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Abstract. Anomaly detection in networks is an important aspect of net-
work security, enabling organizations to identify and respond to unusual
patterns of activity that may indicate a security threat or performance
issue. By identifying and addressing anomalies in real time, organiza-
tions can reduce the risk of data breaches and other security incidents,
as well as ensure the optimal performance and reliability of their net-
work infrastructure. However, implementing effective anomaly detection
in networks with good quality is a significant challenge, requiring careful
consideration of several key factors.
One of the main challenges of anomaly detection in networks is the sheer
volume of data that must be processed and analyzed. Networks generate
vast amounts of traffic data, making it difficult to identify patterns and
anomalies in real time. To address this challenge, anomaly detection
systems must be able to handle large amounts of data and operate at
high speeds, while also minimizing false positives and false negatives.
In this chapter, we present MMT a monitoring framework developed
by the Montimage research team to perform anomaly detection. This
framework is being extended with Explainable AI (XAI) capabilities to
better understand the classification done by AI/ML-based algorithms.
First experimentations are presented in this book chapter using SHAP,
LIME and SHAPASH technologies.

Keywords: Network Monitoring · Anomaly detection · Explainable AI.

1 Introduction

Anomaly Detection (AD) techniques can be used to identify a wide range of
network anomalies, including network intrusions, malware infections, Denial-of-
Service (DoS) attacks, and other forms of malicious activities [4], [9]. There are
several different approaches to anomaly detection in networks, including rule-
based methods, statistical methods, and machine learning methods. Rule-based
methods involve defining a set of rules that describe normal network activity, and
then flagging any activity that deviates from these rules as anomalous. Statistical
methods involve using probability distributions and statistical models to iden-
tify deviations from normal network activity. Machine learning methods involve
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training algorithms on large datasets of network activity to identify patterns and
anomalies.

One of the key challenges of anomaly detection in networks is minimizing false
positives, that occur when normal network activities are incorrectly classified
as anomalous, and false negatives, obtained when anomalous activities are not
detected [1]. To address this challenge, many anomaly detection systems use a
combination of multiple techniques, as well as feedback loops and manual review
by security analysts.

Other challenges are the need of network activities continuous monitoring
and the quality of detecting anomalies. In fact, anomaly detection systems have
not only to be able to identify anomalies, but also to accurately detect true ones
and quickly respond to them, in order to minimize the risk of security incidents or
performance issues. The first challenge can be faced through the combination of
automated detection methods and human oversight, as well as ongoing analysis
and refinement of the detection algorithms. Moreover, AD systems must avoid
misclassifications, e.g., normal network activities detected as anomalous. This
requires a deep understanding of network behavior and the ability to adapt to
changing patterns of activity over time [2].

One approach to anomaly detection is to use eXplainable Artificial Intel-
ligence (XAI) techniques [3], which are designed to provide transparency and
interpretability into the decisions made by the algorithm. This can help network
administrators understand why certain network activity is classified as anoma-
lous, and can provide insights into potential security threats or performance
issues. For example, an XAI-based anomaly detection system might identify a
sudden surge in network traffic from a particular IP address as anomalous. By
providing explanations of how the algorithm came to that decision, the system
can help the network administrator understand that the IP address is engaged
in potentially malicious activity, such as a distributed denial-of-service (DDoS)
attack.

In this chapter, we rely on Montimage Monitoring Tool (MMT) [18], i.e., a
set of modules to perform real-time or post analysis of captured traffic, com-
bined with AI/Machine Learning (ML) algorithms to classify sessions and de-
tection deviations from learned behaviours. Through this tool, we will perform
network monitoring and anomaly detection, also introducing the possibility of
using XAI for network traffic classification. The preliminary outcomes of our
experimentation will help to extend the AI-based MMT monitoring framework
with transparency and interpretability.

The chapter is organized as follows: Section 2 will present the MMT archi-
tecture and its usage for anomaly detection and network classification. Section
3 will propose the usage of XAI for the classification of network traffic. Several
algorithms like SHAP and LIME are presented and included in MMT as plug-
ins to existing Deep Learning (DL) algorithms. Section 4 will present the first
results demonstrating the interest of using XAI in network traffic classification
in general and in anomaly detection in particular.
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2 Network monitoring approaches: MMT monitoring
framework example

Network monitoring is the process of observing and analyzing the performance
and security of a computer network [5]. It involves collecting and analyzing data
on network activity, such as the amount of data being transmitted, the types of
data being transmitted, and the sources and destinations of the data.

Classification is an important aspect of network monitoring. It involves iden-
tifying network traffic and categorizing it into different types, such as email, web
browsing, or file sharing. This can be done through the use of machine learn-
ing algorithms, which analyze patterns in the network traffic to identify different
types of activity. By classifying network traffic, network administrators can iden-
tify potential security threats, such as suspicious or unauthorized activity, and
take appropriate action to mitigate the risk. They can also gain insight into
network usage, identifying trends and patterns that can help optimize network
performance and improve user experience.

Overall, network monitoring and classification are critical components of
maintaining a secure and efficient computer network. Through the use of ad-
vanced algorithms and analysis techniques, network administrators can gain a
deeper understanding of their network and take proactive steps to ensure its
continued success.

In the reminder of this section, we present: i) classification techniques, i.e,
rule-based classification and AI-based classification, in subsection 2.1, ii) the
global architecture of Montimage monitoring tool and its application for anomaly
detection respectively in subsections 2.2 and 2.3.

