
An Approach for Deploying and Monitoring

Dynamic Security Policies

Jose-Miguel Horcas1, Mónica Pinto1, Lidia Fuentes1,
Wissam Mallouli2, and Edgardo Montes de Oca2

1 CAOSD Group, Universidad de Málaga, Andalucía Tech, Spain
{horcas, pinto, lff}@lcc.uma.es,

2 Montimage, 39 rue Bobillot Paris 75013, France
{wissam.mallouli,edgardo.montesdeoca}@montimage.com

Abstract. Security policies are enforced through the deployment of cer-
tain security functionalities within the applications. When the security
policies dynamically change, the associated security functionalities cur-
rently deployed within the applications must be adapted at runtime in
order to enforce the new security policies. INTER-TRUST is a frame-
work for the speci�cation, negotiation, deployment and dynamic adapta-
tion of interoperable security policies, in the context of pervasive systems
where devices are constantly exchanging critical information through the
network. The dynamic adaptation of the security policies at runtime is
addressed using Aspect-Oriented Programming (AOP) that allows en-
forcing security requirements by dynamically weaving security aspects
into the applications. However, a mechanism to guarantee the correct
adaptation of the functionality that enforces the changing security poli-
cies is needed. In this paper, we present an approach based on the com-
bination of monitoring and detection techniques in order to maintain the
correlation between the security policies and the associated functionality
deployed using AOP, allowing the INTER-TRUST framework to auto-
matically react when needed.

Keywords: aspect-oriented programming, dynamic deployment, moni-
toring, security framework, security policies

1 Introduction

Future Internet (FI) systems encompass a set of pervasive computing devices
(e.g., smartphones, tablets, vehicles, wearables, etc.) always connected to the
Internet and continuously exchanging information with remote entities [1]. There
are FI applications in di�erent domains, such as smart cities, smart roads and
smart homes, among others. Examples of these applications are monitoring the
availability of parking spaces in a city [2], the tracking of vehicles and pedestrian
levels to optimize driving and walking routes [3], or intelligent roads with warning
messages or dynamic speed limits according to climate conditions [4, 5].

In order to ensure that the exchange of information is performed securely,
the development of such systems requires a set of security mechanisms to be

conceived. These mechanisms are able to protect the system against di�erent
threats that may arise. For instance, in an Intelligent Transportation System
(ITS), the communication is required to be secure since the transmitted infor-
mation between the parties involved (vehicles and road infrastructures) may be
critical in maintaining the safety of the vehicle's drivers/occupants.

As an example, let us consider an ITS application that dynamically rec-
ommends the speed limits of a road according to climate conditions and to
unexpected events like accidents or tra�c jams. This is done by collecting the
information sent by both the vehicle's sensors (e.g., geolocation, proximity to
other vehicles, current speed) and the road side sensors (e.g., weather condi-
tions, tra�c status). Then, using this information the new recommended speed
limit is calculated and noti�ed to the driver on his On Board Unit (OBU). Some
of the security requirements that could be taken into account in the development
of this application are: (1) the user anonymity must be ensured, otherwise, some
users will not agree to send their current speed and location; (2) only authorized

users subscribed to the service can send information to the ITS server and re-
ceive recommendations. Otherwise, malicious users may send fake information
about the road status or about the weather conditions that could cause acci-
dents, and (3) in some contexts (e.g., when a police car is pursuing an infractor)
all the information sent by the police car should be cyphered in order to hide
the information from the infractors.

The main problematic of enabling security in FI systems is the heterogeneity
and dynamicity of the security policies that determine how the di�erent parties
need to interact with each other. First, the security policies can be heterogeneous
because each user can customize his own security policies, which answer their
security constraints. Moreover, these users' security policies can also be di�er-
ent from the security policies expected by the applications. Besides, the security
policies can be dynamic and change over time to adapt to new requirements, new
regulatory rules or new application contexts, for instance, moving from one coun-
try to another. In this context, existing approaches and techniques to design and
development secure interoperable FI systems present several problems that pre-
vent their correct application in security applicative domains [6, 7]. Firstly, there
is a lack of su�ciently rich techniques to tackle the integration of all the tasks
that cover security policy modeling, interoperability, deployment, enforcement
and supervision. Moreover, focusing on dynamic security enforcement, there is
also a lack of solutions that allow the dynamic adaptation of security to new
application requirements and changes in the environment.

In order to solve these problems, the Inter-operable Trust Assurance Infras-
tructure (INTER-TRUST) framework [8] aims to deal with the problematic of
enabling security in heterogeneous and pervasive systems, modeling secure in-
teroperability policies with di�erent constraints, and enabling the dynamic and
secure establishment of trusted relationships between systems [9]. The main
contributions of the INTER-TRUST framework are the dynamic speci�cation of

security policies, the dynamic deployment of security policies, the dynamic mon-

itoring of security policies and the fuzz and active testing of security policies. In

this paper we focus on the second and third contributions. The dynamic deploy-
ment of security policies is performed by using one of the most used enhanced
deployment mechanisms to inject dynamic behavior: Aspect Oriented Program-
ming (AOP) [10]. AOP allows enforcing security requirements by dynamically
weaving security aspects into applications, changing their con�guration and be-
havior so that they respect the evolving requirements. AOP is used to add/imple-
ment security concerns (i.e., anonymity, availability, authentication, access con-
trol, integrity, encryption, enrolment, etc.) to application components at runtime
so that applications can dynamically adapt their behavior for required/negoti-
ated security policies. However, dynamic adaptation techniques can introduce
new vulnerabilities and security risks [6, 11, 12]. Among other reasons [13], the
industry is reluctant to adopt any of these dynamic adaptation mechanisms since
hackers can exploit security gaps which are inherent to dynamic solutions. The
most common technique for ensuring that a system under execution is not being
altered is to monitor and test the behavior exhibited by the system. Concretely,
INTER-TRUST incorporates dynamic monitoring and testing techniques to ob-
tain enriched information of the system's execution, which is used to verify the
conformity with the implementations, ensuring a secure interoperability between
systems.

In this paper, we present a dynamic aspect-oriented approach for the deploy-
ment and monitoring of security policies. The approach maintains the correlation
between the security policies negotiated between the communicating parties, the
security aspects dynamically deployed into the applications in order to enforce
those security policies, and the security properties that are monitored by the
system. This is done by detecting contextual changes in the environment and by
reacting to those changes once it is identi�ed that the communicating parties are
not respecting the negotiated security policies. The approach is independent from
the security language used to de�ne the security policies, and also from the AOP
language used to implement the security functionalities as aspects, and thus, can
be adapted to use with others security models and AOP languages/frameworks.
The dynamic monitoring of the security policies allows FI applications to have a
global understanding of the changes performed at runtime and can automatically
react to new risk or threats that may arise. This approach represents a generic
solution that can be applied to many types of pervasive applications. In this
paper, our approach has been integrated as part of the INTER-TRUST frame-
work. The INTER-TRUST framework is intended to be generic and to target
di�erent �elds and domains. In this context, the framework has been successfully
integrated in two real case studies with di�erent security requirements: the ITS
case study that we use throughout this paper and an online electronic voting
(e-voting) case study.

The rest of the paper is organized as follows. Section 2 discusses the limita-
tion of the related work. Section 3 brie�y describes the software architecture of
the INTER-TRUST framework. Section 4 explains the correlation between the
security policies, the aspects, and the security properties. In Section 5 we present
our approach to deploy the security policies and monitor that correlation. Sec-

tion 6 evaluates and discusses our approach. Finally, Section 7 concludes the
paper and presents our future work.

2 Related Work

This section overviews existing work related to the dynamic adaptation and
monitoring of security policies. First, we focus on security frameworks that deal
with the dynamic deployment of security policies. Then, we discuss the advan-
tages and limitations of the dynamic adaptation techniques, and in particular,
AOP. Finally, we outline di�erent techniques for the dynamic detection of vul-
nerabilities.

2.1 Security frameworks

The analysis of existing research work and standards in the domain of FI and
pervasive systems reveals a common problem: the inexistence of a proper secu-
rity framework to secure the communications �exibly and e�ciently [7, 6]. In [7],
the authors propose a framework for specifying, deploying and testing access
control policies independently of the security model. For the speci�cation phase,
they de�ne a generic meta-model for rule-based security formalisms. Then, fol-
lowing a model-driven approach, the generic meta-model is transformed into
security policies for the eXtensible Access Control Markup Language (XACML)
platform [14] by using the appropriate pro�le of the security model (e.g., Or-
BAC). The security test is done by applying mutation testing [15] � i.e., the
security tests are quali�ed if they are able to detect any elementary modi�cation
in the security policy of the application (mutants). The main drawback to this
approach is that the generic meta-model only supports access control policies,
and thus, it is not possible to specify and deploy other security concerns such
as integrity, encryption, or non-repudiation, as we propose in this paper with
the INTER-TRUST framework. Moreover, although they can use any security
model language, it requires the policy formalism (e.g., OrBAC) to be de�ned as
an instance of the generic meta-model, restricting the expressiveness and ver-
satility of the original model; in addition, the mutation operators for security
policy testing are de�ned in terms of the concepts presented in the generic meta-
model, complicating the specialization of the security tests. On the other hand,
the modular architecture of the INTER-TRUST framework (see Section 3) al-
lows decoupling the security functionality from the formalism used to specify
the security policies, and also from the test procedures. Although the INTER-
TRUST framework is based on the OrBAC model to specify the security policies,
our approach to deploy the security policies and monitor the correlation between
the security policies, the aspects, and the security properties is independent from
the security model. Therefore, our approach can be adapted to use with others
security models � e.g., Modular Access Control (ModAC) [16], or Ponder Policy
Speci�cation Language [17], by de�ning the relation between the security poli-
cies and the security functionalities to be deployed and the security properties

to be monitored. For instance, the use of ModAC instead of OrBAC facilitates
the encapsulation of the access control functionality as an aspect [18]. However,
obligation rules provided by OrBAC allow specifying requirements for any kind
of functionality (e.g., encryption, integrity), not only access control functionality.

