend against sophisticated
attacks. Traditional penetration testing, crucial for identifying
vulnerabilities, often requires extensive manual effort and expertise.

In this research, a testbed for extracting relevant datasets from
the cyberattacks is presented and an analysis of the effectiveness
of AI-powered attack methods in simulating realistic cyber threats.
The research explores the integration of RL. More specifically,
Shennina1. Shennina, as an automating host exploitation with AI,
was adapted to simulate cyberattacks on Metasploitable2, providing
a realistic environment for testing offensive tactics.

The primary objective was to identify and analyze the
capabilities of RL, as outlined in the AI4SIM, a component for
conducting simulation of advanced and AI-powered attacks. The
complete component, namely AI4SIM for simulating AI-powered
1https://github.com/mazen160/shennina
2https://github.com/rapid7/metasploitable3
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attacks, has been proposed from the AI4CYBER project [12]
and a complete architecture has been developed to evaluate its
functionality. The research focuses on the development of AI4SIM,
which revolves around creating an attack simulation solution
capable of generating advanced AI-powered attacks. By validating
Shennina, this research contributes to AI4SIM by providing results
that facilitate its integration into the unified platform. To achieve
this, the deployment was equipped with Shennina and distributed
agents to mimic real-world attack scenarios and collect datasets.
The primary objective of this task is to identify the types of
advanced attacks that can be executed using Shennina.

1.1 Contribution
The research paper makes advancements on log, data, and network
collection as well as providing an aggregation methodology that
is focused on matching the cyberattacks to the MITRE Tactics,
Techniques, and Procedures (TTPs). By doing so, the paper
addresses the need for researchers to access datasets for further
analysis and development of cybersecurity solutions. The key
contributions of this research paper are as follows:

(1) The research contributes to the results on the development
of the AI4SIM and extracts the benefits for enabling
the advanced AI-powered cyberattacks in a realistic
environment.

(2) The paper provides information and results on the
validation and the effectiveness of the AI4SIM framework
by conducting simulations and analyzing the collected
datasets. Through this validation, the AI models are to be
adapted and further test the ability to create detection rules
that will accurately detect and analyze AI-powered attacks.
Furthermore, the research paper provides a methodology
for validating AI-powered cyberattacks and cyberattack
simulations.

(3) Finally, the dataset extraction from the cyberattacks that are
being executed can be further exploited.

Overall, the research paper contributes to the advancement
of cybersecurity research by providing a practical solution for
simulating and analyzing AI-powered cyberattacks. It offers
valuable insights into the rule-creation for the detection and
mitigation of such threats, thereby enhancing the resilience of
critical systems against evolving cyber threats.

1.2 Related work
The main role of AI in cybersecurity has predominantly been
focused on the development of new attack methodologies. Yamin
et al., 2021 presented a comparative analysis between classical
cyberattacks and those powered by AI [22]. They highlight three
main types of AI-powered cyberattacks: data misclassification,
synthetic data generation, and data analysis.

In another work [16], Nakas et al., developed an AI-powered
attack generator that leverages Generative Adversarial Networks
(GANs) to fuzz and target the Packet Forwarding Control Protocol
(PFCP) in 5G Core networks. Adversarial attacks, leveraging GANs,
consist of two networks trained simultaneously for generation and
discrimination, have been extensively used in cybersecurity, notably

for data generation without explicitly modeling probability density
functions [23].

The application of AI in penetration testing, can contribute to
the preparation of the defenses of computer networks. Regular
penetration testing involves four phases: planning and preparation,
detection and penetration, post-exploitation and data exfiltration,
and reporting and cleanup [19]. Automated penetration testing,
integrating AI techniques like RL, has shown promise. For
example, a project explored the applicability of RL in automating
penetration testing, using a fast, lightweight, open-source network
attack simulator to train and test autonomous agents [11]. The
research specifically presents the effectiveness of RL, including
Q-learning [21], in finding valid attack paths across different
network topologies.

In another research, Happe and Cito, investigated the use of
Large Language Models (LLMs) to enhance penetration testing
[10]. Their research explores scenarios involving high-level task
planning and low-level tasks including vulnerability enumeration
and demonstrating the potential usage of AI in penetration testing.
Similarly, Ghanem and Chen [9] proposed an AI-based penetration
testing system. In addition, Kaloev and Krastev [13] presented
that constrained exploration in RL training accelerates learning,
improving the performance of the penetration testing. Finally,
Maeda and Mimura [14] integrated deep RL on the Empire3,
a post-exploitation framework, to automate post-exploitation
activities.