2.1 Classification techniques

Rule-based network classification: it is a method of categorizing network
traffic based on a set of pre-defined rules, that are typically based on attributes
such as the used protocol, source and destination IP addresses, and port numbers.
The process of rule-based classification involves: i) examination of data packets
as they move through the network and ii) comparison of their attributes to a set
of predefined rules. When a packet matches a rule, it is classified accordingly. For
example, a packet that is identified as HTTP traffic (based on the used protocol)
with a destination port of 80 (which is typically used for web traffic) might be
classified as “web browsing”.

Rule-based classification can be effective in identifying certain types of net-
work traffic, such as web browsing, email, or file sharing. However, it can also
be limited by its inflexibility, since it relies on predefined rules that may not
capture all types of network traffic. In addition, rule-based classification can be
vulnerable to evasion techniques used by attackers to disguise their activities,
e.g., using non-standard ports or encryption.

Despite these limitations, rule-based classification is still a widely used method
of network traffic analysis, especially in situations where the network environ-
ment is well understood and the types of traffic are relatively stable. It can be
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an efficient way to identify and filter out unwanted or malicious traffic, as well
as provide insights into network usage and performance.

AI-based network classification: it involves the use of AI and ML algorithms
to identify and categorize network traffic. These algorithms are trained on large
datasets of network traffic and use statistical models to classify new data based
on their patterns and their features. AI-based network classification can be more
flexible and accurate than rule-based classification, since it can learn from data
and adapt to new and evolving types of network traffic. For example, an AI-
based classification system might be able to identify previously unknown types
of traffic, such as a new type of malware or an emerging application protocol.

There are several different types of AI-based classification techniques, includ-
ing supervised learning, unsupervised learning, and deep learning. Supervised
learning involves training the algorithm on a labeled dataset, where the correct
category of each data point is known. Unsupervised learning involves discovering
patterns and relationships in unlabeled data, which can be useful for identifying
new and previously unknown types of traffic. Deep learning involves training
neural networks with multiple layers to learn complex data representations.

AI-based network classification has several advantages over traditional clas-
sification methods. It can provide greater accuracy and speed, allowing network
administrators to quickly identify and respond to potential security threats. It
can also be more scalable, since it can learn from large datasets and adapt to
new types of traffic over time.

However, AI-based classification also requires significant computational re-
sources and expertise to develop and maintain. It also raises concerns around
privacy and security, since large amounts of sensitive network traffic data are
required to train the algorithms. Therefore, it is important to carefully consider
the risks and benefits of AI-based network classification before implementing it
in a network environment.

2.2 Global MMT monitoring architecture

The MMT monitoring framework is an open source monitoring solution devel-
oped by Montimage and freely available for the research community on github
[18]. Its workflow is presented in the Fig. 1 and hereinafter we analyze each MMT
component.

Features Extraction: it is the functionality of the module “MMT-Extract”
that allows to parse the network traffic, identify sessions and compute packet
and session attributes called features. This module is implemented as a C library
that analyzes network traffic to extract network and application-based events.
Extraction is powered by a plugin architecture that allows adding new protocols
or application message formats to parse. In the current development, more than
600 plugins for classical protocols and applications are already implemented.
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Fig. 1: Monitoring components of MMT.

Rule-based analysis: “MMT-Security ” is a signature-based monitoring so-
lution, that allows analysing network traffic according to a set of properties.
These properties contain signatures that formally specify security goals, or mali-
cious behaviours related to the monitored system. The MMT-Security property
model is inspired by Linear Temporal Logic (LTL) and can be referred to the
following two types of properties.

1. Properties that describe the normal, legitimate behaviour of the application
or protocol under analysis. Consequently, the non-respect of the property
indicates a potential violation of a safety or security requirement; e.g., all
the ports in a computer must be closed unless they are being used by an
authorised application.

2. Attacks that describe malicious behaviour corresponding to an attack model,
a vulnerability or misbehaviour. In this case, the respect of the property
indicates the detection of a potential incident; e.g., a big number of requests
in a short period of time could be a DoS attack.

The chosen language of “MMT-Security” properties is XML format, due to
its simplicity and straightforward structure verification. A property is a general
ordered tree as shown in Fig. 2, where the leaf nodes are the atomic events
captured in the traces. Each property is composed of a context, in the left branch,
and a trigger, in the right branch. Then, a property is valid when the trigger is
valid, and the trigger is inspected only if the context is valid.

Machine Learning based anomaly detection: “MMT-AI ” allows to per-
form AI-based analysis of the collected features applying one or several AI/ML
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Fig. 2: Security property structure in MMT [18].

algorithms. It is responsible for building a model (which depends on the data and
the chosen ML algorithm), as well as utilising existing ones. We can therefore
distinguish its two modes of operating, i.e., training and prediction.

1. Training : it is designed to create and parameterize the model based on al-
ready cleaned and transformed data. This means that it executes the algo-
rithm selected by user and a model is built by using the training data in
order to find its weights and biases that would lead to the best results. Loss
function, with penalised bad prediction, is used as a metrics of result during
training. Depending on the selected algorithm, this step also includes the
experimentation of algorithm parameters different values, such as learning
rate, activation functions, batch size and so on. In the proposed system, it
is assumed that this step is either done by a user a bit familiar with hyper-
tuning, or it is done by utilisation of the values directly suggested by the
system.
– Model evaluation. In order to evaluate the sufficient amount of parame-

ters and the model training, the training needs to be done using a sep-
arate dataset from the testing dataset, thus the model will be tested on
the completely new samples. In this case the evaluation checks whether
the model is generalised enough. To investigate the results, the correct-
ness of classification is verified using the following terms: i) True Positive
(TP) and True Negative (TN) are samples that are correctly assigned
to the normal and anomaly classes respectively; ii) False Positive (FP),
False Negative (FN) are samples that are incorrectly assigned to positive
or negative classes.
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2. Prediction: it is the activity done after the model is trained (that’s to say
the algorithm is executed in training mode), and the satisfactory results are
obtained. It involves utilising the model directly on new, unseen data (in
a real-life case scenario these are just production data) and obtaining the
results, such as probabilities, classifications, etc. Importantly, the accuracy
of the prediction results can also be used in order to further hyper-tune the
model.