In [6], the authors present an Aspect Oriented Permission System (AOPS)
for runtime policy enforcement. The policy decisions are based on the execution
History-Based Access Control (HBAC) model [19] and implemented in AspectJ
following the Java permissions model but applied to AOP. Only security vul-
nerabilities related to access control permissions are considered (e.g., restricted
rights to read and modify attributes of the base system by the aspects). Also,
the approach assumes that the weaver as well as the execution environment
are trusted, and that the weaver protects against scenarios in which untrusted
aspects are incorrectly woven into the application code. The INTER-TRUST
framework, in contrast, relies on dynamic deployment of security functionalities
(e.g., encryption, digital signature, authentication) implemented as aspects that
enforce the security policies after a negotiation phase. The application and the
aspects are continuously monitored to guarantee the enforcement of the security
policies by the aspects and to detect potential vulnerabilities and attacks.

2.2 Dynamic adaptation with Aspect-Oriented Programming

The dynamicity o�ered by AOP is similar to that o�ered by other dynamic adap-
tation techniques (e.g., interceptors in component-based application servers).
AOP, however, o�ers a more �exible solution since applications do not necessar-
ily need to be developed conforming to a particular component model or run on
a particular application server container (e.g., JavaEE or Spring) in order to be
adapted at runtime.

Vulnerabilities introduced by the dynamic adaptation of the applications are
well-known and have been identi�ed during the development activity [20, 11,
21, 22]. In [20], the authors present bug patterns in AspectJ and illustrate the
symptoms of the patterns through examples. The security risks in using AOP to
develop secure software are analyzed in [11] from a programming level point of
view. An aspect permission system is also proposed to address some of the is-
sues identi�ed (e.g., parameter alteration, invocation hijacking, use of privileged
aspects, etc.). In [21], the authors use a combination of static code analysis and
protection code generation during the development phase. They focus on security
vulnerabilities caused by missing input validation � i.e., the process of validat-
ing all the inputs for an application before using it. They analyze the source
code and/or binary code without executing it and identify anti-patterns that
lead to security bugs. The unexpected vulnerabilities that the dynamic weaving
may introduce when the aspects are woven at runtime cannot be covered with
the static analysis. In [22], aspect orientation is used to monitor the information
�ows between objects in a system for the purpose of detecting misuse. That is,
identifying behavior that is close to some previously de�ned pattern signature
of a known intrusion. The problem with misuse-based detections is that the

anomalies must be known in advance and cannot detect new vulnerabilities at
runtime.

Finally, although AOP, as well as other existing dynamic adaptation mech-
anism (e.g., interceptors, component-based adaptation, re�ection, etc.), may in-
troduce vulnerabilities in the system, some papers support the idea that AOP
can be a good technology for developing secure applications [12, 23, 24].

2.3 Dynamic detection of vulnerabilities

There are several techniques to perform dynamic detection of vulnerabilities.
While monitoring (or passive testing) consists in observing, at runtime, whether
the application behavior conforms to a set of formal properties, active testing [25]
validates the application implementation by applying a set of test cases and an-
alyzing its reaction. Fuzz testing [26] is also used in the INTER-TRUST frame-
work. It consists in stimulating the application using random or mutated inputs
in order to detect unwanted behavior, crashing, or security violation. However,
fuzz and active testing techniques are applied at the testing phase, and thus, it
is not possible to use them during the normal operation of the systems to detect
the AOP vulnerabilities when aspects are deployed at runtime. In the INTER-
TRUST framework, fuzz and active testing techniques are complemented with
the monitoring techniques presented in this paper in order to help detect the
vulnerabilities in the testing phase.

Our approach uses MMT-security properties [27] to formally specify security
goals and attack behaviors related to the application or protocol under test. The
originality of the MMT-security properties with respect to existing intrusion de-
tection techniques, like for instance SNORT [28] and BRO [29], lies in that they
are not based on just pattern matching (i.e., signatures) as in SNORT nor do
they require writing executable scripts as in BRO. Instead, they allow a more
abstract description of sequences of events that can represent normal/abnor-
mal behavior. They can also integrate pattern matching, statistics and machine
learning techniques; but describing this here is beyond the scope of this paper.

3 Background Information: The INTER-TRUST
framework

The INTER-TRUST framework is a dynamic security framework that has been
designed and implemented by the INTER-TRUST European Project consor-
tium [8] to support trustworthy applications based on the negotiation, enforce-
ment and dynamic adaptation of security policies. Figure 1 overviews the modu-
lar architecture of the INTER-TRUST framework, whose functionality is divided
into four key blocks:

1. Dynamic Speci�cation of Security Policies. The �rst step when us-
ing the INTER-TRUST framework is to specify the application's security
policies. In INTER-TRUST, security policies rely on the OrBAC model [30]

DEVICE

INTER-TRUST Framework for Secure Interoperation

Testing for
Vulnerabilities

Detection

Monitoring
(Test & Operation

phases)

Dynamic
Deployment of

Security Policies

Dynamic
Specification of
Security Policies

Negotiation
Module

Policy
Interpreter

Aspect
Generation

Aspect
Weaver

Test Init
Module

Notification
Module

Context
Awareness

Application

Active
Testing Tool

Fuzz
Testing Tool

Monitoring
ToolSecurity Policy

Policy
Engine

Security
Editor

Fig. 1. Architecture of the INTER-TRUST framework.

and are �rst speci�ed using a Security Editor (e.g., MotOrBac [31]) and
then negotiated between the di�erent parties in a communication using a
Negotiation module (e.g., a vehicle and an ITS server in the context of a
Vehicle-to-Infrastructure communication). Security policies support interop-
erability that includes: access control requirements, permissions and prohi-
bitions, usage control requirements, obligations to respect, and delegation
rules. It may also correspond to complex requirements or comprise temporal
deadline conditions that specify what happens in the case of violation of
any of the contracts (e.g., sanctions that are triggered when a violation is
detected).

When the security requirements change at runtime the security policies are
(re)negotiated. For instance, let's suppose that a user is not allowed to reg-
ister in an ITS application because the provider requires di�erent authenti-
cation credentials that the ones speci�ed in the user's security policy. Since
the user wants to register, the INTER-TRUST framework gives him the
opportunity to renegotiate his security policy.

2. Dynamic Deployment of Security Policies. The negotiated security
policies are analyzed and interpreted by the Policy Engine and the Policy
Interpretermodules. These modules are responsible for identifying changes
in the security policies that require the security concerns deployed inside
the application to be adapted. Security policies are dynamically deployed,

and/or adapted at runtime using the Aspect Generation and the Aspect

Weaver modules, which are in charge of receiving the information generated
by the Policy Interpreter module and of incorporating or eliminating
the corresponding security aspects in the application. Security aspects can
be developed in any Java-based AOP language such as AspectJ, Spring AOP,
CaesarJ, or JBoss. The detailed design of these modules is beyond the scope
of this paper but can be consulted in Figure 6 of Appendix A.

3. Monitoring (Test & Operation phases). Negotiated security policies are
also sent to the Monitoring Tool in order to activate/deactivate the asso-
ciated security properties that control the ful�llment of the security policies
by the deployed aspects. Security properties are formally described as condi-
tions in sequences of events [27] based on Linear Temporal Logic (LTL) [32]
to de�ne security rules (i.e., rules that should be respected) or attacks and
misbehaviors [33]. The Monitoring Tool relies on an adaptation of the Mon-
timage Monitoring Tool (MMT) [34] which is an online monitoring solution
that allows a real-time network tra�c, application, �ow and user level visi-
bility to be provided. The Notification and Context Awareness modules
notify the Monitoring Tool about application's internal events and changes
in the application context � e.g. network packets, battery of the device, CPU
consumption, etc. The detailed design of the MTT tool is beyond the scope
of this paper but can be consulted in Figure 7 of Appendix B.

4. Testing for Vulnerabilities Detection. Di�erent fuzz [26] and active [25]
testing techniques are also provided as part of the framework (Fuzz Testing

Tool and Active Testing Tool modules) in order to test the application's
security and robustness. In order to do that, during the testing phase the
MMT tool monitors the traces automatically generated by the fuzz testing
and active testing tools in order to simulate the application behavior.

Note that the INTER-TRUST framework is a modular solution with comple-
mentary functionalities that can be partially or completely deployed according
to the developer's needs. This modular framework has several bene�ts for the
following reasons: (1) the modules in charge of specifying, negotiating and inter-
preting the security policies are unaware of the use of AOP to enforce them. This
allows the use of these modules in other contexts where other dynamic mecha-
nisms (e.g., interceptors, re�ection, component-based adaptation) may be used
to deploy the security policies; (2) the modules in charge of weaving the aspects
are unaware of the format used to specify the security policy, relying only on
the format of the interpreted security policies. This decouples the aspects from
the formalism used to specify the security policies and also allows using these
modules in other contexts with other modules and languages; (3) the MMT tool is
extensible and can support new analysis algorithms and de�nitions for parsing
network packets and message formats [34]; (4) it is a distributed architecture
where modules are decoupled among them and interact asynchronously by mean
of a standard queue protocol (e.g., AMQP [35]), (5) the framework is extensible
to use additional AOP weavers and only the Aspect Weaver module is a�ected.
The rest of the modules can be reused as they are, and (6) the use of aspects

improve the separation between applications and security concerns. Thus, the
applications can choose between using the INTER-TRUST framework or any
other security solution and the change is not invasive.

