
An Automated Passive Testing Approach for the IMS PoC Service

Felipe Lalanne∗, Stephane Maag∗, Edgardo Montes de Oca†,
Ana Cavalli∗, Wissam Mallouli† and Arnaud Gonguet‡

∗ Institut TELECOM & Management SudParis, CNRS UMR 5157
9, rue Charles Fourier, F-91011 Evry Cedex, France

{Felipe.Lalanne, Stephane.Maag, Ana.Cavalli}@it-sudparis.eu
†Montimage EURL, 39 rue Bobillot, F-75013 Paris, France

{Edgar.Montesdeoca, Wissam.Mallouli}@montimage.com
‡Alcatel-Lucent Bell-Labs, 54 rue de la Boetie, F-75008 Paris, France

Arnaud.Gonguet@alcatel-lucent.fr

Abstract—Although the adoption of the IP Multimedia
Subsystem (IMS) keeps growing, IMS applications are often
integrated to the system without being formally tested. In this
work, we are interested in the IMS Push over Cellular (PoC)
service, an OMA standard. We propose a conformance passive
testing approach to check that its implementation respects the
main standard requirements. This approach is based on a set
of formal invariants representing the most relevant expected
properties to be tested. Two testing phases are applied: the
verification of the invariants against the service specification
and their testing on the PoC collected execution traces.

Keywords-IMS, Testing, Formal model.

I. I NTRODUCTION

The IP Multimedia Subsystem (IMS) is a framework
standardized to deliver IP multimedia services to mobile
users over GPRS connectivity. Its main goal is to facilitate
the access to voice or multimedia services in an access
independent way for developing the fixed-mobile conver-
gence. Besides, IETF standards such as the Session Initiation
Protocol (SIP)[1] are also applied through the IMS for an
Internet integration.

Since interoperated IMS platforms are becoming avail-
able, IMS applications (e.g. distributed billing, mash-up) are
more and more numerous. Nevertheless, and because of its
success, many protocol and service implementations were
integrated without being formally tested. Therefore, failures
(e.g. conformity and interoperability errors, security flaws,
etc.) may be raised. The lack of testing in such areas may be
explained by different reasons. One of them is the necessity
for the industrials to quickly provide new services. To avoid
that issue, we propose a passive testing approach to formally
test an IMS service, the Push over Cellular (PoC)1.

The rest of the paper is organized as follows. Section II
describes the conformance testing approach as well as the
concept of invariants used in our monitoring method. The

1Research partially supported by the French Ministry of Research
through the ExoTICus project, funded in the framework of the International
ICT cluster System@tic program, and the SHIELDS project, funded by the
European Community (FP7/2007-2013).

Push over Cellular service and its formal SDL model are
described in Section III. Then the industrial testbed and our
experiments for testing the PoC are presented in Section IV.
Section V provides related works and finally we conclude
and present future work in Section VI.

II. A N INVARIANT -BASED PASSIVE TESTING APPROACH

A. The Concept of Invariant

The passive testing approach used in this work is based
on invariant analysis, where the invariants are properties
the Implementation Under Test (IUT) (in this work the
PoC implementation) is expected to satisfy. An invariant is
defined as follows:
Let M = (S, I,O, sin, fnext, foutput) be an FSM (Finite
State Machine) whereS is a finite set of states,I a set
of input actions,O a set of output actions,sin an initial
state,fnext : S × I → S is the transition function and
foutput : S × I → O is the output function [2]. These two
functions may be partially defined.

Formally, a sequenceInv is an invariant forM if the two
following conditions hold:

1) Inv is defined according to the EBNF:

Inv ::= i/Ō | ∗ , Inv | i/o, Inv

wherei ∈ I ∪ {θ}, o ∈ O ∪ {θ} and Ō ⊆ O.
2) Inv is verified onM .

Intuitively, a sequence such as
{i1/o1, ..., in−1/on−1, in/on} is an invariant forM if each
time in/on is observed, then the tracei1/o1, ..., in−1/on−1

happens before. Invariants may be used to express
properties where the occurrence of an event must be
necessarily preceded by a sequence of events. In addition
to sequences of input and output symbols, the wild-card
characters ’θ’ and ’∗’ are allowed, where ’θ’ represents any
single symbol and ’∗’ represents any sequence of symbols.