As the system aims to simplify the prototyping and utilisation of AI/ML
algorithms for practical applications, it is assumed that the user may want to
create multiple different models. Therefore, instead of selecting one model’s pre-
dictions from one particular model, it can be beneficial to combine the results of
different models together. Thus, this final (and optional) step of the ML module
consists of the ensemble part that is capable of joining the results together.

Root Cause Analysis: “MMT-RCA” relies on machine learning algorithms
to identify the most probable cause(s) of detected anomalies based on the knowl-
edge of similar observed ones. It enables the systematization of the experience
in dealing with incidents to build a historical database and verify whether a
newly detected incident is similar enough to an observed one with known causes.
Thanks to MMT-RCA’s suggestions, remediation actions could be timely and
wisely taken to prevent or mitigate the damage of the recurrence of problems.

2.3 Application of MMT for Anomaly detection

MMT-AI has been used in several projects e.g., for differentiating bots and
human activities in the net [35], for anomaly detection in industrial systems
(e.g., Load Position System of ABB) [7]. In the following, we present a classical
usage of MMT-AI on an open-source database CSE-CIC-IDS2018 provided by
the Canadian Institute for Cybersecurity [15].

Settings Stacked AutoEncoders (SAE) [8] and Convolutional Neural Network
(CNN) [6] are used to train and classify the network traffic with the Canadian
dataset. More in detail, SAE are multiple encoders stacked on top of one another.
The number of neurons in each decoder and encoder are the same. They aim
at dimensionality reduction, i.e., filtering the essential features from the data.
Then, CNNs are used and they are a specialized type of artificial neural networks
that use, in at least one of their layers, a mathematical operation called convo-
lution in place of general matrix multiplication. It consists of an input layer,
hidden layers, which perform convolutions, and an output layer. The general im-
plemented architecture can be seen in Fig. 3. The advantage of this architecture
is its flexibility, as both modules can be easily added to the structure of the the
global system and integrated in the final solution.
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Fig. 3: The AI-based anomaly detection architecture.

Features extraction: the feature extractor module is used in both generating the
training/testing datasets, and on the input file for prediction.

Scaling: data scaling is the treatment data process in order to obtain standard
format data, thus the training is improved, accurate and faster. Indeed, a model
with large weight values is often unstable, which means that it may give poor
performance during learning and have a high sensitivity to the input values, that
leads to a higher generalization error. Column normalization involves bringing
the column values to a common scale, which is usually done for columns with
varying ranges.

MinMaxScaler from Scikit learn library [34] transforms features by scaling
each feature to a given range. This estimator individually scales and translates
each feature, in this way values are limited to a given range in the training
set, e.g., between zero and one. The transformation is given by the following
equations:

Xstd =
X −Xmin

Xmax −Xmin
(1)

Xscaled = Xstd × (Xmax −Xmin) +Xmin (2)

where (Xmin, Xmax) represents the desired range of scaled data, e.g., (0, 1).

Training: in the learning phase, the model is fed with the so-called training
dataset, and the model is tested in order to obtain the best performance and
highest accuracy of the final classification. The input files pass through the fea-
tures extractor module which runs the MMT-Extract. Then, it creates a training
and testing .csv files with balanced 0/1 classes. More in detail, the dataset is
divided in this way: 70% for training and 30% for testing.

At this level, there is the possibility that we must do multiple experiments
with the use of different parameters of the models, e.g., CNN or SAE. Thus, addi-
tional model adaptation towards specific conditions or changes are recommended
in order to obtain higher performance and accuracy of the model that will be
saved for prediction purpose later. The model’s structure is hybrid, composed of
two auto-encoders and one dimensional CNN as shown in Fig. 4.
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Fig. 4: Overview of the deep learning modules.

Evaluation We applied the learned model to the 30% of remaining datasets. The
classification is done and the results are presented in the next subsection.

Results and interpretation: using the default parameters, the training on
these datasets gives the following results, as shown in Table 1 and Table 2.

Table 1: Confusion matrix 1.
0 1

0 6779 14
1 3 6790

Table 2: Metrics of model using default parameters.
Precision Recall F1-score Support

0 (normal traffic) 0.999558 0.997939 0.998748 6793
1 (malware traffic) 0.997942 0.999558 0.998750 6793

Accuracy 0.998749 0.998749 0.998749 0.998749
Macro average 0.998750 0.998749 0.998749 13586

Weighted average 0.998750 0.998749 0.998749 13586
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The obtained results are quite impressive and are more than 99% for the
precision, recall and F1-score, as shown in Table 3 and Table 4. However, better
results are still possible by refining parameters.

Table 3: Confusion matrix 2.
0 1

0 6778 5
1 3 6790

Table 4: Metrics of model using advanced parameters.
Precision Recall F1-score Support

0 (normal traffic) 0.999558 0.999264 0.999411 6793
1 (malware traffic) 0.999264 0.999558 0.999411 6793

Accuracy 0.999411 0.999411 0.999411 0.999411
Macro average 0.999411 0.999411 0.999411 13586

Weighted average 0.999411 0.999411 0.999411 13586

The same methodology has been applied to real traffic data collected in
the Montimage internal network (private network). The train and test datasets
present 15000 samples together and as already said, the dataset has been split
into 70% for training and 30% for testing. The data are shuffled in order to give
different patterns of the presence of 0/1 (normal/malicious) samples in the files.
After the training process on these data, we obtained the following results, as
shown in Table 5 and Table 6.