In this paper, we focus on the dynamic deployment of the security policies
(block 2 in Figure 1) and on the monitoring phase (block 3 in Figure 1), while
the details of the dynamic speci�cation of security policies [9, 36] and the testing
phases [37, 38] are beyond the scope of this paper. The next section presents the
correlation that must be maintained between the security policies, the aspects,
and the security properties.

4 Correlation between Security Policies, Aspects and
Security Properties

<ak:pointcuts>
 <ak:pointcut id="sendCAMMessage"
 expression="execution(public * ITSServer.send(CAMMessage, ..)) && ..." /> ...
</ak:pointcuts>
<ak:advices>
 <ak:advice id="encrypt" classname="uma.aspects.Encryption" url="https://inter-trust.eu/securityAspects/Encryption.aj">
 <ak:functionalities> <ak:functionality id="Chypering" /> <ak:functionality id="Encrypt" /> </ak:functionalities>
 </ak:advice> ...
</ak:advices>
<ak:aspects>
 <ak:aspect id="Encryption" advice-ref="encrypt" pointcut-ref="sendCAMMessage" aop-type="AspectJ" /> ...
</ak:aspects>

Aspectual Knowledge (XML format)

1. is_obliged(Police, encrypt, CAM_message) :-
 obligation(ITS, Vehicle, DSA_encryption, message, pursuit) ∧
 empower(ITS, Police, Vehicle) ∧
 consider(ITS, encrypt, DSA_encryption) ∧
 use(ITS, CAM, message) ..
2. is_obliged(Vehicle, pseudonym, speed) ∧ ...
3. is_permitted(Vehicle, send, message) ∧ ...

OrBAC

<property value="THEN" delay_min="0" delay_max="1"
 delay_units="s" property_id="1"

 type_property="SECURITY_PROPERTY">
 <event value="COMPUTE" event_id="1"
 boolean_expression = "(IT.eventName=`Pursuing_DCL')"/>
 <event value="COMPUTE" event_id="2"
 boolean_expression="(((IT.eventName=`DSA_Encrypt') &&

((#IsInstanceof(IT.Object, `Encryption')==1) &&
 (IT.vehicle_Id = IT.vehicle_id.1))) &&

(IT.key_type==X509)) && (IT.algorithm='DSA') && ..."
 ...
</property>

LTL

1. Cyphering -> Encryption, Decryption.

2. Anonymity -> Authentication, Pseudonymous
certificate, Privacy.

3. Authorization -> Authorization.

1. The system has the obligation
to cypher all the information that
the vehicle sends during a pursuit.

2. The system has the obligation
to assure the user anonymity
when the vehicle sends its
current speed.

3. The system has the obligation
to authorize the users that send
information to the server.

Security
Aspects

deployment

monitoring

activateSecurity
Policy

Context, pursuit AND vehicle == police

DELAY, 1 second.

Encrypted communication,
 EventName == DSA_Encrypt AND
 Key-Type == X509 AND
 Same Vehicle AND
 ...

Security
Properties

Fig. 2. Correlation of the security policies, the aspects, and the security properties.

The correct enforcement and dynamic adaptation of the security policies is
based on two cornerstones (see Figure 2). The �rst is the correlation de�ned

between the security policies that need to be enforced, the security aspects that
are deployed/undeployed in order to enforce those security policies and the secu-
rity properties that are activated/deactivated in order to check whether or not
the system is behaving according to the speci�ed security policies. The second is
the monitoring at runtime of this correlation in order to detect any attack that
breaks it. These attacks could occur due to di�erent kinds of security vulnerabili-
ties (e.g., an attacker could send a huge number of legitimate requests to a server
to monopolize its resources), or due to those vulnerabilities that are introduced
by the dynamic deployment mechanism itself (e.g., a malicious aspect).

Let us illustrate the correlation with an example scenario of the ITS case
study: a police vehicle communicates with the ITS central station by sending/re-
ceiving Cooperative Awareness Messages (CAMs). CAM messages contain a set
of parameters describing the vehicle's status, among other information. When
the police vehicle receives an emergency call and starts pursuing another vehicle,
a context change is detected. As a result of the change in the context (pursuit
context) a new security policy is negotiated between the police vehicle and the
ITS central station. One of the statement of the new security policy is that the
police vehicle has to encrypt the CAM messages to avoid the pursued vehicle to
know its location, while still informing the ITS central station about its location
for this to regulate tra�c and facilitate the pursuit (rule 1 in the security policy
of Figure 2). The required functionality (i.e., cyphering) must be deployed inside
the application in order to encrypt the messages from the police vehicle and de-
crypt them into the ITS central station (Encryption and Decryption aspects of
Figure 2). Also, a new security property is also activated in the monitoring tool
to check that the encryption rule speci�ed in the security policy is respected by
the application when the new functionality is added.

In Figure 2 we have shown an example of the security property that needs
to be veri�ed to ensure that the messages are correctly cyphered. Also, for each
rule in the security policy, a set of aspects that ful�ll the required functionality
are deployed inside the application. For instance, the encryption and decryption
aspects are deployed to cypher the messages, the authentication, privacy and
pseudonymous certi�cate aspects are deployed to ensure the user anonymity,
and the authorization aspect are deployed to provide user authorization. The
aspectual knowledge depicted in Figure 2 contains the functionality provided
by the aspects for each security policy and the join points where the aspects
can be deployed. Finally, the application with the aspects is monitored and the
captured traces are sent to the monitoring tool that correlates the deployment
of the aspects with the security properties. Note that this correlation must be
maintained, both when the user joins the application for the �rst time (i.e., after
the deployment of the initial security policies) and also at runtime, when the
security policies are dynamically negotiated and adapted.

The dynamic deployment of security policies and the dynamic monitoring of

security policies blocks of the INTER-TRUST framework implement the corre-
lation described. The next section explains our approach to deploy the security
policies and monitor the correlation.

5 Deployment and Monitoring Approach

Figure 3 provides a more detailed description of the dynamic deployment of
security policies (activities labeled 1, 2, and 3) and the monitoring mechanism
to maintain the correlation between the security policies, the security aspects,
and the security properties (activities labeled 4, 5, and 6).

Dynamic Monitoring of VulnerabilitiesDynamic Deployment of Security Policies

Monitoring
context

DEVICE

Aspect
Generation

Aspect
Weaver

2

Security
Deployment
Specification

3

Aspectual
Knowledge

4

APPLICATION

...

REPOSITORY OF SECURITY ASPECTS

Aspect1
AspectJ

Aspect2
AspectJ

Aspect3
Spring AOP

...

Object1 Object2 Object3 ObjectN

Deployment
of aspects

Monitoring
Tool

Context
Awareness

Notification

7 8

6

Context
Change

Potential
Threat

OR

Monitoring
application

Trace Context
changeWeave/Unweave/

Reconfigure

Network

Events

Battery

Memory

CPU

Location

...

Deployment
notifications

Security
Policy

1

5

Security
Adaptation Plan

{"protoName":"Inter-Trust",
 "protoId":10,"event":
 {"eventName":"Pursuing_DCL",
 "timestamp":1411471331917,
 "serviceId":1,"attributes":
 [{"Vehicle_id":"8766"},
 {"Vehicle_type"=="police"},
 {"Speed":"120"},
 {"Section":"11_SECTION"}]}}
{"protoName":"Inter-Trust",
 "protoId":10,"event":
 {"eventName":"DSA_Encrypt",
 "timestamp":1411471331927,
 "serviceId":1,"attributes":
 [{"Vehicle_id":"8766"},
 {"Speed":"120"},
 {"Section":"11_SECTION"},
 {"Object":"6a12876b6567"},
 {"key_type":"X509"},
 {"algorithm":"DSA"}, ...]}}
...
{"protoName":"Inter-Trust",
 "protoId":10,"event":
 {"eventName":"Rec_SPEED",
 "timestamp":1411471331937,
 "serviceId":1,"attributes":
 [{"vehicle_id":"8766"},
 {"Section":"11_SECTION"},
 {"Recommended_Speed":"134"}]}}
...

Sample trace

Fig. 3. Our approach for deploying and monitoring security policies.