Thework distinguishes itself from other approaches by providing
an extensive validation of AI-powered penetration testing and
the creation of a realistic testbed for extracting attack datasets.
Furthermore, MITRE ATT&CK was used as a structured framework
to analyze the behavior of the AI-powered cyberattacks and identify
the tactics that were executed.

2 METHODOLOGY
This section outlines the validation process for the attack and
detection architecture, aimed at validating both the Shennina
framework and the architecture itself, which should be capable of
detecting attacks attempted on the target.

2.1 Testbed Architecture
The architecture of the testbed is presented in Figure 1. There are
two key components which play pivotal roles on the architecture:
Shennina, as the AI-powered cyberattack tool, and Metasploitable
3 as a virtual environment intentionally deployed that contain
vulnerabilities.

Shennina is being configured to autonomously execute a
variety of cyberattacks within the controlled environment. The
cyberattacks encompass a range of tactics, including but not
limited to buffer overflow exploits, SQL injection, and remote code
execution. The dynamic nature of the AI algorithms allows the
adaptation of the attack strategies based on the responses received
from the target system, making its behavior more sophisticated
and challenging.

During the simulation, extensive logging mechanisms are
employed to capture detailed information about the attack
3https://github.com/EmpireProject/Empire
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Figure 1: Testbed Architecture and Methodology Flow
Diagram.

payloads, commands executed, system responses, and any network
traffic generated during the engagements. This comprehensive
logging infrastructure serves as the primary source of data
for subsequent analysis and validation. Additionally, network
traffic monitoring tools are utilized to capture and analyze the
data packets exchanged between Shennina and Metasploitable,
providing insights into the communication patterns and potential
indicators of compromise. Metasploitable is a deliberately
vulnerable virtual machine designed with a plethora of service
(Table 1) security vulnerabilities, serving as a prime target for
exploit testing with Metasploit Framework4.

The list of running services of Metasploitable are presented in
Table 1 providing details on the affected services, corresponding
ports, and protocols. For instance, the first row indicates the service
GlassFish5, which operates on ports 4848, 8080, and 8181, utilizing
the Hypertext Transfer Protocol (HTTP) protocol.

The collected data as presented in Table 1 can be used to
contextualize and categorize the observed attack behaviors. The
data are compared against the MITRE ATT&CK framework by
matching the observed behaviors with known TTPs documented
in the MITRE framework. This process helps in understanding
the operation of the cyberattacks which are executed and
understand the behavior of the AI cyberattacks regarding the
target environment.

The analysis of Shennina and the attack behavior, is processed
in this research towards the validation against MITRE TTPs
and Suricata signatures. This provides valuable information
and results regarding the effectiveness and evasiveness of
AI-powered cyberattacks. The process facilitates the refinement
and optimization of the approach to develop more robust and
sophisticated cyber defense mechanisms. Furthermore, the
datasets which are generated during the testing phase serve as
4https://github.com/rapid7/metasploit-framework
5https://github.com/eclipse-ee4j/glassfish

Table 1: Overview of Running Services on Metasploitable 3

Service Port Protocol
GlassFish 4848 HTTP

8080 HTTP
8181 HTTPS

Apache Struts 8282 HTTP
Tomcat 8282 HTTP
Jenkins 8484 HTTP
IIS - FTP 21 FTP
IIS - HTTP 80 HTTP
psexec 445 SMB

139 NteBIOS
SSH 22 SSH
WinRM 5985 HTTPS
chinese caidao 80 HTTP
ManageEngine 8020 HTTP
ElasticSearch 9200 HTTP
Apache Axis2 8282 HTTP
WebDAV 8585 HTTP
SNMP 161 UDP
MySQL 3306 TCP
JMX 1617 TCP
Wordpress 8585 HTTP
Remote Desktop 3389 RDP
PHPMyAdmin 8585 HTTP
Ruby on Rails 3000 HTTP

valuable resources for training and evaluating AI-based detection
mechanisms.