Table 5: Confusion matrix 3.
0 1

0 7500 0
1 87 7413

The results were good enough to affirm that the obtained model is efficient.
Thus we further investigated the classification phase in order to check the accu-
racy of the prediction of the model. We used a portion of the raw normal traffic
data that we used for training. In this way, we know that the model is correctly
functioning when we see zeros in the predicted malware value. However, the re-
sults were not compatible with the expected values and the predictions are thus
not correct. The model predicts that there were attacks in the known normal
traffic. Therefore, further investigation and testing need to be done.
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Table 6: Metrics of model using real network traffic.
Precision Recall F1-score Support

0 (normal traffic) 0.999558 0.999264 0.999411 6793
1 (malware traffic) 0.999264 0.999558 0.999411 6793

Accuracy 0.999411 0.999411 0.999411 0.999411
Macro average 0.999411 0.999411 0.999411 13586

Weighted average 0.999411 0.999411 0.999411 13586

Discussion: the manual investigation shows that the classification using AI-based
anomaly detection provides in some cases false positives (e.g., 0.1% for malware
prediction using default parameters) which are difficult to interpret mainly with
theoretical metrics that are more than 99% (precision, recall, f1-score etc.). The
need to have more transparency is needed in such context to better interpret
the results and understand why we have such decisions. That’s why we will use
XAI to have a better insight on network traffic classification using Explainable
AI. These results are still preliminary.

3 Interpreting ML models for user network activities
classification

3.1 Motivation

Context: network traffic classification becomes more and more challenging due
to the growth in network traffic. As there are new applications with different
characteristics and network requirements, it is crucial to identify the require-
ments to provide the appropriate resource to each application. In the literature,
several approaches have been proposed for network traffic classification based on
the well-known ports (e.g., TCP or UDP port numbers), and on Deep Packet
Inspection (DPI) technique [27]. However, port-based classification technique is
ineffective because mapping between ports and applications using dynamic ports
is not well defined. Moreover, the growing popularity of encrypted traffic HTTPS
and Virtual Private Networks (VPN) increases user security and privacy, but also
becomes a big challenge for traditional traffic analysis, making DPI-based ser-
vice classification unfeasible. Therefore, it raises the need for advanced analysis
techniques based on other criteria, such as behavior analysis. With the introduc-
tion of network encryption techniques, such as the TLS protocol, the accuracy
and efficiency of conventional Network Intrusion Detection Systems (NIDS) that
were using rule- and signature- based monitoring detection methods is greatly
reduced. Consequently, in the last decade, research efforts have moved towards
new analysis methods based on AI techniques for network traffic classification.
Indeed, various AI algorithms have been used in the literature, such as supervised
[27,28], unsupervised [29], and hybrid machine learning approaches [30,31,32].

Nowadays, apart from accuracy and performance, new requirements concern-
ing trustworthy, transparency, unbiasedness, privacy, robustness also need to be
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taken into account in the development of AI-based systems. Nonetheless, exist-
ing AI methods, especially complex ones like Deep Neural Networks, are seen
as black boxes, thus have a common limitation of lacking explainability. Indeed,
the classification results of existing work do not provide the users with any in-
formation of how the dataset, input features or selected models contribute to
the predicted classification. In this context, user network activities classifiers, as
well as other traffic analysis applications, must be improved and optimized not
only in terms of performance but also for other properties listed above. Recently,
eXplainable Artificial Intelligence (XAI) has become a hot research topic in the
AI community [10]. It provides a rationale that allows users to understand why
an AI-based system has produced a given output and increases trust of end-
users. Different approaches [21,24] are proposed to providing and improving the
understanding, in the global and local manner, of what the models have learned
and how the models make individual predictions.

Proposal: our work aims at characterising and classifying user network activ-
ities using machine learning techniques. We use popular supervised techniques,
such as Random Forest, neural networks, XGBoost1 and LightGBM2, and unsu-
pervised techniques, such as K-Means, for classification. Furthermore, we want
not only to understand why our application produces promising results, but also
why it makes some wrong predictions in some cases to further improve the per-
formance. To achieve this goal, we add an extra explainability layer on top of
our AI-based classification system by applying different popular XAI methods,
such as SHAP and LIME. The full dataset and the code of the AI-based system
will be published along with this paper at [14].

3.2 Classification of user network activities

Overview Our classification system takes as input network traffic data with IP
and TCP/UDP headers fields. Figure 5 illustrates an overview of the workflow
of our AI-based classification consisting of four main phases: dataset generation,
dataset preprocessing, feature extraction and classification. The dataset genera-
tion process is indeed important for training and testing our application. The
dataset preprocessing phase is required to describe and transform the input net-
work traffic data into a set of features suitable for the classification task. Then,
different classification models are executed using the feature selection output to
predict the user activity in one of three groups: Web, Interactive and Video.
Below, we describe the four phases in more details.

Types of activities: we choose the most common user activities on the Internet
covering behaviors exhibited by the network traffic from different applications.
The set of three classes are as follows:
1 https://xgboost.readthedocs.io
2 https://lightgbm.readthedocs.io

https://xgboost.readthedocs.io
https://lightgbm.readthedocs.io
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Fig. 5: Overview of AI-based classification for user activities.

1. Web browsing activity includes the network traffic generated when users
search or view different web pages, including downloading of multimedia con-
tent such as text, images or advertising video. This activity can also include
traffic of applications that transfer of big volume data over the network.