5.1 Dynamic Deployment of Security Policies

When a security policy needs to be deployed inside the application at runtime
(activity labeled 1 in Figure 3) � e.g., due either to the initial deployment or
to a (re)negotiation of the security policy, the new security policy is sent to
the modules of the framework in charge of: (i) the Dynamic Deployment of

Security Policies, which will deploy/undeploy/recon�gure the aspects, and
(ii) the Dynamic Monitoring of Vulnerabilities, which will activate/deacti-
vate the corresponding security properties. In order to deploy the security policy,
the Aspect Generation module receives a security deployment speci�cation (ac-
tivity labeled 2) that is the result of interpreting the security policy and contains
the list of security aspects that must be deployed (woven), undeployed (unwo-
ven), and recon�gured (i.e., changing the con�guration parameters such as the

Listing 1.1. Aspectual Knowledge.
1<ak:pointcuts>
2 <ak:pointcut id="sendCAMMessage" expression=" execut ion (pub l i c *

ITSServer . send (CAMMessage , . .)) && th i s (Veh ic l e) && args (message) "
/>

3 <ak:pointcut id="receiveCAMMessage" expression=" execut ion (pub l i c *

ITSServer . r e c e i v e (CAMMessage , Vehic le , . .)) && args (message) " />
4 . . .
5</ak:pointcuts>
6<ak:advices>
7 <ak:advice id="encrypt " classname="uma . a spec t s . Encryption " url=" ht tp s :

// in t e r−t r u s t . eu/ s e cu r i t yAspec t s /Encryption . a j "><
ak: funct ional it ies>

8 <ak:functionality id="Chypering" />
9 <ak:functionality id="Encrypt" />

10 </ ak: funct ional it ies></ak:advice>
11 <ak:advice id="decrypt " classname="uma . a spec t s . Encryption " url=" ht tp s :

// in t e r−t r u s t . eu/ s e cu r i t yAspec t s /Encryption . a j "><
ak: funct ional it ies>

12 <ak:functionality id="Chypering" />
13 <ak:functionality id="Decrypt" />
14 </ ak: funct ional it ies></ak:advice>
15 . . .
16</ak:advices>
17<ak:aspects>
18 <ak:aspect id="Encryption " advice−r e f=" encrypt " pointcut−r e f="

sendCAMMessage" aop−type="AspectJ" />
19 <ak:aspect id="Decryption " advice−r e f="decrypt " pointcut−r e f="

receiveCAMMessage" aop−type="AspectJ" />
20 . . .
21</ak:aspects>

digital certi�cate in an authentication aspect) within the application to enforce
the new security policy. The Aspect Generation module also contains the re-
quired aspectual knowledge that encompasses the list of aspects available in the
aspect repository of the framework.

Listing 1.1 excerpts the part of the aspectual knowledge related to the encryp-
tion and decryption aspect. For each aspect, the aspectual knowledge includes:
(1) the provided advice with the functionality that it implements, and (2) the
associated pointcut where the aspect will be incorporated into the application.
For instance, the encryption aspect (line 18) has associated an advice (line 7)
with the functionality to encrypt messages (lines 8 and 9) and also the pointcut
(line 2) where messages will be encrypted. Similarly, the decryption aspect (line
19) has associated with it, an advice (line 11) to decrypt messages (lines 12 y 13)
and the associated pointcut (line 3) that indicates where messages will be de-
crypted. Both advice are implemented in the same AspectJ �le (see Listing 1.3)
of the INTER-TRUST aspect repository. This is indicated by the url attribute
(lines 7 and 11) de�ned for each advice.

The Aspect Generation module performs a mapping between the required
security functionalities and the aspects that provide these functionalities. The
output of this mapping is a new con�guration that is analyzed to: (1) obtain
the di�erences between the new and the current con�gurations of the aspects
deployed within the application, and (2) generate a security adaptation plan with

Listing 1.2. Security Adaptation Plan.
1<sap:ADD>
2 <sap:aspect id="Encryption " . . . />
3 <sap:aspect id="Decryption " . . . />
4 . . .
5</sap:ADD>
6<sap:REMOVE>
7 . . .
8</sap:REMOVE>
9<sap:RECONFIGURE>

10 <sap:aspect id="Encryption " ><sap:configuration>
11 <sap:parameter name=" algor i thm">DSA</sap:parameter>
12 <sap:parameter name="key">
13 CN="VEHICLE_1" , OU="ITS−VEHICLES" , O="DIRECCION GENERAL DE TRAFICO

" , C="ES"</sap:parameter>
14 <sap:parameter name="key−type">X509</sap:parameter>
15 . . .
16 </ sap:configuration></ sap:aspect>
17 . . .
18</sap:RECONFIGURE>

the list of actions that must be performed over the aspects: weave, unweave, or
recon�gure. Listing 1.2 shows an example of a security adaptation plan where
we indicate that the encryption and decryption aspects need to be deployed
inside the application (lines 1 to 5) and con�gured with parameters such as the
encryption algorithm or the key values (lines 9 to 18). Also, we indicate the
aspects that need to be undeployed (lines 6 to 8).

The security adaptation plan generated by the Aspect Generation module
is sent to the Aspect Weavermodule that is in charge of executing the actions by
interacting directly with the aspects (activity labeled 3 in Figure 3). The Aspect
Weaver module is a wrapper that translates the list of actions received as input
(which is speci�ed independently of a particular AOP language/framework) to
the particular syntax of the AOP weaver being used. This means that we provide
di�erent instantiations of the Aspect Weaver module for using di�erent AOP
weavers, since the use of a unique AOP solution does not cover all the dynamicity,
expressiveness, and performance requirements that the applications may need.
For instance, AspectJ allows dynamically activating/deactivating at runtime the
aspects woven when deploying the application, while Spring AOP allows directly
weaving/unweaving new aspects at runtime. However, Spring AOP only supports
interceptions of method executions, in contrast to AspectJ that can intercept any
point in the execution of the application (e.g., calls and executions of methods
and constructors, references and assignments of �elds, handler of exceptions,
etc.).

Listing 1.3 shows an example of an encryption aspect using the AspectJ
language. The aspect de�nes two main pointcuts: encrypt (line 5) and decrypt
(line 6). Each pointcut de�nes the points where the messages will be encrypted
(line 2) or decrypted (line 3). To control the activation of the pointcuts we
use the if() pointcut constructor that AspectJ provides to de�ne a conditional
pointcut expression which will be evaluated at runtime for each candidate join

Listing 1.3. Encryption aspect in AspectJ language.
1 public aspect Encryption {
2 pointcut sendCAMMessage (CAMMessage message) : execut ion (public *

ITSServer . send (CAMMessage , . .)) && this (Veh ic l e) && args (message) ;
3 pointcut receiveCAMMessage (CAMMessage message) : execut ion (public *

ITSServer . r e c e i v e (CAMMessage , Vehic le , . .)) && args (message) ;
4

5 pointcut encrypt (CAMMessage m) : i f (AspectsStatus . i sEnabled ("ENCRYPT"))
&& sendCAMMessage (m) ;

6 pointcut decrypt (CAMMessage m) : i f (AspectsStatus . i sEnabled ("DECRYPT"))
&& receiveCAMMessage (m) ;

7

8 Object around (CAMMessage m) : encrypt (m) {
9 ChyperingModule chyper = new ChyperingModule (AspectsStatus . getParams ("

ENCRYPT")) ;
10 CAMMessage chyperedMessage = chyper . encrypt (m) ;
11 proceed (chyperedMessage) ;
12 }
13

14 Object around (CAMMessage m) : decrypt (m) {
15 ChyperingModule chyper = new ChyperingModule (AspectsStatus . getParams ("

DECRYPT")) ;
16 CAMMessage c learMessage = chyper . decrypt (m) ;
17 proceed (c learMessage) ;
18 }
19 }

point3. This mechanism increases the degree of dynamicity by coding patterns
that can dynamically support enabling and disabling advice in aspects [39]. In
our example, the AspectsStatus class contains the con�gurations and status
(enabled/disabled) of the aspects that are changed at runtime by the Aspect

Weaver module. The aspect de�nes two advice associated with the encrypt and
decrypt pointcuts: one for encrypting (line 8) and one for decrypting (line 14)
CAM messages. The advice use a CypheringModule object that provides the
functionality for encryption and decryption and is con�gured with the algorithm
and parameters indicated in the AspectsStatus class (lines 9 and 15).

Once the aspects have been adapted, the Aspect Weaver module noti�es the
Monitoring Tool in order to inform about the status of the deployment (activity
labeled 5 in Figure 3). That is, to notify whether or not the deployment was
successfully carried out and which aspects were deployed/deployed/recon�gured.

5.2 Dynamic Monitoring of Security Policies

In order to maintain the correlation between the security policies, the aspects,
and the security properties, the application and the aspects are monitored at
runtime by the Notification module. The Notification module reports the
application's internal events (e.g., traces with state changes, error conditions,
timestamps, method status, etc.) to a monitoring server (the Monitoring Tool)
(activity labeled 7 in Figure 3). To operate at runtime, the Notificationmodule
is introduced into the target application as an aspect in the instantiation phase.

3 http://eclipse.org/aspectj/doc/released/progguide/index.html

The target source code is annotated, using standard Java annotations, to specify
the measurement points (or meters) that generate the monitored data. These
annotations are also incorporated using AOP without manually modifying the
source code of the application � e.g., using the declare annotation of AspectJ4).

While the target application is operating, the Notification module pro-
duces a stream of log messages. Measurement points can be attached to classes,
methods and attributes, and work on two di�erent levels of scope: local and
recursive. Meters operating at the local scope level are always marked by an an-
notation. Only annotated elements are e�ected by local scope meters (e.g., calls
to nested methods are not tracked). In the next scope level, recursive monitoring,
beside the annotated code, all code reachable through control �ow is monitored,
up to the available call depth. Recursive monitoring may cause a signi�cant per-
formance overhead, so this kind of monitoring should be used by annotating only
relevant data for security analysis. Call depth is limited by the available source
code, because static aspects operate by modifying accessible source code. The
instrumentation therefore does not penetrate pre-compiled classes, such as .class
�les or system libraries. Table 1 summarizes the monitoring annotations that the
Notification module supports. Table 1 shows for each annotation the scope
(local or recursive), the location or context of the annotation (i.e., before class,
method, or attribute declarations), the meaning of the annotation, and the out-
put information that is provided. The output is made up of key-value pairs. The
Notification module appends status information to each logged event. Apart
from the speci�c output information of each annotation, the status information
string contains the following generic data:

� Monitored object name, which can be a class name, method name or at-
tribute name.