B. The Conformance Passive Testing approach

By conformance testing, we mean the process to test
the correctness of an implementation through a set of
invariants and observed traces (extracted from the running
implementation). That process follows four main phases: (i)
Properties definition. Standards or protocol experts provide
the implementation properties to be tested. (ii) Properties as
invariants. Properties are formulated as formal invariants.
Besides, the properties may be formally verified on the
formal specification guaranteeing that they are correct with
respect to the requirements. (iii) Extraction of execution
traces. A network sniffer is installed on one of the network
entities. (iv) Invariants tested on the traces. The test of the
expected properties (formulated as invariants) is performed
and a verdict is provided (Pass, Fail or Inconclusive). An
inconclusive verdict could be obtained if for instance the
trace is too short in order to give a Pass or Fail verdict.

III. T HE PUSH OVER CELLULAR SERVICE AND ITS

FORMAL MODEL

A. The Push over Cellular Service

The IMS Push over Cellular (PoC) service, standardized
by the OMA [3], is also known as Push-to-Talk, Push-to-
View or Push-to-Share, depending on its main objective.
It is an extension of the existing Push-to-Talk service over
GPRS networks. It enables multiple IMS users to connect
with each other in a single communication session, where
any authorized user may talk simultaneously to every other
participant. It is a walkie-talkie communication paradigm.
This service is said to be half-duplex, meaning that at a
given point a user can either talk or listen.

The PoC clients are integrated in the IMS clients and im-
plement the functionalities required to get connected to the
PoC server. Four consecutive steps are followed: (i) Initiate
a new PoC session by sending a SIP INVITE message to the
PoC server, which will be relayed to the invited participants.
(ii) Handle incoming SIP INVITE messages to be involved
in a PoC session created by another user. (iii) Quit a PoC
session by sending a SIP BYE message to the PoC server.
(iv) Handle PoC token requests by applying TBCP.

B. The PoC Formal Model

The IMS Push over Cellular has been specified in Spec-
ification and Description Language SDL, standardized by
ITU-T [4]. The PoC functionality is divided into two parts
or planes: the control plane and the user plane. The control
plane deals with the communication between the different
PoC entities, in particular, with the establishment of PoC
sessions. The user plane deals with RTP media communi-
cation and floor control, referred to as Talk Burst Control,
consequently, the floor control protocol used by the service
being referred to as TBCP (Talk Burst Control Protocol),
which is based on RTCP. In the service, the two planes
interact in order to exchange session status information. In

the formal specification developed, only the control plane
is modeled, since only protocol part is relevant for the
purpose of the paper. However, two TBCP messages are also
considered for the model,Talk Burst GrantedandTalk Burst
Taken, used in order to signal the correct establishment of
the session, and the floor to speak of the initiating client. In
our model, all the parts in the communication process are
considered, this means the PoC Client, IMS and PoC Server.
The Figure 1 shows the overall architecture.

c_ims

SIP_OK, SIP_Invite, 

SIP_Trying, SIP_Ringing, 

SIP_Ack, SIP_Bye, 

TB_Granted, TB_Taken

SIP_Register, SIP_Publish, 

SIP_Invite, SIP_Ringing, 

SIP_OK, SIP_Ack, SIP_Bye

p_ims

SIP_Publish, SIP_Invite, 

SIP_Ringing, SIP_Ack,

SIP_Bye, SIP_OK, 

SIP_Trying

SIP_OK, SIP_Trying, 

SIP_Ringing, SIP_Ack, 

SIP_Invite, SIP_Bye,

PoCAnnounce,

TB_Granted, TB_Taken

c_env

opC

StartCall, AnswerCall, 

St all

Client

IMS PoC

System PoCService

Figure 1. Overall architecture of the PoC formal specification

IV. EXPERIMENTATION AND RESULTS

A. The Experimented Industrial IMS Architecture

Our approach has been applied on a real industrial IMS
architecture designed to support 10,000 users, developed and
provided by Alcatel-Lucent France. The IMS services run on
an A5400 IMS Application Server (AS) processing the XDM
server (the OMA 1.1 network address book manager), the
Presence Server, the voice communication service , the voice
mail server and the PoC server implementing the OMA 1.1
PoC service.

