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8.1 Motivation

Verification and validation are two significant software development processes for
checking that software meets its requirements and specifications and fulfills its
intended purpose. In these processes, various test cases (e.g., unit tests, integra-
tion tests, regression tests, system tests) need to be designed and executed in a
production-like environment that reproduces the same conditions where the soft-
ware under test would run. However, having access to such an environment is usu-
ally tricky or close to being an impossible task. It is even particularly challenging in
the IoT arena. The access to IoT devices might be nontrivial or limited due to many
factors. Networks of physically deployed devices are typically devoted to production
software. Testing applications on top of those networks might involve additional
testing software, which might affect overall performance and the revenue generated
by the devices (e.g., applications need to be stopped to load their new versions).

Software simulators proved to be valuable in easing the verification of the soft-
ware requirements. They provide software developers a testing environment to at
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least manage the execution of test cases. IoT Testbeds play a similar role in testing
IoT applications. They offer a deployed network of IoT devices where developers
can upload their applications and test their software in a physical environment.
IoT-Lab [1] and SmartSantander [9] are good examples of IoT testbeds. Testbeds
often have a predefined fixed-configuration and architecture. They are also usually
shared with other users, which can be a problem for measuring application quality.
Hence, this problem might make simulators more attractive since they provide a
more customized and controlled environment. Furthermore, simulators avoid the
need for a more expensive physical network of devices.

In recent years, both academia and the commercial market have proposed solu-
tions for the IoT simulation field. These solutions are often entirely different,
although their objectives are similar. The academic solutions implement cutting-
edge technology as proofs-of-concept, and they are usually not ready for production
systems. By contrast, the commercial solutions are designed to be stable and flaw-
less, even though the technology behind them might not be state-of-the-art.

The ENACT project has brought an opportunity to create the Test and Simu-
lation (TaS) tool. Collaborating with universities and research institutions such as
SINTEF and CNRS, we provide a state-of-the-art test and simulation tool with
cutting-edge technology behind it. We have evaluated our solution with several
industrial use cases, such as eHealth (Tellu), Smart Building (Tecnalia), and Intel-
ligent Train System (Indra). The case studies have shown that it is stable and ready
for production systems.

The TaS provides the possibility to test the IoT system based on test scenarios
using pre-prepared datasets. The datasets can be the recorded data from a real system
or the data generated using some data mutation operators. The TaS also allows
stressing the boundaries of the scenarios to detect potential problems.

We focus on the network of sensors and the applications on top of them. There-
fore, we do not consider the physical behavior of the sensors. We take it for granted
that the sensors are reliable and correctly react to the physical changes (e.g., if the
physical temperature rises 2 degrees, the sensor will immediately send a message
with a 2 degree higher reading).

On the other hand, it is also important to note that failures usually propagate
in complex systems through causal chains and produce evolving fingerprints of
noisy symptoms. One of the first tasks to accomplish for an automated tool helping
humans troubleshoot a system is to group events that are causally connected (and
keep unrelated events separated). Achieving this is often not straightforward since
components of a system can exhibit similar symptoms of two unrelated failures.
We need a higher level of granularity in the monitoring indicators and a deeper
analysis to distinguish two unrelated failures. Moreover, it is frequent that failures
are recurrent. The system administrators, who have some experience dealing with
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failures, can react more quickly and efficiently against their recurrence. They can
take the impact estimation and the mitigation action (e.g., reset a particular server
every night) promptly.

Indeed, all aforementioned points lead to the need for a Root-Cause Analy-
sis (RCA) tool which enables systematizing the experience in dealing with faults
and problems to identify the root cause of a newly detected issue. Thanks to RCA
results, remediation actions and reactions could be timely and wisely taken to pre-
vent or mitigate the damage of the recurrence of problems.

The IoT world has promised to connect everything and create systems with an
enormous number of devices. The need for RCA to implement and operate IoT
systems is evident; IoT represents a generic framework that an RCA solution can
target. However, several characteristics of these types of systems need to be con-
sidered: First, IoT networks are often very dynamic environments, with devices
frequently joining and leaving a system (e.g., mobile devices connecting to a par-
ticular antenna). Nevertheless, most of the communications are likely to be wireless.
This can introduce a higher degree of unreliability. The failure, however, can present
symptoms very similar to a normal activity. For example, when we no longer receive
sensed data from a sensor, it is difficult to determine whether the sensor is no longer
in range or the communication has failed. Second, in many cases, the number of
components/ indicators to be taken into the analysis could be enormous. This can
lead to a big volume of data processed. Reducing the data dimension by avoid-
ing less relevant attributes (i.e., noises) is a natural need. Finally, battery-powered
devices may have a low-activity mode to extend their operation autonomy. In this
mode, inputs may not be synchronized and have the same frequency as other infor-
mation RCA uses for the diagnosis. Therefore, RCA must be able to deal with out-
of-order data. In the context of ENACT, our RCA enabler would try to address all
the challenges we mentioned above.

In summary, this chapter focuses on TaS and RCA, two primary parts empow-
ering the validation and verification in an IoT DevOps cycle, which have been
developed and evaluated in the context of the ENACT project. To the best of our
knowledge, no similar tool had ever been created for IoT. On the one hand, the TaS
tool enables the simulation and testing of an IoT system. It collects the events of
a running IoT system without impacting its normal behavior. The recorded events
can be used to simulate the system, inject different kinds of “problems”, and col-
lect all relevant data for detecting errors, failures, and unwanted symptoms. On
the other hand, the RCA tool monitors the real system and performs the diag-
nostic analysis when some errors or failures occur. The enabler allows determining
unknown incidents’ symptoms and evaluating how much the unknown incident is
similar to a known/learned one. We discuss more technical details regarding TaS
and RCA in the following sections.
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8.2 Test and Simulation (TaS)

In this section, we first present an overview of the TaS enabler. We then give the
details of the enabler.