� Source �le name and source line number.
� Thread id of current thread.
� Total number of threads.
� Total number of tracked objects.
� Time stamp.

Furthermore, the Context Awareness module noti�es the Monitoring Tool

but, in contrast to the Notification module, the Context Awareness monitors
changes in the environment (activity labeled 8 in Figure 3) � i.e., contextual
changes that are external to the application such as packets over the communi-
cation network, battery status of the device, CPU consumption, etc. Both traces
and context changes are sent to the Monitoring Tool that interprets them (ac-
tivity labeled 8 in Figure 3) so it can react to changes or adapt the security rules
with the negotiation of a new security policy.

The right-hand side of Figure 3 shows an excerpt of a sample trace received
by the Monitoring Tool with three events generated from the Notification

module. For instance, the �rst event (event with name Pursuing_DCL) provides

4 https://eclipse.org/aspectj/doc/next/adk15notebook/annotations-declare.

html

Table 1. Monitoring annotations.

Annotation Scope Context Description and Output

@Monitor Local Method Measures the execution time and monitors its exit
status. Output: Start event, end event, duration,
exit status, status information.

@Monitor Local Attribute Captures changes made to attributes and logs the
new value. Output: Attribute value on each as-
signment operation

@Monitor Local Class Combines method and attribute monitoring ap-
plied to all methods and attributes of the class.
Output: Combines the method and attribute mon-
itoring output.

@Count Local Class Tracks the number of objects on the memory
heap. Output: Global object counter.

@Ping Local Method Generates a signal whenever a function is called.
Output: A `Ping' message is added to the log on
each invocation.

@Taint Recursive Method Tracks the control �ow of methods. Output: Same
as method monitoring for each method encoun-
tered by the control �ow.

@Exclude Recursive Method,
attribute,
class

Methods, attributes, and classes are excluded
from the monitoring scope. Output: `Negative
output', curtails output of impacted code.

Listing 1.4. MMT-security property.
1<property value="THEN" delay_min="0" delay_max="1" delay_units="s"

property_id="1" type_property="SECURITY_PROPERTY"
2 description="In a pur su i t context , CAM messages communicated

by a v eh i c l e must be encrypted . ">
3 <event value="COMPUTE" event_id="1"
4 description="A pur su i t context i s detected . This i s done by the

r e c ep t i on o f an event dec l a r ed by the p o l i c e v eh i c l e by pushing
a s p e c i f i c button . "

5 boolean_expression = " (IT . eventName=`Pursuing_DCL ') "/>
6 <event value="COMPUTE" event_id="2"
7 description="CAM messages are encrypted . The encrypt ion

algor i thm used i s DSA. The type o f the key i s X509 , us ing
SHA1 as hashing a lgor i thm with the format ETSI . The key
i s (CN=VEHICLE_1, OU=ITS−VEHICLES, O=DIRECCION GENERAL DE
TRAFICO, C=ES) "

8 boolean_expression=" (((IT . eventName=`DSA_Encrypt ') && ((# I s I n s t a n c e o f (
IT . Object , ` Encryption ')==1) && (IT . veh ic l e_Id = IT . veh i c l e_id . 1))
) && (IT . key_type==X509)) && (IT . a lgor i thm='DSA') && . . . "

9 . . .
10</property>

the values of the attributes captured by the monitoring annotation. When the
�rst event arrives, the Monitoring Tool checks whether it �ts one or more of
the events de�ned in the security property (Listing 1.4). In the example, the �rst
event received �ts the event of the property event_id="1" that corresponds with
a change in the context. The second event received with the name DSA_Encrypt
�ts the event event_id="2" of the property by checking the values of the at-
tributes received in the event with the boolean expression de�ned in the property.
The class object captured is an instance of the DSAEncryption aspect that is de-
ployed inside the application of the police vehicle and is using the DSA algorithm
to encrypt the messages. Other attributes such as the key and the type of the
key are also checked against the rule de�ned in the security property. As the two
events received have a delay of less than one second as de�ned by the security
property, the two events consecutively match the rules of the security property.
So, in this example the Monitoring Tool checks that the CAM messages sent
by the police vehicle are being encrypted in the context of a pursuit, and veri�es
the correct deploying of the encryption aspect required by the security policy,
maintaining the correlation between the three parts. A non-match condition in
the boolean expression of the rules in the security property, for instance, if the
event with the name DSA_Encrypt does not occur, or if the algorithm attribute
is di�erent to DSA. This means the non-match of the entire security property,
and thus the detection of a gap in the correlation between the security policy,
the aspects and the security property.

6 Evaluation and Discussion

In this section we quantitatively evaluate the performance overhead of the dy-
namic deployment of security policies and the dynamic monitoring of the ap-
plication. Also, as part of our participation in the INTER-TRUST project, the
deployment modules (the Aspect Generation5 and the Aspect Weaver6), the
monitoring modules (the Notification and the Context Awareness)7 as well
as the MMT tool8 presented in this paper have been used to implement a demon-
strator of the project that provides dynamic adaptation of security policies for
two real case studies: the ITS case study presented in this paper and an online
electronic voting (e-voting) case study. This demonstrator has been evaluated
both quantitatively, by controlled tests performed for the implementation of the
modules, and qualitatively, by collecting the opinion of software developers with
di�erent expertise on both security and AOP. The main results of this evaluation
are discussed in this section.

The evaluated scenario focuses on the communication between an ITS central
station and a vehicle ITS station (called OBU for On Board Unit) via a Roadside
ITS station (called RSU for Road Side Unit) based on CAM messages. CAM

5 https://github.com/Inter-Trust/Aspect_Generation
6 https://github.com/Inter-Trust/Aspect_Weaver
7 https://github.com/Inter-Trust/Testing_and_Monitoring_related_modules
8 https://github.com/Inter-Trust/MMT_Security

messages are part of the implementation of several services provided by the ITS
central like the CSA service (stands for Contextual Speed Advisory service) or
the DRP service (stands for Dynamic Route Planning service) that constitute
the target of the evaluation in the context of INTER-TRUST project. These
CAM messages are �lled with a set of parameters describing the vehicle's status
and are sent to the ITS central station. When a negotiation between the parties
involved ends by an agreement or after the detection of a context change by the
Context Awareness module, new security aspects (e.g., providing an obfusca-
tion algorithm to hide the current location in the CSA service, or providing an
encryption algorithm to maintain private the route in the DRP service) need to
be deployed at runtime and the Monitoring Tool needs to monitor the appli-
cation in order to detect possible attacks that break the correlation between the
security policy, the security aspects, and the security properties.

6.1 Performance Evaluation

We have measured the performance overhead introduced by the dynamic deploy-
ment process and the performance overhead introduced by the dynamic moni-
toring of the application. The experiments were done on a laptop Intel Core i3
M350, 2.27 GHz, 4 GB of memory, and with 1.7 JVM. Aspects were implemented
in AspectJ and Spring AOP.

Performance of Deployment. The performance overhead of the deployment
process considers the time from the reception of a security deployment speci-
�cation in the Aspect Generation module to the execution of the adaptation
plan by the Aspect Weaver. This time includes the generation of the adaptation
plan by the Aspect Generation and the interaction with the aspects in order
to weave, unweave, and/or recon�gure them. We consider the number of aspects
that need to be dynamically adapted (i.e., woven, unwoven, or recon�gured) in
order to ful�ll the required functionality speci�ed in the security policy.

The results are summarized in Figure 4 where the performance presents a
linear increment of the overhead over the number of aspects. We observe that
the overhead introduced by the adaptation process is lower than the one ini-
tially expected. For instance, the adaptation process takes 320 milliseconds for
deploying 20 aspects speci�ed in the security policy. Recon�guring aspects takes
20 milliseconds more on average than deploying them, while undeploying as-
pects takes 15 milliseconds more than deploying them. The results indicate that
adapting security policies at runtime does not suppose a high overhead taking
into account the use of aspects.

Performance of Monitoring. The performance overhead of the dynamic mon-
itoring considers the time overhead introduced in the application during opera-
tion when the Notification and Context Awareness modules are integrated as
aspects inside the application. We evaluated the time overhead of generating the
traces for the most expensive monitor annotation presented in Table 1 � i.e., the

������������������������
� � � �� ��

��

��������

���������	
���
�������

��	
��
��������������������	
��
���
Fig. 4. Performance of deploying, recon�guring, and undeploying security policies.

recursive @Taint annotation that tracks all methods encountered by the control
�ow from the annotated method. Figure 5 shows the time overhead based on the
number of join points captured. We can observe that the performance presents
a linear increment of the overhead over the number of join points while this
number is lower than 100. Then, from 100 join points, the increment is higher
but still linear. In all cases, the results obtained do not suppose a signi�cative
overhead. For instance, monitoring 10,000 join points in the control �ow of a
method takes 250 milliseconds on average. The analysis of the generated traces
is carried out by the Monitoring Tool which is independent of the application
and can reside in a di�erent computer, and thus, the analysis of the traces does
not a�ect the application's performance.

��������������������

������	���
�

�����������	
�����
��

���	
���	�
��	������
Fig. 5. Performance of monitoring join points at runtime.