2. Interactive activity contains network traffic of applications that execute
real-time interactions, for example chatting application like Discord, Mes-
senger or remotely editing files on Google Docs.

3. Video activity contains network traffic of applications consuming video in
streaming mode, for example watching online movies or Youtube videos.

Dataset generation: Figure 6 depicts the overview of our methodology used
to capture network traffic to generate the dataset for training and evaluating the
classification system. First, we capture the traffic using Wireshark [17] to produce
pcap files whose size is 2.15 Gb when a user performs some normal activities on
a single host. Concretely, for each class, we perform the following activities: Web
(web browsing in blogs, social networks and shopping sites), Interactive (chatting
application like Discord, Messenger), and Video (watching Youtube and movies).
Therefore, the main dataset is composed of several network traffic traces, each
belonging to a specific user activity. Then, we filter those pcap files so that there
is one source IP and one destination IP for each pcap file. Also, all packets with
an empty payload and non-TCP or -UDP packets should be filtered out.

We use our open source Montimage security monitoring framework (MMT)
[18], in particular “MMT-Probe” module [19] to convert pcap files into csv
reports. We can also visualize pcap files with “MMT-Operator ” [20]. The .csv
files characterise the network traffic using the following features: the timestamp,
the protocols, the source and destination IP addresses, the payload size in bytes,
the number of packets, etc. The full dataset in both pcap and csv formats is
being published along with this paper at [14].

Dataset preprocessing: some activities may produce multiples traces, for
instance, MMT-Probe converts a single pcap file capturing a Video activity into
multiple csv files. Therefore, first of call we need to merge those csv files belonging
to a single activity into a single csv file for further analysis. Next, we only select
interesting data concerning the network traffic in the merged csv reports and
also compute additional statistics values, like data aggregation. We come up
with 21 features that will be described later, as shown in Table 7. Finally, the
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Fig. 6: Traffic dataset generation.

full dataset consists of 382 labeled traces for three traffic classes. The number of
traces in Web, Interactive and Video activities are 304, 34, 44, respectively. The
final set of processed csv files will be used through the analysis and evaluation
of our AI-based classification system.

Feature extraction: Table 7 shows 21 features of 5 main categories. In the
group Duration, the feature session_time shows the total time wherein a user
interactions with applications when performing an activity. In the group Proto-
col, there are 2 features corresponding to the percentage of TCP or UDP traffic.
Normally, the two features values always add up to 100%. In the group Uplink
and Downlink, we use some common features of uplink and downlink commu-
nication, such as data volume in bytes, number of packets and percentage of
packets to the total packets. In addition, we also compute other useful values,
such as the maximum, minimum, mean and standard deviation. Finally, in the
group Speed, we add two more features concerning the network speed. This set
of features is optimal and suitable to describe network traffic in our scenario.

Classification: we implemented the classification application in Python version
3.10 using the open source popular ML libraries, such as Scikit-learn3, Keras4

and TensorFlow 2 5. Data pre- and post- processing have been performed using
the numpy and pandas libraries. The graphical plots have been obtained using
popular libraries, like matplotlib and seaborn. For the deep learning model, we
used a Sequential model as our network consists of a linear stack of layers from

3 https://scikit-learn.org
4 https://keras.io
5 https://www.tensorflow.org

https://scikit-learn.org
https://keras.io
https://www.tensorflow.org
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Table 7: Features selection.
Category Feature Id Feature Description

1 Duration session_time total time wherein a user interacts with apps
2 Protocol %tcp_protocol percentage of TCP traffic
3 %udp_protocol percentage of UDP traffic
4

Uplink

ul_data_volume uplink data volume in bytes
5 max_ul_volume maximum of uplink data volume
6 min_ul_volume minimum of uplink data volume
7 avg_ul_volume average of uplink data volume
8 std_ul_volume standard deviation of uplink data volume
9 %ul_volume percentage of uplink data volume
10 nb_uplink_packet number of uplink packets
11 ul_packet percentage of uplink packets
12

Downlink

dl_data_volume downlink data volume in bytes
13 max_dl_volume maximum of downlink data volume
14 min_dl_volume maximum of downlink data volume
15 avg_dl_volume average of downlink data volume
16 std_dl_volume standard deviation of downlink data volume
17 %dl_volume percentage of downlink data volume
18 nb_downlink_packet number of downlink packets
19 dl_packet percentage of downlink packets
20 Speed kB/s number of kB per second
21 nb_packet/s number of packets per second

the Keras library. Concretely, a fully-connected network structure has three lay-
ers: in the first two layers we used the most widely used activation function,
i.e., Rectified Linear Unit (ReLU), while in the output layer we used the Sig-
moid activation function. In addition, we used the default models of XGBoost,
LightGBM and Random Forest for classification.

The full dataset and the code to perform the evaluation of the experiments
can be found at [14]. For the evaluation, we randomly split the main dataset,
including 382 traces, into the training and testing datasets with a probability of
70% to perform cross validation. Concretely, we used 267 traces to building and
training the models and evaluate them against the testing dataset of 115 traces.

3.3 Evaluation

Metrics: we measure the performance of classification models using some pop-
ular metrics [16], such as the accuracy, precision, recall (or sensitivity) and F1-
score metrics. Those metrics are defined in the following equations (3), (4), (5)
and (6) and are applied to any classification models. More specifically, TP, FP,
FN are the number of True Positive instances (correctly classified), the number
of False Positive instances (incorrectly classified as a class), and the number of
False Negative instances (incorrectly classified as another class), respectively.
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(a) Keras model. (b) XGBoost model.

(c) LightGBM model.
(d) Random Forest Classifier model.