IMS Core Network

A5400 IMS AS

Alcatel-Lucent LCP 1000

IMS

Client

Presence

Server

PoC

Server

XDM

ServerVoIP

Client

PoC

Client

SIP

SIP

SIP

SIP

SIP

diameter

S-CSCF

I-CSCFP-CSCF

HSS

PO

VoiceMail

Server

IMS

Client

VoIP

Client

PoC

Client

Access

Network

Access

Network

Figure 2. The Alcatel-Lucent IMS Architecture

Functionally, the PoC server is divided in two parts: the
controlling PoC function managing the number of commu-
nication channels dedicated to the necessary streams (TBCP,



SIP) that has to be equal to the number of participants
to the PoC session, and the participating PoC function
which provides PoC sessions handling by relaying the TBCP
messages between the controlling PoC function and the
different PoC clients. The Figure 2 depicts the industrial IMS
architecture. Furthermore, the PO illustrates the interface
where all the messages used in the PoC service can be
captured.

B. Invariants

From the OMA PoC requirements, six properties to be
tested on the IUT have been provided. Each one of these
properties describes a step in the session establishment for a
PoC Ad-hoc session and allows ensuring that the PoC server
follows the sequence of messages defined by the protocol
[5]. According to the formal definition given in Section II-A,
we describe these invariants in the following, as well as their
verification process.

1) The Invariants Design:

Invariant 1:

• INV ITE(CSeq = c0, From = u0, To = Conference,

Invitees = {u1})/θ, ∗, θ/INV ITE(CSeq = c1, From =

u0, To = u1, Invitees = φ)

This invariant illustrates the case where a particular user
initiates an Ad-Hoc call. Since this session type corresponds
to a quick call to the users selected from a list, the list of
recipients or invitees is included in the invariant. For each of
the users in the list, the PoC server initiates a newINVITE
call, using the initiating user’s URI in theFrom header. The
invariant means that if anINVITE is observed being sent by
the PoC server, then the PoC server should have received an
invite to the conference URI initiated by the useru0.

Invariants 2, 3:

• θ/INV ITE(CSeq = c1, From = u0, To = u1), ∗,

Ringing(CSeq = c1, From = u0, To = u1)/θ

• INV ITE(CSeq = c0, From = u0, To =

Conference)/θ, ∗, θ/Ringing(CSeq = c0, From = u0, To =

Conference)

These both invariants illustrate one of the steps in the
session initialization sequence. After a SIP peer receives
an INVITE request, it replies with aRinging response to
indicate that the message was received and that it is waiting
for the user to accept the call. In the case of the Ad-hoc
session, since at least twoINVITE messages are required,
then at least twoRinging messages are to be expected:
one from the end client, indicating to the server that the
message was received, and one from the PoC Server to the
originating client indicating that at least one of the recipients
has received the invitation. Both invariants indicate thatif

a Ringingmessage is received/sent, then a previousINVITE
message must have been sent/received by the PoC server.

Invariants 4, 5:

• INV ITE(CSeq = c0, From = u0, To = u1)/θ, ∗,

θ/OK(CSeq = c0, From = u0, To = u1)

• θ/INV ITE(CSeq = c0, From = u0, To = u1), ∗,

OK(CSeq = c0, From = u0, To = u1)/θ

These invariants illustrate respectively the cases when a
PoC client informs the PoC server that the call has been
accepted by the user and that he is waiting to listen, and
when the PoC server notifies the originating client that at
least one of the recipients has confirmed. For both cases this
is done via anOK response to the originalINVITE. Both in-
variants indicate that if anOK message is sent/received, then
an INVITE request must have been received/sent previously
with the same parameters.

Invariant 6:

• θ/OK(CSeq = c0, From = u0, To =

Conference), ∗, ACK(CSeq = c2, From = u0, To =

Conference)/θ

This invariant illustrates the last step of the session estab-
lishment, after the PoC server has notified the originating
PoC client that a user has accepted the call via anOK
response, the PoC client must send an acknowledgment
message in order to indicate that he is waiting to talk. The
invariant means that if anACK request is observed being
received by the PoC server, then the PoC server should have
sent anOK response previously.

2) The Invariants Verification:
A- The GOAL observers:The invariants may be veri-

fied against the formal SDL specification guaranteeing then
that they are well designed and conform to the functional
properties of the tested protocol.