8.2.1 Overview and Approach

The TaS enabler is a test and simulation solution well adapted to IoT environ-
ments. It allows simulating different IoT topologies and performing various tests
to detect potential errors and security failures. We first present the main features and
components of the enabler that simulate an IoT system. Then, we give a detailed
description of the TaS enabler architecture.

8.2.1.1 Smart IoT system components

Figure 8.1 shows some main components in a Smart IoT System:

• The Sensor Node: captures, pre-process, and sends the sensor data to the
gateway that can be a Raspberry PI, an Arduino, etc. It implements some
basic modules:

– The Sensor module captures the environment information.
– The Onboard Processing module reads the sensor data and pre-processes

it (e.g., performs calculations and formalizes and validates data). It can be
an IoT application, a Node-RED flow, etc.

– The Communication module component communicates with the gateway
to send or broadcast the processed data.

• The Gateway device: receives data from the sensor nodes and processes or
just forwards it to the other components/services such as cloud-based appli-
cation and control center.

• The Actuator node: reacts and controls the actuator based on the reactions
of the IoT system. It contains some basic modules:

– The Actuator module triggers a change on the IoT device, such as opening
a door and activating an alarm system, etc.

– The Onboard processing module reads the actuator data signal and con-
verts it into an action.

– The Communication module communicates with the gateway to receive
the actuation data signal.

• Other components: Other components are higher-level components that
can provide a service or an application that receives and processes the data
and performs actions depending on the business logic.
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Figure 8.1. IoT system components.

The SIS components can be organized in a multi-layer architecture which we
present in the next section.

8.2.1.2 Simulating a smart information system (SIS)

An SIS can be represented in three levels depicted in Figure 8.1. The physical level
contains all the physical components, such as sensors and actuators, produced by a
manufacturer and cannot be changed by developers. The transport level is respon-
sible for transmitting the data within the SIS network. Developers can configure
the transport level to use a specific port number or protocol. Finally, the highest
level is the application level, which contains the application written by developers.
The application receives the data from sensors, processes it, and produces an action
to be performed by the actuators (e.g., turn the light on or off ). Software engineers
usually work on the application level.

When it comes to developing a software application, a software application needs
to be tested every time there is a change in its source code or in the infrastructure
it uses. The planned tests aim to cover many scopes involving different testing sce-
narios. While coping with multiple test scenarios, the testing environment needs
to be flexible for manipulating input and measuring output. It is not easy to have
such a testing environment for IoT applications since sensors at the physical level
depend on the physical environment. Therefore, only the scenarios matching the
current condition of the environment can take place.
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Figure 8.2. An IoT network architecture with simulated components.

Within an IoT network, a sensor captures the information of its surrounding
environment at a specific time. This information is transformed into a digital for-
mat. Since it is not reasonable to wait for the change in the environment to test IoT
applications, simulating various sensor measurements is very beneficial for testing
them. It allows the developer to control sensor values and, thus, to simulate and
test the IoT application in all scenarios without waiting for environment changes.

An actuator presents the SIS reactions in a specific situation, for example, switch-
ing on a light bulb. In such cases of testing system reactions, it is sufficient to mea-
sure the actuated data sent by the SIS to actuators. In the TaS enabler, the actuator
is simulated by simply creating a hub to receive the actuated data instead of using a
real actuator. Note that the impact of an actuator on a sensor is not yet considered.

With the TaS enabler, we only need to simulate the components at the physi-
cal level. The other (software) components can be cloned from the system under
test and configured to work in a classical test and simulation environment, avoid-
ing the need for communicating with a production environment, as we can see in
Figure 8.2.

8.2.1.3 The TaS enabler’s global approach and architecture

In this subsection, we present the architecture of the TaS enabler, which is based on
the concept of Digital Twins [3]. Figure 8.3 illustrates the TaS enabler architecture.
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Figure 8.3. Test and Simulation (TaS) Enabler approach and architecture.

On the left-hand side, we have the system in a real (production) environment.
The communication between the sensors, actuators with the IoT component is typ-
ically done via a broker. The sensors capture and send the surrounding information
(e.g., temperature) to the IoT system. Based on input data, the IoT system reacts
differently and sends actuation data to change the actuator settings (e.g., “change
the heating level”).

On the right-hand side of the figure, we have the SIS in a test environment and
the TaS enabler. The system under test is the SIS that needs to be tested. The TaS
enabler simulates sensors and actuators. The topology on the left side is very similar
to the topology on the right side. The only difference is the simulated sensors and
actuators. The simulated actuators collect the actuation data sent from the IoT
system. The simulated sensors play the same role as the physical sensors providing
the data signal to the IoT components. However, they are much more valuable than
a physical sensor in terms of testing in the following ways:

• Firstly, by using the dataset recorded from the physical environment, the sim-
ulated sensors can repeatedly simulate the surrounding environment at a spe-
cific time. In reality, an event may happen only once, but the simulated sensor
can generate the same event as many times as needed for testing purposes.

• Secondly, the physical sensors passively capture the state of the surrounding
environment. It can be challenging to obtain different data from the physical
sensors. In contrast, the simulated sensors use the dataset in the Data Stor-
age as a data source. Therefore, we can generate various testing scenarios by
modifying the event in the Data Storage.
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• Moreover, the TaS enabler also provides a module to manipulate the data from
the sensors. The Regular and Malicious Data Generator can generate regular
data to test the functionalities, operations, performance, and scalability. It can
also generate malicious data to test the resiliency of the system to attacks.