2.2 Shennina
Shennina is an AI-powered penetration testing framework that
offers various functionalities, including network and service
enumeration, vulnerability assessment, attack path generation,
and integration with the Metasploit Framework. Shennina, was
developed in Python and was built upon a previous implementation,
namely DeepExploit6.

The AI model from Shennina is trained using a RL approach,
which involves interacting with the environment and taking actions
based on the current state. The model is trained using a dataset
of various cyberattacks, including buffer overflow exploits, SQL
injection, and remote code execution. The RL algorithm updates the
agent’s policy based on the rewards received from the environment,
aiming to maximize the cumulative reward over time. The model
is evaluated using metrics such as accuracy, precision, and recall,
ensuring its effectiveness in detecting and exploiting vulnerabilities.

The simulation initiates its operation by conducting a thorough
scan of the target network to pinpoint open ports and active
services that might be susceptible to exploitation. Utilizing a
pre-existing dataset, Shennina identifies vulnerabilities associated
with the discovered ports or services, diligently reporting any
findings. In comparison to DeepExploit, Shennina selects reliable
remote exploits from the Metasploit Framework, eliminating
false positives and ensuring automated remote exploitation.
Therefore, the speed is optimized in the training phase, adding

6https://github.com/13o-bbr-bbq/machine_learning_security/tree/master/DeepExploit
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post-exploitation capabilities, suggesting potential local root
exploits, implementing data exfiltration, and improving exploiting
clustering for more relevant exploits. In addition, Shennina includes
ransomware simulation, deception detection, and confirmation
of target exploitation. As a result, Shennina generates an attack
path and generates a file in *.h5 format upon detecting the
potential vulnerabilities. The generated attack path optimizes
the penetration testing process, leading to efficient access to
administrative privileges. The tool then exploits identified
vulnerabilities according to the generated path. To conclude the
procedure, Shennina generates a detailed exploitation report in
Markdown format, documenting key information such as target IP,
outcomes, exploit details, and utilized payloads, as an output of the
test results.

In exploitation mode, Shennina utilizes gathered data to
determine the optimal exploit against the target and initiates
post-exploitation actions. Additionally, Shennina offers heuristic
mode for automated broad analysis, identifying potential security
vulnerabilities based on predefined principles and rules without
specific tests for each threat.

2.3 Validation Process of Attack and Detection
Architecture

The validation proceeded in the following three phases:
(1) Setup and Training of Shennina. In this initial phase,

Shennina was installed and configured. Debugging was
performed to address any issues and ensure proper
functionality. Additionally, the target machine for the
subsequent phases, Metasploitable, was selected due to its
widespread use and well-known vulnerabilities. Shennina
was then trained using Metasploitable as target.

(2) Testbed Deployment. The second phase involved describing
the architecture implemented for evaluating the tool. Two
Intrusion Detection Systems (IDS), Suricata7 and Wazuh8,
were employed to monitor network traffic and verify the
occurrence of attacks. This setup aimed to simulate a real
attack and defense scenario, providing detailed traffic logs
capturing all attempted exploits on the target machine.

(3) Observations and Considerations. In the final phase, the
generated files were analyzed. Initially, the focus was on
evaluating the effectiveness of the tool simulating the
attacks. Subsequently, a detailed examination of the attacks
performed was conducted to gain insights into the tactics
and techniques employed, identifying the most prevalent
ones.

3 VALIDATION RESULTS
The results were extracted and analyzed using a combination of
manual testing and automated tools. The criteria for validating
reported attacks include accurate fingerprinting of the target
system, verification of authentication mechanisms, detection of
potential vulnerabilities, development of an attack tree, verification
of post-exploitation activities, and generation of a detailed report.

7https://github.com/OISF/suricata
8https://github.com/wazuh/wazuh

The validation and analysis resulted into the data collected
by Suricata to identify relevant traffic, focusing on alerts
with the highest severity levels. Among the alerts, one of
the most significant findings was the detection of a stack
overflow vulnerability, indicating potential exploitation actions.
Suricata monitors the packets exchanged between Shennina and
Metasploitable throughout the attacks. Whenever a packet exhibits
a suspicious pattern, Suricata assigns it a label based on one of its
predefined rules. These alerts are aggregated and stored in the
eve.json file, which is then transmitted to the Wazuh.