To do it, we specified our invariants using the GOAL
language (Geode Observation Automata Language)[6]. For
each invariant, we create an observer designing the states,
its signals leading to a triggered transition or a task se-
quence putting the Extended FSM (EFSM) in a new state.
Afterwards, the GOAL invariants are verified on the PoC
model by applying the ObjectGeode (OG) tool [7]. This tool
provides a partial reachability graph of the EFSM model (i.e.
an FSM) to automatically verify the properties on the model
focused on the PoCCore process. The six above mentioned
invariants have been verified by OG on the PoC formal
model running three distinct clients.

B- Verification results:We used a computer processing
an Intel Core 2 Duo with 4Mo L2 cache. Nevertheless,
when checking the invariants by applying the observer
described above, we had an extremely large number of
explored states (16.777.214) and transitions (63.212.562)
before covering 80% of the model. Despite that we generated
a huge exploration file (more than 12GB) in an average



Inv #States #Transitions Time Coverage Results

Inv1 6.586.011 34.452.783 0:37:31 100% Verified
Inv2 12.358.441 57.952.942 1:18:43 100% Verified
Inv3 9.713.917 44.618.348 0:57:09 100% Verified
Inv4 8.932.488 39.025.924 0:47:10 100% Verified
Inv5 10.472.401 48.043.571 1:09:39 100 % Verified
Inv6 16.777.214 63.212.562 1:37:18 75.03% Verified

Table I
VERIFICATION RESULTS

of 2 hours, we unfortunately met the state space explosion
problem. We therefore checked the invariants one by one on
the specification. The main results are presented in the Table
I. No livelocks nor deadlocks have been detected.

C. Passive Monitoring and the TestINV tool

The traces of the IMS PoC service have been provided
by Alcatel-Lucent France. Wireshark2 was used to save the
traces in XML format. Different traces have been extracted.
And in order to optimize our testing process, a reset has
been applied on the IMS core network and on the AS to
allow the traces to contain the initial state. However, this
homingstate phase is not mandatory. Our approach makes
it possible to inspect the invariants at any point of the
implementation’s execution. Nevertheless, as our invariants
mainly tackle the initiation phase of the PoC sessions, we
noticed that such kind ofnetwork resetaccelerates the testing
verdicts provided by the TestINV tool.

Collected 

Traces
Invariants

Input

Invariant Syntax 

Checking

Test Engine

Verdict

Trace Parsing

Protocol 

Information

Information 

Parsing

Invariant 

Storage

Input Input

Figure 3. The TestInv Tool

The TestInv tool3 processes automated analysis of cap-
tured traces to determine if the tested invariants are correct
or not. The tool takes as input: needed protocol information,

2http://www.wireshark.org/
3developed by Montimage

the traces and the invariants both defined in XML format. A
high level description of the tool is illustrated by the Figure
3.

In order to use the tool, first the invariants and the protocol
information need to be defined. This is performed by an
expert of the protocol and needs to be done only once for
each different protocol. The protocol information defines
the data of interest that will be extracted from the traces
and corresponds to the packet field names specific to the
protocol that is being observed. This is needed to improve
the performance and limit the amount of memory needed
when analyzing the captured traces.

The algorithm used by the tool analyzes the traces in,
at most, time complexity ofO(N2) or to be more precise:
the number of packets that need to be analyzed isN2 × I
whereN = number of packets in the trace andI = number
of invariants. This can be reduced toO(N) if we store
information of each condition for each packet in a hash
table. Figure 4 shows the processing time as a function of
the length of the trace.

 0

 50

 100

 150

 200

 250

 300

 0  10000  20000  30000  40000  50000  60000

T
im

e 
(s

)

Trace Length (number of packets)

Figure 4. Processing time for the TestInv tool.

D. Results and Analysis

1) Experimental results:The invariants were defined us-
ing the TestInv XML format, specifying the types of packets
to observe and the events to evaluate. Applying the tool to
the traces was rapid (less than 1 sec.) since the traces did
not need to be very long for these kinds of invariants.

The verdicts obtained were all PASSED except for some
instances of the 4th and 5th invariants. However, we noticed
that these FAILS werefalse positives. But, for each one of
the invariants, at least one occurrence of the property was
found in the traces, illustrating the correctness of the trace.

2) Analysis: The results obtained with the 4th and 5th
invariants shows the difficulty, in some cases, of applying
passive testing techniques to an application such as the PoC.
Because of the design of the IMS architecture, applications
can share information to avoid duplicating functionality.The
PoC Server, as well as other applications, makes use of both



of these capabilities and, thus, communication packets from
both of these applications will invariably appear in the trace.
This, in addition to the User Plane information, makes it
particularly difficult to distinguish the relevant information
in the trace.