Besides the simulated sensors and actuators, the TaS enabler also provides some
modules which support the testing process 8.3. The Data Recorder module records
all the messages going through the broker in the physical environment. Each mes-
sage can be considered as an event happening in the physical environment. Then,
the recorded messages are forwarded to the broker in the testing environment.
In this way, we have a “twin version” of the physical environment. What has
happened in the physical environment is reproduced in the testing environment.
Besides, the recorded messages are stored in a Data Storage as a dataset for later
testing. The recorded dataset can be modified (muted) to create a new dataset,
e.g., “change the event order”, “delete an event”, “add a new event”. All the testing
datasets are stored in the Data Storage. The Regular and Malicious Data Gener-
ator enables the simulation of different sensor behaviors, from normal behavior
to abnormal behavior, such as a DOS attack (the sensor publishes massive data
messages in a short time), node failure (the sensor stops sending data). With data
mutation, the TaS enabler can help build datasets for testing many different cases
hard to produce in real life. Finally, the Evaluation module analyses the simulation
input and output and combines them with the logs collected from the IoT system
to provide the final result of a testing process.

The next section presents more details on how the TaS enabler simulates an SIS.

8.2.2 Simulation of a Smart IoT System

Most of the testing scenarios are defined by the information about the surrounding
environment captured by sensors. The following section goes into detail about the
simulation of sensors.

8.2.2.1 The simulation of sensor

The sensor provides the input data of an IoT system. The simulation of a sensor
corresponds to the simulation of the data stream it provides. The simulated sensor
has been designed for flexibility in the following ways:

• It supports different types of data report formats:

– PLAIN_DATA: the measurement value is published directly without any
transformation, it can be a number, a string or an object, for example: 15
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– JSON_OBJECT: the measurement value is transformed to be an object
in JSON format, with the key is set by user, for example: "temp":15

– IPSO_FORMAT: the reported data follows the Internet Protocol for
Smart Object (Object and Resource Registry). A temperature sensor can
report the data in IPSO format as follows (Temperature Sensor in IPSO):

1 {
2 " InstanceId " : 5 ,
3 "ObjectId" : 3303 ,
4 "TimeStamp" : 1601498832 ,
5 "TimeAccuracy" : 364449977 ,
6 "Resources" : {
7 "5700" : 15 ,
8 "5701 " : " celcius "
9 }

10 }

• It supports different data sources which are used for simulation:

– Dataset: The data source is from the data storage where the data has been
recorded or created before simulating.

– Data Generator: The data will be generated at run-time during the simu-
lation.

– Data Recorder: The data source is the data recorded from a real system
and forwarded to the testing system.

• It supports simulating several abnormal behaviours, such as, low energy, node
failure, DOS attack, and slow DOS attack.

• It supports multiple measurements with the different data types, such as
Boolean, Integer, Float and Enum. For each measurement, there are several
abnormal behaviours that can be selected, such as “fixed value”, “value out of
range”, and “invalid value”.

Figure 8.4 presents the definition of a temperature sensor, which gener-
ates (data source: DATA_SOURCE_GENERATOR) a measurement value every
5 seconds. The measurement value is published in PLAIN_DATA format to
a MQTT/MQTTS message bus communication channel defined by the topic
enact/sensors/temp-01. The sensor does not have any abnormal behaviour.

8.2.2.2 The simulation of actuator

An actuator can be considered as a device that receives the IoT system reac-
tion based on the input data. We simulate the actuator as a component that
will receive the reaction signal (actuation data) from the IoT system. Figure 8.5
shows the configuration of a Heater. The actuator listens for the actuation data on
an MQTT/MQTTS message bus communication channel defined by the topic:

http://www.openmobilealliance.org/wp/OMNA/LwM2M/LwM2MRegistry.html
https://devtoolkit.openmobilealliance.org/OEditor/LWMOView
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Figure 8.4. A temperature sensor.
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Figure 8.5. A Heater actuator.

enact/actuators/heater-01. The topic defines the channel on which the actuator will
connect to obtain the actuation data.

8.2.2.3 The simulation of an IoT device

In an IoT system, the sensor and actuator are usually part of the same device. An IoT
device can contain one to many sensors as well as one to many actuators. Figure 8.6
illustrates the configuration of a Heating System Control device. The device has one
sensor and one actuator. The data is published by the sensor and received by the
actuator via the MQTT protocol.

8.2.2.4 The simulation of a network topology

Figure 8.7 presents a simple simulated network topology.
A list of simulated IoT devices forms the simulated network topology. Besides

the list of devices, a network topology can also provide the identifier of the
dataset (datasetId ),which contains the data to simulate the SIS in a given time,
the global replaying options, the configuration to connect with the database, and
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Figure 8.6. A Heating System Control device.

the definition of the new dataset where the data generated from the simulations
will be stored.

8.2.2.5 The communication between the TaS enabler and the system

under test

In the ENACT project, the communication between the TaS enabler and the system
under test has been implemented based on message queue protocols such as MQTT
and MQTTS. Figure 8.8 presents the Message Bus class diagram, similar to the
interface for all Message Queue Protocols.

Some basic message queue bus protocol methods have been implemented, such
as subscribe, unsubscribe, publish, connect, and close. By design, each IoT device
can have its way of communication with the SIS systems.

8.2.3 The Testing of a SIS

In this section, we present the testing methodologies and techniques we have
adapted in the TaS enabler.
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Figure 8.7. Smarthome network topology.

8.2.3.1 The testing methodologies

This section covers the testing methodologies that the TaS enabler can support.
In this first version of the enabler, we have implemented only data-driven and data-
mutation testing methodologies. The other ones described below are possible future
extensions.

Data Driven Testing

Figure 8.9 presents the data flow of the Data-Driven Testing method. The Data
Storage contains the datasets recorded from the IoT system or entered manually.
Each dataset contains sensor data (inputs for TaS) and expected actuator outputs.
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Figure 8.8. Message queue bus class diagram.

Figure 8.9. Data Driven Testing.
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The expected actuator outputs can be the value recorded from the IoT system in a
normal scenario. Engineers can also enter them manually via the Graphical Inter-
face. The Evaluation module will use the expected outputs to compare them with
the simulation output to determine if they match. A test case passes if the simula-
tion output is the same as the expected output. The Data-Driven Testing method
is suitable for functional and regression testing.