Table 2: Alerts Detected by Suricata (Ports 22 and 23)

Suricata.rule Suricata.description MITRE.id
ET SCAN Potential SSH
Scan OUTBOUND

Outbound SSH scan
detected

Remote System
Discovery (T1018)

SURICATA Applayer
Mismatch protocol both
directions

Protocol mismatch
detected in SSH traffic

Data Obfuscation
(T1001)

ET SCAN Potential SSH
Scan

Potential SSH scan
detected

Remote System
Discovery (T1018)

ET SCAN Non-Allowed
Host Tried to Connect
to MySQL Server

Unauthorized host
tried to connect to
MySQL server

Data from Local
System (T1005)

ET SCAN Potential SSH
Scan OUTBOUND

Outbound SSH scan
detected

Remote System
Discovery (T1018)

ET SCAN Suspicious
inbound to mySQL port
3306

Suspicious inbound
traffic to MySQL port

Data from Local
System (T1005)

SURICATA STREAM
3way handshake
excessive different
SYNs

Network traffic
showing excessive
different SYN packets
during the 3-way
handshake process

Network Service
Scanning (T1046)

As presented in Table 3 the most frequent network protocols
involved IPv4, followed by Address Resolution Protocol (ARP) and
IPv6 protocols as well. The distribution of protocols reveals the
adversary nature of Shennina in various levels.

Table 3: Table of Network Protocols Distribution During the
AI-Powered Cyberattacks

Protocol Percentage of packets

IPv6 0.2%
IPv4 98.2%
ARP 1.6%
TCP 97.1%
UDP 1.1%

As presented in Table 3 the distribution of network protocols
is focusing mostly on specific protocols. The extracted datasets
provide the observed attack vectors on the specific testbed setup and
experiment analysis. It provides insights into the types of network
protocols and their frequency distribution overall.

• IPv4 (Internet Protocol version 4): IPv4 constituted the
majority of network traffic, representing 98.2% of the
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total packets. IPv4 is the fourth version of the Internet
Protocol and remains the most widely used protocol for
communication over the Internet.

• IPv6 (Internet Protocol version 6): This protocol presented
lower usage in the rate of 0.2% of the total packets observed
in the network traffic. IPv6 is the most recent version of the
Internet Protocol, designed to replace IPv4 and accommodate
the growing number of devices connected to the Internet by
providing a larger address space.

• ARP (Address Resolution Protocol): ARP accounted for 1.6%
of the observed packets. ARP is usually used to map IP
addresses to physical Media Access Control(MAC) addresses
on a local network.

Within the IPv4 protocol, TCP packets are the majority,
comprising the majority of traffic, followed by the UDP (Table 3).

Table 3 provides a breakdown of the distribution of network
transport protocols observed in the data. The first column of the
table lists the types of network protocols observed in the network
traffic data. In this case, there are two protocols listed: Transmission
Control Protocol (TCP) and User Datagram Protocol (UDP). The
second column of the table indicates the proportion of network
packets that correspond to each transport protocol, expressed as
a percentage of the total. For example, 97.1% of the packets in the
dataset are TCP packets, while UDP packets account for only 1.1%
of the total packets.

MySQL HTTP FTPSSH
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Figure 2: Distribution Percentage of Network Traffic Across
Network Protocols

Shennina triggers the calls to the above protocols during the
system infiltration. Among these protocols, Secure Shell (SSH)
serves as a common target for unauthorized access attempts.
Shennina tries to establish SSH connections to Metasploitable, in
order to gain remote access and execute commands on the system.
This action initiates SSH traffic, which is monitored by Suricata
and Wazuh.

Table 2 summarizes alerts from Suricata, focusing on network
traffic through port 22, used for SSH. Alerts categorize activities
like outbound SSH scans, protocol mismatches, reconnaissance
attempts, and unauthorized connections to MySQL (port 3306).

Most of the cyberattacks targeted the HTTP service. By sending
HTTP requests to vulnerable web servers, Shennina seeks to
exploit weaknesses such as injection flaws, misconfigurations, or

authentication bypass vulnerabilities. Similarly, Shennina engage
with the File Transfer Protocol (FTP), attempting to transfer files
or gain unauthorized access to the system’s file system. FTP traffic
is monitored for signs of malicious activity, such as unauthorized
file transfers or brute-force login attempts.