Fig. 7: Confusion matrices of 4 models for the testing dataset.

The F1 score metric takes both precision and recall into account. All those met-
rics values are in range from 0 to 1.

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1 =
2× Precision×Recall

Precision+Recall
=

2× TP

2× TP + FP + FN
(6)
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Supervised classification models: Table 8 contains the metrics values of the
classification results from the testing dataset for each user activity. Moreover,
Figure 7 provides confusion matrices of three classification models to better
visualize the relationships between different user activities. While the rows of the
confusion matrix illustrate the predicted classification distribution for each user
activity, the columns represent the true activity distribution for each predicted
class. In addition, the recall for each class is shown in the main diagonal of the
confusion matrix.

Table 8: Experimental results of activity classification for the testing dataset.
Activity Keras XGBoost LightGBM Random Forest Classifier

Precision Recall F1 Score Precision Recall F1 Precision Recall F1 Precision Recall F1
Web 0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.99 1.00 0.99 0.99 0.99
Interactive 1.00 0.91 0.95 1.00 0.95 0.91 1.00 0.90 0.82 1.00 0.91 0.95
Video 0.78 0.70 0.74 0.88 0.78 0.70 0.91 0.95 1.00 0.91 1.00 0.95

Accuracy: 0.95 Accuracy: 0.96 Accuracy: 0.98 Accuracy: 0.98

As shown in Table 8 and Figure 7, the accuracy values of four classification
models, including the Keras model, the XGBoost model, the LightGBM model
and the Random Forest Classifier model, are outstanding with 95% (5 wrong
predictions), 96% (5 wrong predictions), 98% (2 wrong predictions) and 98% (2
wrong predictions), respectively. Other metrics like the precision, recall and F1
scores are mostly over 95%, for all except Video activities. Among four classi-
fication models, the LightGBM model and the Random Forest Classifier model
have the best performance against the testing dataset as they predict correctly
all instances of Web and Video activities, while the other two models Keras and
XGBoost have the same 4 wrong predictions. Interestingly, for Interactive activi-
ties classification, the overall best classification model LightGBM performs worst
with 2 wrong predictions, while others have only one. The results suggest that
AI classification models are complements to each other, and combining those
supervised models could give us better results.

One possible explanation of the worst results of those models in classifying
Web and Video activities is that users may perform unintentionally those activ-
ities at the same time, e.g., users browser web pages that access the content in
Video activities or some advertising videos pop up on web pages. Furthermore,
Web activities have variable behaviors in different forms and share its feature
space with other types of user activities.

3.4 Explainable AI (XAI)

State-of-the-art of XAI method: eXplainable AI (XAI) [10] is a promis-
ing set of technologies that increases the AI black-box models’ transparency to
explain why certain decisions were made. While AI plays a critical role in dif-
ferent domains, XAI is crucial to enhance trust and transparency for people to
use future AI-based applications. For instance, in the previous subsections, we
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employed different AI models for user activity classification and achieve very
good results but still incorrectly classify some instances. However, those models
are complex with multiple input features and not readily interpretable by de-
sign, thus hindering users or even developers to understand and debug them to
improve the performance of the AI-based system. Therefore, we need to build
an explainability layer on top of the AI models to provide post-hoc explainabil-
ity and enhance their interpretability. As depicted in Figure 8, some popular
post-hoc explainability methods are visual explanations, local explanations, ex-
planations by example, and feature relevance explanations.

Fig. 8: Conceptual diagram showing different existing post-hoc explainability
methods for ML models [10].

– Local explanations aim at approximating explanations to less complex so-
lution sub-spaces for model predictions by only considering a subset of data.
Local Interpretable Model-agnostic Explanations (LIME) [24] is a widely pop-
ular technique used in interpreting outputs of black-box models in several
fields and applications.

– Feature relevance explanations compute relevance scores of the model
features to quantify the contribution or sensitivity of each feature to the
model’s output. Shapley Additive Explanations (SHAP) [21] is a popular XAI
technique that identifies the importance of each feature value in a certain
prediction using popular cooperative game theory technique. Permutation
Feature Importance is a global XAI method that measures the increase in the
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prediction error of the model after we permute the feature’s tabular values.
To assess how important a specific feature is, we compare the initial model
with the new model on which the feature’s values are randomly shuffled.

– Explanations by example consider the extraction of representative data
examples that relate to the result generated by a certain model, allowing to
get a better understanding of the model. Some XAI methods of this category
are counterfactual explanations [25] and adversarial examples.

Each of those techniques covers a way in which humans explain an object
and the combination of all methods provide us the whole explanations about the
AI models. However, as many methods may be suitable for different types of the
AI models or datasets, we need to consider the best appropriate methods for
the concrete problem being solved. Next, we apply some popular XAI methods,
such as SHAP and LIME, to provide both global and local explanations of the AI
models that we used previously for user network activities classification. Since
both SHAP and LIME are model-agnostic XAI methods, which implies that they
can be applied to any ML models, we will discuss in details the explanations for
the Keras model. The full results can be found at [14].

SHAP Lundberg et al. proposed the SHapley Additive exPlanations (SHAP)
method which offer a high level of interpretability for a model [21]. The SHAP
values, which are based on the concepts of game theory, provide both global and
local explainability of any ML models. For global explainability, the SHAP values
show how much each input feature contributes, either positively or negatively, to
the model’s global output. For local explainability, as each prediction has its own
set of SHAP values, we can explain why the model makes a specific prediction
and input features importance. Our implementation uses the KernelExplainer
method of the SHAP library [13] to calculate SHAP values and build summary
and dependence plots. Specifically, the KernelExplainer builds a weighted lin-
ear regression to compute the variable importance values using the dataset, the
labeled outputs and the model predictions. In addition, we apply also the dedi-
cated method DeepExplainer that performs calculations of the SHAP values for
the Keras model faster than the previous one KernelExplainer.