The Data-Driven Testing has been implemented as the main testing methodol-
ogy of the TaS enabler.

Data Mutation Testing

Figure 8.10 illustrates the Data Mutation Testing architecture. The Mutant Gen-
erator generates new sensor data from existing data stored in the Data Storage by
applying one or many mutated functions, such as “change the event order”, “change
a value”, and “delete an event”. The mutated data are input for the simulation. The
Evaluation module generates a report about the output differences when testing the
system with the mutated and the original input data. The Data Mutation Testing
method is for penetration, robustness, security, and scalability testing (e.g., mutat-
ing the device identifier to obtain new devices). In the TaS enabler, we can mutate
the device identity to generate many devices while testing the system scalability.
There is also an interface to apply some mutation functions to a dataset manually.

Figure 8.10. Data Mutation Testing.
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Figure 8.11. DataStorage.

Model-Based Testing [10] and Risk-Based Testing [6] are two other methodolo-
gies that we have studied but not yet implemented in the TaS enabler at the time
of writing of this book chapter.

8.2.3.2 The testbeds

To simulate and test an IoT system in some specific scenarios, one of the easiest
methods is to use a testbed. With testbeds, the developer can define exactly what is
the input and what should be the corresponding output. This way, the tests can be
done automatically and easily integrated in the DevOps Continuous Integration
and Continuous Deployment processes. In TaS, testbeds are built from datasets
which are recorded from a real system or generated by the TaS based on scenarios.

DataStorage

The Data Storage contains all the datasets for testing and simulating.
As depicted in Figure 8.11, the datasets are fed into the DataStorage via three

sources: the data from the real system recorded by the Data Recorder, the data
generated by the Regular and Malicious Data Generator, and the data generated by
the simulation. The datasets in the Data Storage are used to simulate the sensors
and to validate the simulation output.

The database connection of the TaS enabler is flexible. Two simulations can
use different databases. If there is no configuration specified, the TaS enabler uses
a default database. The database to connect to can be any database that the TaS
enabler can reach.

Event

An event represents a message sent through the communication channels. It can be
a data message sent by a sensor or data received by an actuator. Figure 8.12 presents
the format of the event Schema.

The timestamp attribute indicates the time when the event has been captured.
The topic represents the MQTT/MQTTS bus channel related to the event. It is the
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Figure 8.12. Event Schema.

Figure 8.13. Dataset Schema.

source channel of the event where the data message corresponds to sensor data. It is
the destination channel of the event where the data message is data received by an
actuator. Its value is crucial for identifying the event to be replayed. The datasetId
attribute represents the dataset to which the event belongs. The isSensorData is set
to True if the event presents a data message sent by a sensor. It is False if the event
is a data message received by an actuator. The values attribute contains the value of
the message data. This value can be a number, a string, or an object. This design
helps make the event generic and making it possible to consider any message data
type.

Dataset

A dataset contains a series of events for a specific scenario. Figure 8.13 presents the
schema of a dataset. Each dataset has a unique id, name, and description to describe
the dataset objective. The source attribute indicates the dataset source. A dataset can
be created from a recording session by the Data Recorder (source: RECORDED) or
generated by the Regular and Malicious Data Generator (source: GENERATED).
A dataset can also be derived by cloning and modifying data from another dataset
(source: MUTATED).

By grouping the events by the dataset Id, we have all the events belonging to a
dataset.
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Figure 8.14. Data Recorder data flow.

8.2.3.3 The data recorder and digital twins concept

The TaS enabler provides the possibility to simulate an IoT system using historical
data. To this end, a Data Recorder module is needed.

Figure 8.14 presents the data flow of the Data Recorder. All the events in the real
system (coming from the broker) will be recorded. This data (including both sensor
and actuator data) is stored in the Data Storage as a dataset. The sensor data can be
forwarded directly to the testing system (using the forwarding broker). With the
recorded data from the real system, the SIS can be tested with real input. The more
data from sensors are recorded, the more test scenarios are tested. By synchronizing
the Sensor simulator timestamps with the Data Recorder, it is possible to simulate
a particular SIS (following the Digital Twin concept). By monitoring the SIS input
and output, we can build an automatic testing process for a complex IoT system.

The recorded data can be used as a source for simulation. It can also be mutated
so that it can contain different values for obtaining a modified testing scenario.
In the next section, we will explain how to generate a new dataset using a given
behavior profile.

8.2.3.4 The regular and malicious data generator

When testing the IoT system, there are many testing scenarios and cases that do not
frequently occur in reality. With the real IoT system, it is almost impossible to col-
lect the datasets for many testing scenarios. The TaS enabler provides a powerful



Test and Simulation (TaS) 191

Figure 8.15. Abnormal behaviours based on the data type and the constraints.

tool to solve this problem. The Regular and Malicious Data Generator module
helps developers create a testbed. It enables generating sensor data for various sce-
narios, e.g., making the temperature too high or too low. By combining multiple
data, one can create a testbed that includes many incidents or attack scenarios, such
as DDoS and data poisoning. The Data Storage stores all the generated data for fur-
ther use. Based on the data type and constraints on the time, values, or energy use,
many abnormal behavior types may exist as depicted in Figure 8.15.

The abnormal sensor behaviors are defined by energy, reporting time, and value
constraints.