The investigation extended to analyzing MITRE events and
tactics recorded during the testbed period (Table 2 and Table 4).
Focus was placed on frequency and distribution of events.

Password guessing and SSH techniques emerged as the most
frequent among the captured logs, indicating potential avenues for
exploitation. The training phase was divided into two equal time
lapses to assess the frequency of attacks. Results indicated that
Shennina demonstrated an increase in attack frequency over time,
suggesting improvement in exploitation skills during the training
phase. Similar observations were made regarding the frequency
of Suricata alerts, with approximately 40% of exploits occurring
in the first half of the time-lapse. Further analysis highlighted a
slight increase in alerts during the second half, indicating a dynamic
threat landscape.

Suricata and Wazuh were able to capture the suspicious
activities including potential SSH scans, exploitation attempts
targeting specific Common Vulnerabilities and Exposures (CVE),
including CVE-2016-10174, CVE-2018-19276, CVE-2019-12725,
CVE-2022-22947, and unauthorized access attempts to critical
services like MySQL. Alerts also cover HTTP protocol violations,
shell command execution via HTTP requests, and suspicious
patterns in network traffic, such as clear-text passwords in HTTP
requests.

The results as presented in Table 4 offers a comprehensive
analysis of the tactics which were executed. Each row in the table
corresponds to the MITRE tactics, such as Initial Access, Execution,
Persistence, etc. Within each tactic, several associated techniques
are listed, along with a brief description of each technique’s nature.
Additionally, the table indicates the effectiveness of Shenina
rules in detecting these techniques, along with the frequency of
observed instances within the Shenina framework. This structured
presentation provides cybersecurity professionals with valuable
insights into the capabilities and generates traffic, signatures
which can be used to improve detection rules, identify and mitigate
potential cyber threats across different stages of an attack lifecycle.

Both Suricata and Wazuh detected the executed cyberattacks,
suggesting consistency and supplementary data between the two
in the threat detection capabilities. However, questions arose
regarding potential undetected attacks by Shennina or overlapping
detection by both IDS. Further validation is required to ascertain
the accuracy and effectiveness of the tool.

Table 4 demonstrates how the Shenina framework aligns with
MITRE’s cybersecurity TTPs. Organized by tactic, it outlines
specific techniques, their descriptions, corresponding Shenina
rules, and their effectiveness. This alignment offers insights into
Shenina’s ability to detect threats, helping prioritize response
efforts and refine detection capabilities. The frequency and type
of the observed TTPs, contribute in assessing the attack vectors
employed by the AI and the generated datasets can contribute to
enhancing the defenses. Towards this direction, for improving the
overall TTPs that are employed regular testing and rule refinement
based on MITRE TTPs is very important.
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Table 4: Distribution of Executed MITRE TTPs from the Macthing of Suricata Alerts to MITRE

*Counter: Number of relevant events triggered by the SIEM and Suricata
MITRE.id MITRE.tactic Coverage and MITRE.description Rule.level Counter*

Initial Access Covered by T1068, T1068, T1016

T1190 Exploit Public-Facing Application Exploits targeting public-facing applications 12 16
T1068 Exploitation for Privilege Escalation Various exploits targeting vulnerabilities for privilege escalation 15 7
T1016 Discovery Detection of general discovery activities 9 1

Execution Covered by T1106, T1203, T1204, T1059

T1106 Execution through API API-based execution attempts 7 9
T1203 Exploitation for Client Execution Exploits targeting client-side execution vulnerabilities 10 4
T1204 User Execution User execution activities 1 1
T1059 Command and Scripting Interpreter Scripting-related security threats 10 2

Persistence Covered by T1074, T1071.001, T1090, T1092, T1094

T1074 Data Staged Suspicious data staging activities on networked systems 7 10
T1071.001 Application Layer Protocol Protocol anomalies at the application layer 13 1
T1090 Connection Proxy Network activities involving connection proxies 8 2
T1092 Network Boundary Bridging Activities bridging network boundaries 4 1
T1094 Protocol Command Decode Protocol command decoding anomalies 10 1