SHAP summary plots: they show the positive and negative relationships of the
AI models with its outcome. Figure 9 shows SHAP summary plots for Web,
Interactive, Video and all activities classification using the Keras model. The
summary plot consists of many dots representing instances of the dataset. Verti-
cal location shows the input features that are ranked in descending order in terms
of feature importance. The horizontal location shows whether the effect of a sin-
gle feature is associated with a higher or lower model prediction. Color illustrates
whether that feature has a high (in red) or low (in blue) impact on that predic-
tion. As depicted in Figure 9 (a), the feature %tcp_protocol has a positive and
high impact on predicting an instance as a Web activity because of a large num-
ber of red dots on the X-axis. Similarly, we can say the feature %udp_protocol
is negatively correlated with Web activities, but highly contributed to predict
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(a) Web activity. (b) Interactive activity.

(c) Video activity. (d) All three activities.

Fig. 9: SHAP summary plots for the feature importance of the Keras model.
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Interactive and Video activities, as shown in Figure 9 (b) and Figure 9 (c).
Furthermore, from Figure 9 (d), we observe that the most five important fea-
tures contributing globally to our AI-based classification are %tcp_protocol,
%udp_protocol, nb_downlink_packet, dl_packet and ul_data_volume.

SHAP dependence plots: they show the effect of a single input feature across the
whole dataset. Figure 10 shows some interesting SHAP dependence plots for Web
activities classification using the Keras model. Each dot in the plot represents a
single prediction from the dataset. The x- and y-axis show the values of an input
feature from the dataset and its SHAP values underlying how much this feature
has contributed to the prediction, respectively. Similar to SHAP summary plots,
the color of SHAP dependence plots corresponds to an interaction effect, like high
in red and low in blue, between the input feature we are plotting and the second
feature. For instance, the SHAP dependence plot of the feature session_time
shows that this feature interacts mostly with the feature nb_downlink_packet,
as depicted in Figure 10 (a). In addition, the Figure 10 (b) shows that there is an
approximately linear and negative trend between the feature nb_uplink_packet
and the second feature %udp_protocol that interacts with nb_uplink_packet
frequently. Interestingly, from Figure 10 (c) and Figure 10 (d), the most two
important features %tcp_protocol and %udp_protocol interact most with other
features of the Downlink category, such as %dl_volume and dl_data_volume.
This also explains why the Downlink features have great impact on the final
prediction of the Keras model for user activities classifcation, as discussed above.

LIME: Ribeiro et al. proposed Local Interpretable Model-agnostic Explanations
(LIME) method that aims to explain individual predictions of black-box AI
models. While the SHAP values of a feature represent their contribution to one
or several sets of features, LIME aims to provide local explainability that are
locally faithful within the surroundings or vicinity of the sample data being
explained. The LIME method is compatible with many different classifiers and
can be used with image, tabular and text data. Similar to the SHAP method,
LIME does not take the model into account, thus can be applied to any models.
Our implementation uses the LimeTabularExplainer method of the LIME library
[12] to calculate values and build plots.

Figure 11 shows the explanation for a single instance from the testing dataset.
The leftmost values are the prediction probabilities of our classifier, that in this
case is the Keras model. Concretely, the Keras model predicts correctly this par-
ticular instance as Web activity with 100% of confidence. The numbers on the
right reflect the average influence of that particular feature value in the final
prediction, for example as a Web/Interactive/Video activity or not. This set of
values encapsulates the behavior of the LIME’s linear model in the neighbour-
hood of the sample data that we try to explain.

Given the training dataset, having ul_packet > 0.84, min_dl_volume <=
0.12 and %tcp_protocol > 0.47 would increase on average the prediction prob-
ability of that instance being a Web activity by 0.13, 0.13 and 0.10, respectively.
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(a) (b)

(c) (d)

Fig. 10: SHAP dependence plots for Web activities classification using the Keras
model.

Note that the concrete features’ values are in the table in the bottom left. More-
over, having nb_downlink_packet > −1.06 would decrease on average the pre-
diction probability by 0.10. We have the similar observation by looking at the
positive impact of the input feature nb_downlink_packet with the value −1.02
on the column Video. This is because nb_downlink_packet is the second most
important feature in classifying an instance as a Video activity, as discussed ear-
lier in Figure 9 (c) showing the SHAP summary plot for Video activities. Overall,
by only looking at the two columns NOT Web and Web, we observe that there
are more input features with a bigger positive contribution to the prediction
probability of this instance being a Web activity. This is why the Keras model
gives us a prediction of being a Web activity for this particular instance. We
can also conclude that two XAI methods SHAP and LIME are complement to
each other and provide us the similar explanations of our AI-based application
for user activity classification.

Shapash Shapash [22] is an open source Python library to visualize AI mod-
els to make them reliable, transparent and understandable for everyone. It is
compatible with many models, including Scikit-learn, XGBoost and LightGBM
models for both classification and regression tasks. Moreover, Shapash allows



Towards Anomaly Detection using Explainable AI 23

Fig. 11: Illustration of the LIME method results for the prediction using the
Keras model (details of NOT Interactive and Interactive are omitted).
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Fig. 12: Shapash dashboard for visualizing the Random Forest Classifier model.

users to easily understand their AI models via a nice and user-friendly Web
dashboard to navigate between the feature importance, global and local explain-
ability with popular XAI methods like SHAP, Active Coalition of Variables6
(ACV) and LIME as backend. As depicted in Figure 12, on the Shapash’s dash-
board of the Random Forest Classifier model, we can easily visualize and interact
with the dataset, observe how each feature contributes to model predictions and
local explanation of an individual instance.