Figure 8.16 illustrates how a data value is generated based on the selected
behaviours of the sensor. In the beginning, the energy constraint is checked. There
are two behaviors related to energy. If the sensor is in the low-battery mode, we
can reduce the reporting frequency. Notice that the user initially sets the frequency.
If the sensor is out of battery, it stops sending data. In the next step, we consider
the time constraint. We can select among three behaviors. The possible DOS attack
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Figure 8.16. Data generating flow.

increases the reporting frequency to simulate a DOS attack, and the sensor sends a
lot more data than what is considered normal. If there is a constraint on the maxi-
mum delay time for reporting data, we can simulate a behavior like a possible slow
DOS attack. For example, if the system expects to receive the temperature informa-
tion every 5 seconds maximum, then a slow DOS attack could change the sensor
behavior that the sensor sends a message every 6 seconds. Based on the time con-
straint, we can simulate a sensor that stops sending data for a certain period (node
failed). Finally, for each measurement provided by a sensor, the value constraint
is checked. There are many behavior types based on the measured data type, such
as invalid value or fixed value. Based on the selected behavior, the Data Generator
function returns a specific value for the measurement.

Besides the sensor’s behavior, it is also possible to change the behavior of the IoT
devices. For example, the GATEWAY_DOWN behavior makes the simulated IoT
device stop working after some time. When an IoT device stops working, all the
sensors and actuators belonging to that device also stop working.

8.2.3.5 Automatic testing

The TaS enabler has been designed to be easily integrated into any Continuous Inte-
gration and Continuous Delivery processes. Figure 8.17 illustrates the TaS enabler
concept. One of three events trigger the TaS process: code commit, new compo-
nent (software module or hardware device) added, new scenario added. Several tests
are executed by simulating the different testing scenarios on the system under test.
The tests can cover functional, operational, security, performance, and scalability
testing. If all the tests pass, we can deploy the new changes in the real environment.

Following the process we depict above, we can automatically test every change
in the system and cover every test scenario.

Test case

While testing an IoT system, we may want to test different network topologies,
such as adding a new device, removing a device, or just changing the way to
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Figure 8.17. Test and Simulation (TaS) Workflow.

connect devices. A test case is a collection of tests executed on one network topology.
There can be many different testing types (e.g., functional, security, or scalability
testing). A dataset defines a test. For test execution, the TaS enabler runs the simu-
lation and testing using each dataset by following the test order in the test list. We
can change the order of the datasets via the web interface.

Test campaign and the integration into DevOps cycle

While the test case groups the test by the defined network topologies, the test cam-
paign contains all the test cases that should be executed for each change in the IoT
system. The test campaign is the global test that covers every testing scenario and
testing aspect. The test campaigns are executed automatically every time there is
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Figure 8.18. Test and Simulation (TaS) Enabler Docker image.

a change in the system. For each test campaign, the TaS enabler runs test cases
according to the order in the list.

8.2.3.6 The evaluation module

The Evaluation module collects the simulated actuator data as well as the other met-
rics of the system. Then, it performs the evaluation based on the testing method-
ology (see Section 8.2.3.1 for more details).

The next section presents the implementation of the TaS enabler.

8.2.4 Implementation

8.2.4.1 The test and simulation (TaS) docker image

The TaS enabler has been designed to be portable. It can be installed as a Node.js
application and packaged as a docker image. Figure 8.18 presents the communi-
cations between the modules inside a docker container and between the docker
container and other modules.

The REST Server provides an API to interact with the tool. Via this API, we can
execute the module Data Recorder, Simulation, and Regular and Malicious Data
Generator. The Database is external to the docker container and can be connected
via the Data Storage module. The dashboard is the graphical interface implemented
using ReactJS [27].
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Table 8.1. Basic APIs to integrate into a DevOps cycle.

Path Method Data Response

/devops/ GET Get automation testing
configuration

/devops/ POST {webhookURL,
testCampaignId}

Update the automation testing
configuration

/devops/start GET Trigger the simulation and
testing process

/devops/stop GET Stop the simulation and
testing process

/devops/status GET Get the status of the current
execution

8.2.4.2 Basic APIs

Table 8.1 presents the list of basic APIs exposed by the tool for integration into a
DevOps cycle.

8.2.5 Evaluation

The TaS enabler has been evaluated in several use cases in the ENACT project.

8.2.5.1 Itelligent train system

Figure 8.19 shows the data flow of the TaS enabler in the Intelligent Train System
(ITS) use case. The Data Recorder records the WSN Coordinator data from broker-
01 part of the ITS system. The recorded data is stored in the Data Storage. The
Simulated Wire Sensor Network (WSN) Coordinator uses the recorded data to
simulate a several WSN Coordinators for testing the scalability of the ITS system.
All the simulated WSN Coordinators publish the data to broker-02 which is in the
ITS system under test. By evaluating the gateway status, we can assess the scalability
of the ITS system.

8.2.5.2 E-Health system

The TaS enabler is used in an e-Health use case to test if the parsing data function
works correctly in the e-Health gateway. Figure 8.20 presents the data flow of the
e-Health use case. The simulated sensors send some valid and invalid data messages
to the internal broker, and then these messages are consumed by the CloudAgent.
By mutating data messages, we can test the CloudAgent in various test scenarios,
such as “invalid data format” and “invalid value”.
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Figure 8.19. Intelligent Train System.

8.2.5.3 Smart home system

In the Smart Home use case, we used the TaS enabler as part of the DevOps cycle.
Figure 8.21 shows the data flow of the TaS enabler. First, the Data Recorder records
and builds the testing dataset from the real system. For each system change, such
as new features, and software updates, the TaS enabler uses the recorded dataset
to check the system reaction. By comparing the recorded system output with the
simulated system output, we can detect miss behaviors in the updated system.

Using the TaS enabler, we can automatically test the SIS in various test scenarios.
However, due to the SIS complexity, a problem may happen at any moment while
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Figure 8.20. E-Health System.

Figure 8.21. Smart Home System.
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the system is running. Knowing the root cause of the problem is very important
to find the solution. Therefore, we need a tool to identify the root cause of the
problem while running an SIS.