Privilege Escalation Covered by T1068, T1106, T1020, T1018

T1018 Remote System Discovery Remote system discovery attempts 12 2

Defense Evasion Covered by T1005, T1045

T1005 Data from Local System Sensitive data transmitted over HTTP and suspicious network activities related to database servers 12 11
T1045 Obfuscated Files or Information:

Software Packing
Attempts to obfuscate files or information using software packing techniques 5 1

Credential Access Covered by T1074, T1040, T1132, T1043, T1078

T1040 Network Sniffing Network sniffing activities, including potential password exposure 8 7
T1132 Data Encoding Data encoding activities, including shell command execution attempts 3 3
T1043 Commonly Used Port Activities related to commonly used ports in security incidents 6 1
T1078 Default Credentials Default credential usage 8 1

Discovery Covered by T1046, T1069.001, T1016, T1018

T1046 Network Service Scanning Network scanning activities targeting various services 8 6
T1069.001 Operating System Discovery Network scans aimed at identifying operating systems 4 1

Lateral Movement Covered by T1046, T1105, T1092, T1133

T1105 Remote File Copy Unauthorized file copying activities from remote systems 12 2
T1133 External Remote Services External remote service connections 9 2

Collection Covered by T1005, T1074, T1213, T1094

T1213 Data from Information Repositories Attempts to gather information from system repositories 6 4

Command and Control Covered by T1041, T1090, T1505, T1046

T1041 Exfiltration Over C2C Channel Attempts to hide or obscure data transmission over the network 10 7
T1505 Web Shell Web shell activities 1 1
T1046 Service Scanning Network scanning activities targeting specific services 8 1

Exfiltration Covered by T1041, T1005

Impact Covered by T1068, T1001, T1132, T1016

T1001 Data Obfuscation Attempts to hide or obscure data transmission over the network 10 7

Table 4 provides in details the rule coverage for MITRE tactics
and techniques, with counts indicating technique frequency.
Validation revealed reconnaissance instances, such as detecting
web server errors from the same source IP, emphasizing the need
to enhance the defenses against such attacks. The exploitation
attempts are relevant mostly to the public-facing applications,
like SSH and web servers. Moreover, credential-based attacks,
such as SSH brute force attempts, indicate attack vectors executed
exploiting the authentication weaknesses, highlighting the
importance of robust protocols and password policies. Finally, the
behavior of the cyberattacks revealed TTPs relevant to privilege

escalation and defense evasion tactics, including sudo executions
among others.

4 CONCLUSIONS
In this research paper, we presented the development and
architecture of the AI4SIM framework, responsible for simulating
advanced AI-powered cyberattacks. Towards this direction,
Shennina was validated and the techniques it utilized were
extracted as part of the research effort. This process involved
assessing its effectiveness in generating AI-powered attacks
for simulation purposes within the AI4SIM framework. The
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comprehensive analysis of the Shenina cybersecurity framework
in alignment with the MITRE ATT&CK framework was also
presented. Through the examination of the coverage across
various MITRE tactics and techniques, this research provides
information on the effectiveness and behaviour of the AI-powered
offensive tactics that are utilized. By collecting data and extracting
information on the observed instance frequencies, the research
provided the attack distribution of the Shennina. As a conclusion it
should be noted that the approach provided interesting datasets,
but the attack vectors are still rather limited, specifically targeting
mainly SSH, and HTTP services.

An important aspect deriving from this research was the
exploration and alignment of Shennina and in general the
signatures generated with the MITRE ATT&CK framework,
offering a granular understanding of the capabilities and
limitations. By quantifying the coverage and effectiveness of
Shenina rules across different tactics and techniques, this research
has contributed to the advancement of knowledge in cybersecurity
defense strategies. Furthermore, the research paper has highlighted
the importance of regular testing and refinement of detection
rules based on MITRE TTPs, emphasizing the need for continuous
improvement and adaptation in the rapidly evolving threat
landscape.

Potential future avenues include the continuous development of
the AI4SIM framework to incorporate additional AI techniques
and attack scenarios, reflecting the evolving nature of cyber
threats. Additionally, an ongoing evaluation and refinement of
the effectiveness of the framework to configure and customize
the AI cyberattacks will be developed. Furthermore, efforts will
be conducted on data collection in order to make them more
accessible and usable for researchers.
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