The invariants 4 and 5 are correct, because anOK mes-
sage indicates the acceptance of the terms of the session
establishment initiated by theINVITE request for the case
scenario considered. Nevertheless, from a global point of
view, the OK response also marks the acceptance of any
request, for example,SUBSCRIBEandNOTIFY, used by the
presence protocol. This way, when anOK message is found
in the trace, it will look for anINVITE message whether it
is actually a reply to this type of request or not.

V. RELATED WORKS

Although no work exists to formally test IMS applications
passively, we may cite interesting research work on passive
testing approaches. In the particular context of the EFSM
semantic model, some important works can be mentioned,
such as [8] and [9] where algorithms based on Event-driven
EFSM are proposed. The expected properties are specified
in a symbolic logic expression in order to be able to define
in detail a set of valid variable values. Some works have
been done in modeling SIP in SDL[10]. In [11], starting
from that model, the authors show how to detect feature
interactions by determining if a particular MSC (Message
Sequence Chart) trace can occur in the provided model.

VI. CONCLUSIONS& PERSPECTIVES

This paper introduces a novel approach for testing IMS
services, focusing in particular in the case of the Push-
to-Talk Over Cellular service. This was motivated by the
fact that it is not always possible to apply active testing
techniques to protocol testing, especially when the platforms
are already deployed or are closed implementations. In this
paper we propose and evaluate an extensible and more
flexible approach where properties can be added depending
on the set of features of the tested service.

As future work, we plan to explore and evaluate new
types of invariants in this framework. In particular we will
tackle the issue raised by our Invariants 4 and 5 where
the communication with other IMS entities produces the
false positiveresults, although not an issue in the present
work, this could be necessary to perform automated trace
checking. We also intend to extend the developed model in
order be able to test other kind of sessions, the PoC client’s
conformance and its interoperability with the PoC server
implementation.

We also plan to adapt the tool to be able to analyze packets
on-line. This will allow to use it to detect that the protocol
exchanges occur as expected.

REFERENCES

[1] M. Handley, H. Shulzrinne, E. Schooler, and J. Rosenberg,
RFC 2543 - Session Initiation Protocol (SIP), IETF, March
1999.

[2] D. Lee and M. Yannakakis, “Principles and Methods of
Testing Finite State Machines - a Survey,” inThe Proceedings
of IEEE, vol. 84, August 1996, pp. 1090–1123.

[3] Push to talk over Cellular V2.0, Open Mobile Alliance, oct
2007.

[4] ITU-T, “Recommandation Z.100: CCITT Specification and
Description Language (SDL),” ITU-T, Tech. Rep., 1999.

[5] Open Mobile Alliance, “OMA PoC Control Plane. Approved
Version 1.0,” Jun. 2006.

[6] B. Algayres, Y. Lejeune, and F. Hugonnet, “GOAL : Observ-
ing SDL behaviors with GEODE,” inProc. of SDL’95, 1995,
pp. 223–230.

[7] Verilog, ObjectGEODE 4.0 - User Manual, IBM, 2000.

[8] D. Lee, D. Chen, R. Hao, R. Miller, J. Wu, and X. Yin, “A
formal approach for passive testing of protocol data portions,”
in Proc. of 10th IEEE International Conference on Network
Protocols, 2002, pp. 122–131.

[9] D. Lee, D. Chen, R. Hao, R. E. Miller, J. Wu, and X. Yin,
“Network protocol system monitoring: a formal approach
with passive testing,”IEEE/ACM Transactions on Network-
ing, vol. 14, no. 2, pp. 424–437, 2006.

[10] K. Y. Chan and G. von Bochmann, “Modeling IETF Session
Initiation Protocol and its services in SDL,” inSDL Forum,
ser. Lecture Notes in Computer Science, R. Reed and J. Reed,
Eds., vol. 2708. Springer, 2003, pp. 352–373.

[11] K. Y. Chan and G. V. Bochmann, “Methods for designing
SIP services in SDL with fewer feature interactions,” inProc.
7th. Feature Interactions in Telecommunications and Software
Systems. IOS Press, 2003, pp. 59–76.