8.3 Root-Cause Analysis (RCA)

Root Cause Analysis (RCA) is a systematic process for identifying “root causes” of
problems or events and for responding to them. System administrators and DevOps
engineers use RCA not only for detecting the problems but also for understand-
ing their root-causes to prevent the recurrences and/or mitigate the impact. In the
context of ENACT, the RCA enabler relies on Machine Learning algorithms to
identify the most probable cause(s) of detected anomalies based on the knowledge
of similarly observed ones. Figure 8.22 presents the high-level architecture of the
implemented enabler.

The data collector allows gathering information from different sources (e.g.,
network, application, system, hardware) by relying on dedicated monitoring agents.
It has a plugin architecture that enhances its extension to new data formats. Parsing
such data allows extracting various attribute values relevant to the origin of any
detected incident. We automatically select the most relevant attributes by using
several machine learning algorithms. These attributes increase the analysis accuracy
and reduce the data dimensions as well as the computation resources needed.

The historical data is a set of data used for learning purposes. It consists of
labeled records collected over time. These records describe the original cause of
several incidents (e.g., a sensor is no longer permitted to send data to the central
gateway) and the relative attribute values (e.g., downstream data bit-rate measured

Figure 8.22. RCA Enabler high level architecture.
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in the central gateway decreased). The historical data is constructed by two
means:

• Active learning: We deal with controlled systems. Therefore, the collected
data can be easily labeled by actively performing different tests injecting
known failures and attacks.

• Passive learning: Once an incident is detected and alerted (e.g., by a third-
party tool) without knowing its origin, thanks to the aid of the system experts,
manual RCA is performed by debugging different logs and correlating various
events to determine the corresponding root causes. The result of this work
can be stored in the database with its relevant attribute values.

The historical data are derived from these two sources. The idea is to determine
when the system reaches a known undesirable state with a known cause. It involves
using the concept of Similarity Learning [8], i.e., Ranking Similarity Learning. The
RCA tool calculates the similarity of the new state with the known ones. It presents
the most similar states in the relative similarity order. The final goal is to recog-
nize the incident’s root origin by using historical data. In this way, the tool can
recommend to the operator which countermeasures to perform based on known
mitigation strategies.

The RCA Enabler works following two phases: the knowledge acquisition phase
(Figure 8.23) and the monitoring phase (Figure 8.24). The former is for building
a historical database of known problems and incidents. The latter consists of mon-
itoring the system in real-time, analyzing the newly-coming incident by querying
the historical data, and suggesting possible root causes. It is worth noting that pas-
sive learning in the knowledge acquisition phase can be continuously run during
the monitoring phase. We describe the details of each module in the following sub-
sections.

8.3.1 Data Collection

Analyzing an SIS requires different statistics and data, i.e., the logs, metrics, network
traffic, and any data that could identify the system state. A data collector is necessary
and can be provided by the system (e.g., in the ITS use case, the metrics are collected
and sent to the RCA enabler via the MQTT broker), or an enabler can be deployed
to collect different types of data, namely:

• Capturing network traffic: For example, the MMT-Probe [11] (TCP/IP net-
works) and the MMT-IoT [4] (IoT- 6LoWPAN) are able to sniff and record
the network traffic.
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Figure 8.23. RCA-Knowledge acquisition phase.

Figure 8.24. RCA-Monitoring phase.

• Reading and extracting logs: The current version of the RCA enabler supports
by default reading the data input in the form of JSON and CSV files. Other
formats can be rapidly taken into account thanks to the extensibility of MMT-
Probe (e.g., creating new plugins).

In the knowledge acquisition phase, the data can be collected in two ways:

• Actively injecting or reproducing known failures and attacks, then collecting
labeled corresponding data.

• Passively monitoring the system, debugging different logs and traces, cor-
relating various events and particularly by consulting the system experts to
determine the corresponding root causes as well as the relevant data.
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In the monitoring phase, the data is collected and transmitted to the RCA
enabler in real-time. In theory, there is no restriction in the type of data to be gath-
ered. On the contrary, a maximum of data for identifying the system functionalities
is desirable. Even though some data could be redundant, data processing steps are
performed to extract the most pertinent data.

8.3.2 Data Processing

As we mentioned in Section 8.1, there can be an enormous number of compo-
nents/indicators in the analysis of an IoT system. In the following subsections, we
discuss our techniques that avoid data noise, deal with heterogeneous data, and
calculate the similarity between two different data sets.

8.3.2.1 Attribute selection

Attribute selection (also known as feature selection) [5] is one of the core concepts in
Machine Learning that tremendously impacts the model performance. For complex
systems, it is common that the data collected is too complicated or redundant.
In other words, there might be some irrelevant or less important attributes (i.e.,
noises) contributing less to the target variable. Removing the noises helps not only
to improve the accuracy but also to reduce the training time. It is the first and most
essential step that should be performed automatically based on the feature selection
techniques or manually by system experts.

The current version of the RCA enabler has been integrated with the following
feature selection techniques:

• Univariate feature selection: The selection of the best features is based on uni-
variate statistical tests. Each feature is compared to the target variable while
the other features are temporarily ignored. The goal is to determine whether
there is any statistically significant relationship between them. Each feature
has its test score. The bigger the score is, the more likely the feature is impor-
tant. The features with top scores should be selected. The test score is the
average of the scores calculated based on the chi-square test, the f test, and
the mutual information classification test [5].

• Recursive feature elimination (RFE): It is about selecting features by recur-
sively considering smaller and smaller sets of features. The idea is to use an
external estimator (logistic regression model and random forest model [7])
that assigns weights to features (e.g., linear model coefficients). The least
important features are pruned step-by-step from the current set of features.
This procedure is recursively repeated on the pruned set until the desired
number of features left is eventually reached. Compared to univariate feature
selection, RFE considers all features at once, thus can capture interactions.
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8.3.2.2 Data normalisation

Normalization is a concept informally used in statistics, and the term “normalized
data” may have different meanings. In principle, data normalization means elimi-
nating heterogeneous data measurement units and making the attributes compara-
ble despite different value ranges.