6.2 Vulnerabilities Detection

A critical part of the evaluation of our approach is the evaluation of the ef-
fectiveness of the attacks detection by the monitoring tool. On the one hand,
we evaluate the capability to detect that the correlation between the security
properties, the security aspects and the security properties has been broken,
by simulating di�erent attack scenarios and intrusion attempts by relying on
the Fuzz Testing [26] and the Active Testing [25] tools of the INTER-TRUST
framework. These testing tools automatically generate the set of traces that are
used to test the scenarios. On the other hand, to evaluate the e�ectiveness of
the detection techniques, three metrics are proposed: (1) the detection rate of
the MMT tool in detecting security vulnerabilities; (2) the false positive rate of
the MMT tool (i.e., the ratio of vulnerabilities detected by the MMT tool when
they are not present); and (3) the detection coverage of the MMT tool that can
target the network, the application, or the system, for detecting vulnerabilities.

The attack model. We have identi�ed a set of vulnerabilities that can break
the correlation in our approach. Table 2 shows examples of attacks based on the
identi�ed vulnerabilities. For each attack, we present the result of the e�ective-
ness in detecting the attack by the Monitoring Tool.

According to the vulnerabilities identi�ed, we assume that an attacker is able
to access and corrupt sensitive information that is interchanged and managed by
the INTER-TRUST framework modules. This kind of attack would be possible
due to vulnerabilities V1-V4 and V6-V7. By exploiting these vulnerabilities, the
attackers can follow a deceptive attack model [40], where deception can be de-
�ned as an interaction between two parties, a deceiver and a target, in which the
deceiver successfully causes the target to accept as true a speci�c incorrect ver-
sion of reality, with the intent of causing the target to act in a way that bene�ts
the deceiver [41]. A speci�c class of deception attack is the false-data injection
attack [41], where the attacker would inject false data into the INTER-TRUST
framework.

Using the false-data injection attacks, one of the bene�ts that attackers can
obtain by exploiting the vulnerabilities V1-V4 of the INTER-TRUST framework
is altering the aspects that are woven/unwoven/recon�gured, thereby the se-
curity level of the applications. For instance, the implementation class of an
aspect may be changed by altering the information in the aspectual knowledge
to provide a less secure authentication mechanism. Or, false functionality may
be assigned to an aspect by altering the aspectual knowledge so an inappro-
priate aspect is woven into the system. Also, the pointcuts where an aspect is
applied could be maliciously changed at runtime (when Spring AOP is used) to
weave an aspect in more or fewer join points than expected by the application.
Finally, a rule in the security policy may be maliciously deactivated by omitting
the information about that rule in the security deployment speci�cation that is
received by the Aspect Generation module. This will avoid the weaving of the
corresponding aspect.

Table 2. Vulnerabilities detection by the Monitoring Tool.

Vulnerability and Attack Detected

Vulnerability V1: An attack changes the security policy before sending
it, and thus the same malicious and potentially damaging security policy
is sent to both modules.
Attack: The rule that speci�es the obligation to cypher is deleted. Both
modules receive the security policy changed.

No

Vulnerability V2: An attack changes the security policy but only the
one sent to one of the modules.
Attack: The rule that speci�es the obligation to cypher is deleted. Only
one of the modules receive the security policy changed. The another one
receives the original policy.

Yes

Vulnerability V3.1: Adding or changing the functionality provided by
an existing aspect or adding new, untrustworthy aspects.
Attack: A new aspect bypassing the user authentication is included.

Yes

Vulnerability V3.2: Adding or changing the pointcuts where the aspect
will be injected.
Attack: An encryption aspect encrypts a message that will not be un-
derstood by the receiver because it does not expect it cyphered.

Yes

Vulnerability V3.3: Deleting the information about existing aspects.
Attack: An intruder deletes an existing pointcut in the aspectual knowl-
edge (e.g., some messages that should be encrypted are not encrypted
anymore), or deletes an existing advice or aspect in the aspectual knowl-
edge (e.g., may force an error during the deployment of the aspects that
make the application to remain in its last stable state).

Yes

Vulnerability V4: Changing the security adaptation �le (e.g., modifying
the actions that the Aspect Weaver will perform over the aspects).
Attack: An intruder changes in the aspects deployed/undeployed/recon-
�gured in the security adaptation plan. Note that the consequences are
the same as for vulnerabilities V3 and the examples are similar.

Yes

Vulnerability V5: Directly weaving/unweaving/recon�guring at run-
time an aspect inside the application without any previous change to
the security policy (i.e., without following the work�ow of the deployment
process).
Attack: A new aspect bypassing the user authentication is included di-
rectly through the Spring framework at runtime or an existing aspect is
modi�ed.

Yes

Vulnerability V6: Modifying the noti�cation about the deployment sta-
tus.
Attack: A malicious user notify the deployment of a new aspect that has
been directly woven into the application via vulnerability V5

Yes

Vulnerability V7: Changing the traces received and analyzed by the
MMT tool.
Attack: An intruder changes the contextual traces sent to the Monitoring
Tool by the Notification module and the Context Awareness module.

No

The same bene�t can also be obtained by exploiting the security vulnera-
bility introduced by the Spring AOP runtime weaver (vulnerability V5), or any
other AOP solution o�ering runtime weaving. Here the attack model is di�er-
ent because the attacker does not modify the information interchanged by the
modules and instead directly injects new code into the running application by
means of aspects. However, the consequence is the same: the security level of the
application is altered (the same examples illustrated before apply here).

There is a particular situation in which the false-data injection attack can
cause a denial-of-service attack, understanding that the service that is denied is
the application security. This can be achieved through the vulnerability V3 that
alters the information in the aspectual knowledge. This kind of attack requires
the attacker to know that in the process of adapting at runtime a security policy
is transactional and in consequence any error when deploying the security policy
(e.g., a required aspect is not described in the aspectual knowledge or no imple-
mentation class can be found in the aspect repository for one required aspect)
leaves the system in the previous stable state.

Finally, the information received by the monitoring modules in order to mon-
itor the vulnerabilities and to detect the possible attacks could also be altered,
a�ecting the results obtained (vulnerabilities V6-V7). The attack model is the
same (the information interchanged by the INTER-TRUST modules is altered)
but the motivation behind this kind of attack is di�erent since the main goal
would be to hide the attacks performed through the other vulnerabilities. Ba-
sically, not only if the security policy, the aspectual knowledge or the aspects'
implementations are maliciously altered but also the generated traces are ap-
propriately altered then the attack could be undetectable. In any case it is not
straightforward and, in this case, a very detailed knowledge of the framework's
behavior is needed to successfully perform the attack. Within INTER-TRUST,
we consider that the risk of attacks exploiting V6-V7 is very low.

E�ectiveness of the Monitoring Tool. We evaluate the e�ectiveness of the
detection techniques with the help of questionnaires. The evaluation procedure
involved 30 evaluators. The evaluators were selected mainly from among soft-
ware developers and security experts, with di�erent backgrounds and levels of
knowledge, and experience in security modeling, testing and monitoring. They
followed a set of instructions to run the monitoring tool to analyze both network
tra�c and the application's internal events. The evaluators were also requested
to create new security properties and use the tools on di�erent pre-collected
traces (containing vulnerabilities or not).

Table 3 shows the results of the e�ectiveness of our approach in vulnerabilities
detection. For each metric we show the expected value and the values obtained
by our approach after the evaluators have analyzed the output of the MMT
tool. For instance, 42% evaluators answer the MMT tool detected more than
80% vulnerabilities. The estimation of the detection rate is di�cult to perform
for a non-expert user. The testing report (i.e., outcome of monitoring experimen-
tation) provides detailed results about the events that led to the testing verdict.

Table 3. Evaluation results.

Metric Expected value Evaluators Results

Detection rate >80%
42%: >80%
25%: >60% and <80%
33%: No experience

False positive rate <20%
50%: 0%
8%: <20%
42%: No experience

Detection coverage 33%
25%: 100%
50%: 66%
25%: No experience

This allows us to understand the testing report and to estimate the detection
rate. The analysis of the results demonstrates that the evaluators were satis�ed
with the detection rate provided by the MMT tool. The detection rate (more
than 80%) may be regarded as satisfactory, although improvements still need to
be made.

False positive verdicts occur when the tool detects vulnerabilities that are not
present. The false positive rate (less than 20%) is excellent, but improvements
still need to be made. As for the previous metric, a non-expert evaluator could
have di�culties in estimating the false positive rate.

The analysis of the evaluator's results demonstrate the reliability of the moni-
toring techniques used in INTER-TRUST. They found the tool easy to under-
stand and con�gure. It provides readable and relevant reports that can be easily
exploited by the developers in order to detect and correct potentially detected
bugs and vulnerabilities. MMT has also been applied to high speed networks
(up to 5 Gigabits/s) internally at the Montimage company and showed its scal-
ability and capability to detect vulnerabilities by combining events coming from
di�erent sources (network tra�c, application internal events or environmental
context).

6.3 Threats to Validity and Lessons Learnt

In this section we discuss the threats to validity of the evaluation presented in
this section and some lessons learnt during the development and evaluation of
our approach.

Dynamicity o�ered by INTER-TRUST. There are many application do-
mains that will bene�t from using INTER-TRUST due to the dynamicity
o�ered in order to negotiate and deploy runtime security policies using as-
pects. However, we have seen that new vulnerabilities are introduced in the
application due to this dynamicity. This is not exactly a limitation of AOP
or the INTER-TRUST framework since other existing dynamic deployment
techniques presents the same vulnerabilities, but rather the price that it has

to be paid in order to have applications which are more adaptive to changing
security requirements. Anyway, it is still de�nitively an issue to be taken into
account. This is the reason why the use of a monitoring technique such as
the one presented in the paper is so important in coping with this threat.