Different XAI methods may give us different results or different explanations.
To increase the degree of confidence of applying different XAI methods, we need
to define some metrics to assess the quality of their explanations. Shapash can
measure some interesting metrics [23] to assess the degree of confidence on dif-
ferent XAI methods as follows.

– The consistency metric compares different XAI methods and evaluates
them to see how close the explanations are to each other, for example by
calculating an average distance between the explainability methods. If dif-
ferent XAI methods lead to similar results, this would mean a higher degree
of confidence can be placed in using them. If not, we would need to carefully
interpret the explanations of each method to identify which one is the best.

– The stability metric evaluates the similarity between different instances
under two criteria: those instances must be close in the feature space and
have similar outputs. If instances are similar, we would expect the respective
model output for these instances to be similar as well. Therefore, this metric
allows for building trust in a specific explanation.

– The compacity metric seeks to reduce complexity and overexplaining by
measuring the explainability of a decision in relation to only the most impor-

6 https://github.com/salimamoukou/acv00

https://github.com/salimamoukou/acv00


Towards Anomaly Detection using Explainable AI 25

Fig. 13: Consistency of explanations provided by different XAI methods.

tant features. For each instance, after identifying feature importance using
XAI methods, we select a subset of features with the highest contributions
and observe how well they approximate the model.

However, Shapash has still some limitations. First, users may need to develop
new or less popular XAI methods that have not been supported by Shapash.
Second, multi-class classification, like our user activities classification problem
is not supported yet to compute some metrics discussed above. Therefore, we
simplify our problem for classifying an instance as a Web activity or not. Herein,
we can employ the Shapash library to calculate some confidence metrics of the
Random Forest Classifier model.

The consistency plots in Figure 13 show the average distances between dif-
ferent XAI methods and different types of the SHAP method. Clearly, SHAP
and LIME are more similar than ACV as the average distance between SHAP
and LIME is smallest. In addition, Kernel SHAP and Sampling SHAP produce
more similar explanations across all the features. Also, this metric extracts 5
real comparisons from the dataset with distances similar to those in the average
distance plot.

The compacity plots in Figure 14 show the link between the level of approx-
imation, the number of required features to reach it and the proportion of the
dataset on which it works. In the left graph, top 9 most importance features
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Fig. 14: Compacity of explanations.

explain at least 90% of the model for 100% of the instances. In this case, consid-
ering a small subset of features could provide a reliable explanation for almost all
instances. In the right graph, top 5 features reach at least 80% of the reference
model for 100% of the instances. Therefore, if we want more precise explanations,
we would need to consider more than top 5 features in the explanations.

Figure 15 is the stability plot showing the neighborhood in terms of fea-
tures and model’s output around each particular instance. The x-axis and y-axis
show the average variability of the feature across the instances’ neighborhood
and the average importance of the feature across the dataset, respectively. Con-
sequently, left features are much more stable in the neighborhood than right
ones and top features are more important than bottom ones. As shown in Fig-
ure 15, %tcp_protocol, std_dl_volume, max_dl_volume and %udp_protocol
are important features and have strong and relatively stable contributions to the
model’s output. On the other hand, some features belong to the Uplink category,
such as %ul_volume, nb_uplink_packet and ul_data_volume, are unstable,
thus we should be careful to interpret explanations around these features.

4 Discussion

XAI, or explainable artificial intelligence, has recently gained a lot of attention as
it provides insights into the black-box nature of many machine learning models.
In the context of network classification, XAI can be used to provide explanations
for the predictions made by the network. This can help users understand why a
particular prediction was made, which can be useful for debugging the network
or improving its accuracy.

XAI-based anomaly detection helps address concerns around false positives
and false negatives, since the algorithm can provide insights into why certain
activity is classified as anomalous, and can be refined over time to improve its
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Fig. 15: Importance & Local Stability of explanations.

accuracy. However, XAI-based anomaly detection also requires significant ex-
pertise and resources to develop and maintain. It involves working with large
datasets and complex statistical models, and requires a deep understanding of
both network security and machine learning. Therefore, it is important to care-
fully evaluate the costs and benefits of XAI-based anomaly detection before
implementing it in a network environment. More work on this cost assessment
is planned by the authors of this chapter.

4.1 Conclusion and Future Work

In this paper, we present our AI-based application for anomaly detection and
activities classification based on network traffic. We employ and evaluate dif-
ferent supervised learning classification models, such as Random Forest, Keras,
XGBoost and LightGBM against our full dataset. The best model is LightGBM
with up to 98% global accuracy. Furthermore, we provide both global and local
explanations of our evaluated models using popular XAI methods, like SHAP
and LIME, to have deeper insights into the dataset and the models’ predictions
in our scenario.

As an extension of this work, we will try to improve our classification system
by considering more complex (hybrid) ML models, adding more input features
and taking advantage of the complementarity of different XAI methods to extend
the existing interpretability analysis. The extra explainability layer could be
useful for different AI-based applications, such as Root Cause Analysis [33] or our
advanced encrypted traffic analysis [35]. We also aim to produce larger datasets
with more types of activities, such as data transfer, idle behavior or simultaneous
activities. Some other future work can approach different security scenarios in
which we may need to identify specific security applications rather than general
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network traffic, for example, intrusion detection, malware detection and different
types of malware classification. In addition, we could use our 4G/5G testbeds
[11] to generate real datasets for mobile user activities classification, similar to
[26].
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