In our perspectives, data normalization consists of two steps:

• Standardizing data to have a mean of zero and a standard deviation(s) of 1
(Equation (8.1) and Figure 8.25):

xstandardi zed =
x − mean(x)

s
(8.1)

• Re-scaling the data to have values between 0 and 1 (Equation (8.2)):

xnormali zed =
x − xmin

xmax − xmin
(8.2)

8.3.2.3 Similarity calculation

Suppose that the system’s temporal state can be reflected by n metrics (i.e., n
attributes). This set of n attributes can be represented by a vector in a multi-
dimensional space of n dimensions. Calculating the similarity and dissimilarity of
two states becomes the problem of measuring the distance of orientation (the angle)
and magnitude (the length) of their two representing vectors. Figure 8.26 depicts
an example in a 3-dimensional space.

The current version of the RCA enabler has been integrated with the following
similarity and distance measures:

• Cosine similarity [2]
• Adjusted cosine similarity [2]
• Jaccard similarity [2]
• Euclidean distance [2]
• Manhattan distance [2]
• Minkowski distance [2]

These measures are used to calculate the similarity score whose value is between
0 and 1. The bigger the similarity score is, the more similar the two compared
states are (e.g., if the similarity score is equal to 0.95, there is a 95% probability
that two compared states are considered the equivalent). The similarity score can
be computed based on one or multiple similarity and distance measures. In the
training phase, we determine the measures. Therefore, when we compare a known
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Figure 8.25. Data standardization.

Figure 8.26. Similarity calculation in 3-dimensional space.
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Figure 8.27. Historical database of known incidents.

state and its repetition, we have a similarity score as big as possible. Besides, to
avoid false positives, the similarity between a common proper state and each known
malicious state should be as low as possible.

8.3.3 Reaction and Visualization

First, the RCA enabler analyses live the data originating from the system under
monitoring. It reports back the similarity score of the current state, its most similar
known incident, and the corresponding root causes. If the similarity score is higher
than a given threshold, an alert is generated. The alert helps the system administra-
tors foresee how the system evolves from a normal functioning state to a known fault
or failure and determine the root causes to perform the most appropriate mitiga-
tion actions. For example, in the ITS use case, the RCA enabler communicates with
the ITS through an MQTT connection. When the RCA enabler receives a message
with all the relevant attributes, it identifies the level at which the system state and
a known incident are similar. It publishes the result to the MQTT exchange.

Regarding the visualization, the results of the RCA enabler can be viewed intu-
itively on a GUI. Figure 8.27, Figure 8.28, Figure 8.29 displays some screenshots
of RCA’s GUI. More results are presented in the following sections.

8.3.4 Evaluation

8.3.4.1 Performance evaluation with generated testing data

To evaluate the RCA enabler, we first generated a learning data set in CSV for-
mat with several known records. Each record describes an “incident” with different
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Figure 8.28. Newly detected incidents.

Figure 8.29. A newly detected incident and its similarity scores in comparison with

known ones.

“attribute” values. These learned “incidents” are stored together with the poten-
tial origin causes. The “attributes” refer to the metric values that can be gathered.
Afterward, we generate new attributes and check whether the system recognizes
them as a known incident among the ones that are already in the historical data.
The RCA enabler measures the similarity of each new record and each learned
incident. It ranks them by determining the most likely similar ones. To assess the
performance, we calculate the enabler’s response time with the function taking as
input the number of known states and the attributes identifying a state. In this
evaluation, the similarity score is the average of all similarity measures mentioned
in Section 8.3.2.3.

Figure 8.30 and Figure 8.31 show the results of our experiments. As expected,
more time is needed when the data volume handled increases. However, we observe
that the number of known states has less impact on the response time than the



206 Validation, Verification and Root-Cause Analysis

Figure 8.30. RCA Enabler’s response time towards the number of attributes.

Figure 8.31. RCA Enabler’s response time towards the number of known incidents.

number of the attributes has. The processing time needed increases more dras-
tically when more attributes are under consideration than when there are more
known states. This increase reaffirms the need for integrating “attribute selec-
tion” as aforementioned in Section 8.3.2.1. In our evaluation, we did not apply
any selection technique because the data was generated randomly. The attributes
are, thus, seemingly equal and make the selection not useful. However, there will
probably be a different story when real systems are involved (further discussed in
Section 8.3.4.2).
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Figure 8.32. General architecture for the evaluation.

8.3.4.2 Evaluation on a real IoT Testbed

Set-up of the experiment

To evaluate the RCA enabler, we performed several experiments on a real IoT
testbed called w-iLab.t1 provided by Imec.2 Figure 8.32 presents the general archi-
tecture of the experiments. Several IoT devices (Zolertia Re-Mote3) formed an IoT
network where the clients reported sensed data periodically to the border router
before these reports were forwarded via a USB line to a server installed in a more
powerful Linux-based machine. There was an IoT device to perform sniffing tasks:
capturing network traffic and piping via the USB line to the Linux-based machine
where MMT-IoT was deployed to analyze the traffic and extract the metrics for the
RCA enabler. Besides, the IoT network consisted of normal clients reporting sensed
data every 10 seconds, and one (or several) attacker(s) behaved interchangeably in
three modes:

• Normal mode reporting data every 10 seconds.
• DoS (Denial of Service) attack mode reporting data 100 times faster (10 mes-

sages/s) and with incorrect Frame Check Sequence (FCS4).
• Dead mode not reporting data at all (node failure).

1. https://www.fed4fire.eu/testbeds/w-ilab-t/

2. https://www.imec-int.com/

3. https://zolertia.io/zolertia-platforms/

4. FCS: The FCS field contains a number calculated by the source node based on the data in the frame. This
number is added to the end of a frame sent. When the destination node receives the frame, the FCS number
is recalculated and compared with the number sent in the frame. If they are different, the frame is con-
sidered malformed (intentionally or not) or modified between the source node and the destination node.

https://www.fed4fire.eu/testbeds/w-ilab-t/
https://www.imec-int.com/
https://zolertia.io/zolertia-platforms/
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Table 8.2. Attributes extracted and sent to RCA.