Monitoring capabilities. The INTER-TRUSTmonitoring capabilities depend
on the list of noti�ed events. The more events are noti�ed, the higher the
detection capabilities of the monitoring tool. However, here a trade-o� needs
to be considered between the detection capabilities and the performance of
the monitoring tool, especially when the recursive monitoring annotations
(see Table 1) are used. Although in the performance evaluation we showed
that the overhead is not so signi�cant, special care needs to be taken when
annotating the applications for monitoring. Regarding the capabilities of the
Monitoring Tool we would like to highlight that it can be used to detect
multiple kinds of vulnerabilities, but in this paper we have focused only on
those vulnerabilities related with maintaining the correlation between the
security policies, the security properties and the security aspects deployed.

Privacy protection of the MMT tool. The monitoring of the application's
internal events can engender several privacy issues, since sensitive data can
be shared with MMT. Within INTER-TRUST, a privacy protection module
is provided to ensure the anonymity of the shared data.

Implementation of security using aspects. There are some security con-
cerns (e.g., authorization) that are more di�cult to encapsulate as an aspect
than others. In these cases additional components are needed in order to
appropriately implement such security concerns. The approach that we fol-
lowed in INTER-TRUST to implement the authorization aspect con�rms
this di�culty. Concretely, INTER-TRUST, as was illustrated in Section 3, is
a framework speci�cally designed to incorporate security to applications and
to be able to dynamically adapt it at runtime. This is achieved not only by
the weaving/unweaving of aspects, but also by the security speci�c modules.
Concretely, the authorization or access control aspect has been implemented
in the context of the INTER-TRUST project for both the ITS and the e-
voting case studies making use of the Policy Engine module (in a similar
way that access control is aspectized in ModAC [16]). The Policy Engine

acts as a PDP (Policy Decision Point � point which evaluates access re-
quests against authorization policies before issuing access decisions1). The
process is: the authorization rules are de�ned as part of the security pol-
icy and can be consulted at runtime through the Policy Engine module.
The INTER-TRUST aspects encapsulate a prede�ned mechanism in order
to access the modules of the INTER-TRUST framework in a decoupled and
distributed way and that the authorization aspect uses this mechanism to
access to the Policy Engine module.

Another issue of the implementation of security using aspects is that the
aspect developers cannot be completely unaware of how applications are
developed. A clear example is the case when re�ection is used to implement

1 See RFC2904 in http://tools.ietf.org/html/rfc2904

parts of the application. In this case, the pointcuts need to be written in a
special way1. Otherwise, the classes created using re�ection or the methods
invoke using re�ection will not be captured by the security aspects.

Undetectable attacks. The knowledge that the attackers have regarding how
the INTER-TRUST framework works can make some of the attacks unde-
tectable. Some of the situations have already being mentioned. For instance,
the attacker is undetectable if the security policy is simultaneously altered
in both the Aspect Generation module and the Monitoring Tool (vulner-
ability V2). Also if the attacker knows that the process of adapting a security
policy at runtime is transactional and in consequence any error deploying
the security policy (e.g., a required aspect is not described in the aspectual
knowledge or no implementation class is found in the aspect repository for
a required aspect) leaves the system in the previous stable state, vulnerabil-
ity V3 could be used to perform a denial-of-service attack by avoiding the
correct deployment of the negotiated security policy. Thus, we still need to
continue working to improve the monitoring and detection mechanisms in
order to detect these undetectable or denial-of-service attacks.

Vulnerable points used to perform the attack. As discussed in the previ-
ous section, the Monitoring tool is able to detect the attacks performed
by exploiting most of the vulnerable points introduced by the mechanism
for the dynamic deployment of aspects. This is done basically by detecting
that the correlation between the security policies, the security aspects and
the security properties is broken. Moreover, since security is always enforced
in INTER-TRUST by using aspects it is possible to identify that a required
aspect is missing or that a woven aspect should not be in a speci�c join
point. However, it is not straightforward to identify the precise vulnerable
point that was used to perform the attack. In order to do that the appli-
cation administrator needs to also consult the audit information generated
by the implicated INTER-TRUST module. Although the description of this
audit process is not in the scope of the paper it is important to highlight
here that it complement the information generated by the monitoring tool.

Security expertise. A consequence of the high �exibility and adaptability of-
fered by the INTER-TRUST framework is the di�culty to con�gure the
di�erent modules and to instantiate the security requirements into aspects.
Also, the mapping of the security requirements to the security properties that
are then checked by the monitoring tool is not a straightforward task. This
instantiation work needs to be performed by a developer that has security
expertise, which is not always easy to �nd in Industry.

7 Conclusions and Future Work

We have de�ned a dynamic aspect-oriented approach for the deployment and
monitoring of security policies at runtime. The approach maintains the correla-
tion between the security policies that need to be enforced, the security aspects

1 http://www.eclipse.org/aspectj/doc/released/faq.php\#q:reflectiveCalls

that are deployed/undeployed in order to enforce those security policies and the
security properties that are activated/deactivated in order to check whether or
not the system is behaving according to the speci�ed security policies. Following
our approach, the adaptation of security policies at runtime and the monitoring
of the correlation de�ned do not suppose a high overhead in the application's
performance.

Our approach has been integrated as part of the INTER-TRUST framework,
however, it can also be applied to many other types of pervasive systems in
other contexts independently of the INTER-TRUST framework, and can also be
used to adapt other functionalities implemented as aspects (not only security).
INTER-TRUST has been successfully integrated in two real case studies: the
ITS case study presented in this paper and an e-voting case study. Each case
study is based on di�erent technologies and has di�erent security requirements.
The �exibility exhibited by the INTER-TRUST framework allows its integration
with di�erent middlewares such as FamiWare [42] in order to provide security
and privacy to wireless sensor networks; and with security adaptation services
such as a MAPE-K (Monitor-Analyze-Plan-Execute over a shared Knowledge)
loop approach [43].

The proposed solution is innovative since it relies on dynamic deployment
of security policies after a negotiation phase and the continuous monitoring of
resulting application to detect potential vulnerabilities and attacks. The solution
allows to enforce context-awareness and dynamic adaptation of security in real
world applications. The evaluation's results demonstrate the reliability of the
monitoring techniques used in INTER-TRUST, regarding the e�ectiveness of
our approach in vulnerabilities detection.

As for future work, we plan to complete our approach by dynamically gener-
ating the structure of the aspects and the security properties from the security
policies minimizing the aspectual knowledge needed to maintain the correlation.

Acknowledgment

Work funded by the European INTER-TRUST FP7-317731 and the Spanish
TIN2012-34840 (co-funded by EU with FEDER funds), FamiWare P09-TIC-
5231, and MAGIC P12-TIC1814 projects.

References

1. Atzori, L., Iera, A., Morabito, G.: The internet of things: A survey. Computer
Networks 54(15) (2010) 2787�2805

2. Chinrungrueng, J., Sunantachaikul, U., Triamlumlerd, S.: Smart parking: An ap-
plication of optical wireless sensor network. In: Applications and the Internet
Workshops, 2007. SAINT Workshops 2007. International Symposium on. (2007)
66�66

3. Dornbush, S., Joshi, A.: Streetsmart tra�c: Discovering and disseminating auto-
mobile congestion using vanet's. In: IEEE 65th Vehicular Technology Conference.
VTC'07 (2007) 11�15

4. Varaiya, P.: Smart cars on smart roads: problems of control. IEEE Transactions
on Automatic Control 38(2) (1993) 195�207

5. Fu-Yuan, W., D, Z., Li, Y.: Smart cars on smart roads: An IEEE intelligent
transportation systems society update. IEEE Pervasive Computing 5(4) (2006)
68�69

6. De Borger, W., De Win, B., Lagaisse, B., Joosen, W.: A permission system for
secure aop. In: Aspect-Oriented Software Development. (2010)

7. Mouelhi, T., Fleurey, F., Baudry, B., Traon, Y.: A model-based framework for
security policy speci�cation, deployment and testing. In: Model Driven Engineering
Languages and Systems. (2008)

8. FP7 European Project INTER-TRUST: Interoperable Trust Assurance Infrastruc-
ture. http://www.inter-trust.eu/

9. Ayed, S., Idrees, M.S., Cuppens-Boulahia, N., Cuppens, F., Pinto, M., Fuentes, L.:
Security aspects: A framework for enforcement of security policies using AOP. In:
Signal-Image Technology & Internet-Based Systems. SITIS (2013) 301�308

10. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-oriented programming. In: ECOOP � Object-Oriented Pro-
gramming. Volume 1241. (1997) 220�242

11. De Win, B., Piessens, F., Joosen, W.: How secure is AOP and what can we do
about it? In: Software Engineering for Secure Systems. (2006) 27�34

12. De Win, B., Vanhaute, B., De Decker, B.: Security through aspect-oriented pro-
gramming. In: Advances in Network and Distributed Systems Security. Volume 78.
(2002) 125�138

13. Steimann, F.: The paradoxical success of aspect-oriented programming. SIGPLAN
Not. 41(10) (2006) 481�497

14. Sun Microsystems, Inc.: Sun's XACML implementation.
http://sunxacml.sourceforge.net/

15. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection: Help for
the practicing programmer. Computer 11(4) (1978) 34�41

16. Toledo, R., Nunez, A., Tanter, E., Noye, J.: Aspectizing Java access control. IEEE
Trans. Softw. Eng. 38(1) (2012) 101�117

17. Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The ponder policy speci�cation
language. In: Policies for Distributed Systems and Networks (POLICY). Volume
1995. Springer Berlin Heidelberg (2001) 18�38

18. Toledo, R., Tanter, E.: Secure and modular access control with aspects. In: Pro-
ceedings of the 12th Annual International Conference on Aspect-oriented Software
Development. AOSD'13 (2013) 157�170

19. Abadi, M., Fournet, C.: Access control based on execution history. In: Proceedings
of the 10th Annual Network and Distributed System Security Symposium (NDSS).
(2003) 107�121

20. Zhang, S., Zhao, J.: On identifying bug patterns in aspect-oriented programs.
In: 31st Annual International Computer Software and Applications Conference.
Volume 1 of COMPSAC'07. (2007) 431�438

21. Serme, G., De Oliveira, A.S., Guarnieriy, M., El Khoury, P.: Towards assisted re-
mediation of security vulnerabilities. In: 6th International Conference on Emerging
Security Information, Systems and Technologies (SECURWARE). (2012)

22. Padayachee, K., Elo�, J.: An aspect-oriented model to monitor misuse. In: In-
novations and Advanced Techniques in Computer and Information Sciences and
Engineering. (2007) 273�278

23. De Win, B., Vanhaute, B., De Decker, B.: How aspect-oriented programming can
help to build secure software. Informatica 26(2) (2001) 141�149

24. Pinto, M., Horcas, J.: How to develop secure applications with aspect-oriented
programming. In: Risks and Security of Internet and Systems (CRiSIS), 2013
International Conference on. (2013) 1�3

25. Cavalli, A., de Oca, E., Mallouli, W., Lallali, M.: Two complementary tools for
the formal testing of distributed systems with time constraints. In: Distributed
Simulation and Real-Time Applications. (2008)

26. Howard, M., Lipner, S.: Inside the windows security push. IEEE Security Privacy
1(1) (2003) 57�61

27. Morales, G., Maag, S., Cavalli, A., Mallouli, W., de Oca, E., Wehbi, B.: Timed
extended invariants for the passive testing of web services. In: IEEE International
Conference on Web Services. (2010) 592�599

28. Roesch, M.: SNORT - lightweight intrusion detection for networks. In: Proceedings
of the 13th USENIX Conference on System Administration. LISA '99 (1999) 229�
238

29. Paxson, V.: BRO: A system for detecting network intruders in real-time. Comput.
Netw. 31(23�24) (1999) 2435�2463

30. Kalam, A., Baida, R., Balbiani, P., Benferhat, S., Cuppens, F., Deswarte, Y.,
Miege, A., Saurel, C., Trouessin, G.: Organization based access control. In: Policies
for Distributed Systems and Networks. (2003)

31. Autrel, F., Cuppens, F., Cuppens, N., Coma, C.: MotOrBAC 2: a security policy
tool. Third Joint Conference on Security in Networks Architectures and Security
of Information Systems (SARSSI) (2008)

32. Clarke, Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)
33. Mallouli, W., Wehbi, B., de Oca, E.M., Bourdelles, M.: Online network tra�c

security inspection using MMT tool. In: System Testing and Validation. (2012)
34. Wehbi, B., de Oca, E., Bourdelles, M.: Events-based security monitoring using

MMT Tool. In: Software Testing, Veri�cation and Validation. (2012)
35. Vinoski, S.: Advanced message queuing protocol. IEEE Internet Computing 10(6)

(2006) 87�89
36. Horcas, J.M., Pinto, M., Fuentes, L.: Closing the gap between the speci�cation

and enforcement of security policies. In Eckert, C., Katsikas, S., Pernul, G., eds.:
Trust, Privacy, and Security in Digital Business. Volume 8647 of Lecture Notes in
Computer Science. Springer International Publishing (2014) 106�118

37. Aouadi, M., Toumi, K., Cavalli, A.: On modeling and testing security properties
of vehicular networks. In: IEEE Seventh International Conference on Software
Testing, Veri�cation and Validation Workshops (ICSTW). (2014) 42�50

38. Aouadi, M., Toumi, K., Cavalli, A.: A formal approach to automatic testing of
security policies speci�ed in xacml. In: Foundations and Practice of Security. Vol-
ume 8930 of Lecture Notes in Computer Science. Springer International Publishing
(2015) 367�374

39. Andrade, R., Rebelo, H., Ribeiro, M., Borba, P.: AspectJ-based idioms for �exible
feature binding. In: Software Components, Architectures and Reuse (SBCARS),
VII Brazilian Symposium on. (2013) 59�68

40. Ajay, V.: A survey on system attack models. Bonfring International Journal of
Research in Communication Engineering 2(1) (2012) 01�04

41. Teixeira, A., Pérez, D., Sandberg, H., Johansson, K.H.: Attack models and sce-
narios for networked control systems. In: Proceedings of the 1st International
Conference on High Con�dence Networked Systems. HiCoNS '12 (2012) 55�64

42. Pinto, M., Gámez, N., Fuentes, L., Amor, M., Horcas, J.M., Ayala, I.: Dynamic
recon�guration of security policies in wireless sensor networks. Sensors 15(3) (2015)
5251

AMQP Broker

AMQP Broker

Security
Administrator

Aspect Generation

Security Aspectual Knowledge

Security
Configurations

Aspectual Knowledge
(advice, pointcuts,…)

Aspectual Security
Patterns

Concrete Security
Adaptation Plan Generation

Concrete Aspect
Generation

Aspect Weaver

Security Adaptation Plan Execution
(AOP framework dependent)

AspectJ Spring AOP ...

AMQP Broker

Security
Adaptation Plan

APPLICATION

...Object1 Object2 Object3 ObjectN

Aspects repository
(.class/.jar/XML

files)

Security Deployment

Specification

generates

Analysis

SDS-Analysis SAK-Analysis

Mapping
Security Policies - Aspects

Aspects Selection
Algorithm

Mapping
Handler 1

Mapping
Handler 2 ...

Mapping
Handler N

Security Configuration
Aspects Generation

... AnA2A1

consults

completes

gets/updates

consults/

generates

consults /

updates

enable /disable aspects add /remove aspects

AMQP Broker

updates aspects

configuration

consults aspects status/

configuration

AMQP Broker
notifies

deployment

status

Knowledge
Provision

Fig. 6. Aspect Generation and Aspect Weaver modules.

43. Horcas, J.M., Pinto, M., Fuentes, L.: Runtime enforcement of dynamic security
policies. In: Software Architecture. Volume 8627 of LNCS. Springer International
Publishing (2014) 340�356

A Aspect Generation and Aspect Weaver

Figure 6 shows the detailed design of the Aspect Generation and Aspect

Weaver modules.
The Aspect Generation module receives noti�cations about security policy

updates that must be deployed, and dynamically generates an adaptation plan.
An adaptation plan consists of a list of aspects, advices or pointcuts that need
to be added or removed into the application. The Aspect Generation module
contains all the information that the Aspect Generation and Aspect Weaver

modules need in order to adapt the aspects deployed in the application to secu-
rity policy changes �- i.e., the Security Aspectual Knowledge. The Aspect

Generation module has the capability to incorporate (as part of the Security
Aspectual Knowledge) the initial aspectual information and the capability to
update that initial information at runtime. Moreover, this module also allows

adding new aspects (pointcuts and/or advices) to the aspect repository at run-
time, in order to make them available to deploy in the applications. In order
to generate the adaptation plan, the Aspect Generation performs the map-
ping process that matches the required functionalities speci�ed in the security
deployment speci�cation with the functionalities provided by each aspect.

The adaptation plan is sent to the Aspect Weavermodule, that is in charge of
executing it by translating the list of aspects received as input (which is speci�ed
independently of a particular AOP framework) to the particular syntax of the
particular AOP weaver being used. This means that di�erent instantiations of
the INTER-TRUST framework for using di�erent AOP weavers will provide
di�erent implementations of this component. The output of this component is a
direct interaction with the selected AOP weaver in order to interact with it and
to weave/unweave/recon�gure the corresponding aspects into the applications.

B Montimage Monitoring Tool (MMT)

Figure 7 shows the detailed design of the Montimage Monitoring Tool (MMT).

MMT

System Env.

Ev. Capture

Security
Analysis

ReportingFilter

Context

Change

AMQP Broker

EFSM based

properties

EFSM based

correlation

Application

events

Network

packets

Events

Events

Publish Publish

Subscribe Subscribe

Subscribe

Publish

MMT Channel

Notification

Module

Context

Awareness

Fig. 7. INTER-TRUST Montimage Monitoring Tool (MMT).

The main objective of the MMT is to continuously capture observable infor-
mation at di�erent levels (e.g., application environment, network level, operating
system, internal application events, etc.) and correlate them in order to detect
potential vulnerabilities, security �aw and/or intrusion attempts. This module
veri�es application or protocol network tra�c traces against a set of MMT-
Security properties. The MMT can be used in the testing phase to complement
the work already done by the testing tools, or during the application opera-
tion (i.e., at runtime) in order to detect live security issues. The MMT has two

main inputs: the negotiated security policy, and the security properties denot-
ing known vulnerabilities and attacks to be checked on the system/application
collected traces. The main output of this module is a security analysis report for
each security property. The detection of the non-compliance of security proper-
ties at runtime generates warnings and alarms that may provoke the reaction
(by mean of re-activating an obligation security policy) and enforce thus secure
interoperability.