Ref. Attribute Description

(1) Network throughput
(bps, pps)

The whole network traffic throughput, computed in bits
per second (bps) and packets per second (pps)

(2) Throughput at
devices (bps, pps)

Throughput estimated at each device.

(3) Traffic transmitted
on links (bytes,
packets)

Traffic volume transmitted on each link during a
parameterized period (e.g., 10 seconds)

(4) Number of
routing-related
packets (packets)

Number of routing-related packets sent and received by
each device during a parameterized period (e.g., 10
seconds)

(5) Transmission delay
(ms)

The duration in millisecond since the packet is created by
a device (timestamp packaged in the sensed data) until it is
captured by the sniffer (captured packet’s timestamp)

(6) CPU usage (%) CPU usage at each device, packaged in the sensed data.

(7) Memory usage (%) Memory usage at each device, packaged in the sensed data.

(8) Battery level (%) Level of battery left at each device, packaged in the sensed
data.

(9) Power consumption
(W)

Power consumption (DC) at each device in Watts,
packaged in the sensed data.

(10) Average packet size
(bytes)

Average size of packets transmitted during a parameterized
period (e.g., 10 seconds)

(11) Probe ID An integer number representing the ID of the MMT-Probe
analysing the traffic and performing the extraction.

(12) Protocol ID An integer number representing the protocol ID

Table 8.2 summarizes the attributes extracted by MMT-IoT and transferred to
RCA for further analysis.

Attribute selection and data normalisation

As the first step, the RCA enabler selects the significant attributes among the 12
listed in Table 10. The selection is done by applying the techniques aforementioned
in Section 8.3.2.1.

An incorrect FCS can signify a malformed packet (e.g., due to a misconfiguration or an error in the imple-
mentation), a jamming attack (i.e., the attacker abuses the network by generating frames that should be
ignored), or a message manipulation attack (i.e., the attacker intercepts and modifies a frame’s content).
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Table 8.3. Feature Selection results.

Univariate feature selection Recursive feature elimination

Chi-square Mutual information Logistic Random

Ref. test f-test classification test regression model forest model

(1) true true true 1 true

(2) true true true 2 true

(3) true true true 2 true

(4) true false true 6 false

(5) true true true 3 true

(6) true true true 2 true

(7) true true true 2 true

(8) false false false 9 false

(9) false true true 6 false

(10) false false false 8 false

(11) false false false 10 false

(12) false false false 10 false

Table 8.3 summarizes the results when different Feature Selection models are
used. There are six attributes, namely (1–3), (5–7), which are considered significant
according to all the models. Four attributes (8), (10), (11), and (12) are concluded
to be not relevant and can be left out. The attributes (4) and (9) are recommended
by some models and not by others. We performed the analysis in the following
subsection with these two attributes and the other six attributes recommended by
all the models.

Similarity calculation and analysis

Firstly, regarding the DoS attack, one can see clearly in the statistics displayed by
MMT-IoT that:

• The traffic volume increased significantly during the attack period
(Figure 8.33).

• The attacker was evidently the most active device (Figure 8.34) and one end
of the most active link (Figure 8.35).

From the RCA point of view, all other selected attributes were more or less
affected by the DoS attack. The attack pattern was learned, and when repeated,
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Figure 8.33. Traffic throughput increased remarkably when the attack took place.

Figure 8.34. The attacker was the most active device.

the similarity score observed by the RCA was always no less than 0.92 (i.e., 92%
similar). It is worth noting that, in this evaluation, we computed the similarity score
based on the “adjusted cosine similarity”.

In node failure (dead device), all the attributes related to the dead device were
affected. The RCA enabler reported a similarity score between 0.84 and 0.87 when
the failure repeated.
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Figure 8.35. The attacker belonged to the most active link.

Lastly, when the border router was affected by the jamming attack of incorrect
FCS values, its CPU usage jumped virtually. When this behavior happened again,
the RCA enabler determined that it was up to 94% similar to the learned inci-
dent’s observed symptoms. However, even when all the network devices worked
normally, the RCA enabler identified that there was up to 78% similarity between
this incident and the event “Possible jamming attack with incorrect FCS values”.

8.4 Conclusion

In conclusion, This chapter presents two tools, i.e., the TaS and RCA enablers,
that enable the validation and verification of IoT systems. The TaS enabler, based
on the idea of “Digital Twins”, is a Software-as-a-Service solution that provides
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(i) a flexible simulation of sensor networks, (ii) a powerful data generator with real-
time data recording, and (iii) support for Continuous Integration and Continuous
Development. It helps IoT application developers save time and money on setting
up the testing environment and thus supports faster application delivery. The RCA
enabler systematizes the knowledge about the potential incidents that may occur
in the system. It prevents the incidents or to quickly and intelligently react against
their recurrences.

In practice, we can apply the TaS and RCA enablers to various systems other than
IoT systems in the context of ENACT. In general, they can work on any system in
which the data about the system’s functioning state can be collected. For the RCA
enabler, it would be beneficial if the owner or administrator has already acquired
a certain level of understanding about the system to facilitate the training phase
and the database creation for known incidents and root causes. Otherwise, we can
perform penetration tests to discover potential vulnerabilities so that the attacks
and failures can be injected and learned.

Moreover, both tools have been developed to be generic enough so that adapta-
tions can be easily made to make them applicable to various types of systems (e.g.,
industrial SCADA systems, 5G mobile networks). We plan to adapt and use these
two tools in several other collaborative projects in different contexts. We hope they
will play a crucial role in the Montimage ecosystem and be commercialized within
the MMT Monitoring solution.5
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