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Abstract

Security and reliability are of paramount importance in
designing and building real-time systems because any secu-
rity failure can put the public and the environment at risk.
In this paper, we propose a framework to take timed secu-
rity requirements into account from the design stage of the
system building. Our approach consists of two main steps.
First, the system behavior is specified based on its func-
tional requirements using TEFSM (Timed Extended Finite
State Machine) formalism. Second, this model is augmented
by applying a set of dedicated algorithms to integrate timed
security properties specified in Nomad language. Nomad is
a formal language well adapted to express timed security
properties with timed constraints. We also briefly present a
France Telecom1 Travel system as a case study to demon-
strate the reliability of our framework.

Keywords: Timed EFSM Model, Security Rules, Nomad
Language, Security Integration.

1 Introduction

The last decade has witnessed a substantial proliferation
of real-time systems in numerous domains. Such systems
have a time dependent behavior as well as an increasing de-
mand for security, which mainly due to their complexity and
distribution aspects. Consequently, software engineers de-
veloping these systems are not only confronted to functional
requirements but they have also to manage other kinds of
requirement concerning security issues. Roughly speaking,
by "functional requirements" we mean the services that a
system has to offer to end users. Whereas, security rules
denote the properties that a system has to fill to be always
in a safe state or also to guarantee a good quality of the ser-
vices it provides.

∗The research leading to these results has received funding from the Eu-
ropean Community’s Seventh Framework Program (FP 7/2007-203) under
the grant agreement number 215995 (http://www.shields-project.eu/), and
POLITESS French project (http://www.rnrt-politess.info/).

1France Telecom is the main telecommunication company in France.

Industrial systems are often designed in two steps. The
first step consists in specifying the real time system from
the functional point of view. Many models based on time
automata theory [4, 19] are proposed in the literature to
perform this formal specification including functional timed
constraints. However, this specification has to be completed
later by integrating the system security aspects. Unfortu-
nately, software engineers developing industrial systemsare
not necessarily experts in security. As a consequence, man-
aging security requirements is a main issue which is far
from being easy for them.

To tackle this problem, we have introduced in an ear-
lier publication [17] a formal process that permits to aug-
ment a functional description of a system with secu-
rity rules expressed with OrBAC language [2] (stands for
OrganisationnalBasedAccessControl). We described se-
curity rules that specify the obligation, permission or in-
terdiction for a user to perform some actions under given
conditions calledcontext. This context does not involve
time aspects. In fact, we only specified rules without time
considerations. Another work presented in [15] proposes
to translate security rules (always without time constraints)
into observers that can communicate with the functional
specification of a system specified in EFSM formalism [14]
(stands forExtendedFinite StateMachine) to regulate its
behavior. To be able to include timed security rules, for ex-
ample the obligation for a client to send his/her payment
within 8 days at the latest after the reception of his/her bill,
we propose in this paper to rely on Nomad language [13]
(stands forNon-atomicactions anddeadlines) that supports
the time concept.

The main contribution of this paper is to provide soft-
ware engineering with a formal process to integrate more
elaborated security rules involving timed contexts into a
TEFSM specification [19]. Such an integration consists in
adding clocks to represent the time progress and also in
adding guards (or predicates), transitions and/or states to
make the execution instance of a given action possible only
under a specific clock valuation. The produced TEFSM is
called a secured TEFSM since it takes the timed security



rules into account.
From a theoretical point of view, the integration ap-

proach we have developed classifies security rules into three
distinguished classes. The first two classes denote basic
rules with atomic or non-atomic actions and whose contexts
are simple. By a simple context, we mean a context that in-
cludes a single timed operator and no logical connectors.
The third class is general and deals with elaborated security
rules that include more complex contexts. We can demon-
strate that these last rules can be decomposed into one or
several basic rules on which the integration process defined
for the two first classes can be applied [16]. For the sake of
space, we only present the integration of basic security rules
including atomic actions. The other cases are presented in
details in a technical report [16]. It is worth noticing that
the integration of security rules within a functional system
specification is not an end in itself. The secured TEFSM can
be used for several purposes such as code generation [18],
specification correctness proof[3], model checking [11] or
automatic test generation [1, 9], etc.

This paper is organized as follows. Section 2 provides
the basic concepts used for the modeling of system behav-
ior from functional and security point of view. In section
3, we expose the algorithms to integrate basic security rules
within an existing TEFSM specification. The application
of our methodology to an industrial case study is presented
in section 4. Finally, section 5 concludes the paper and
presents future work.

2 Preliminaries

2.1 Modeling Communicating Systems
Using TEFSM Model

The objective of modeling a system is to provide an op-
erational specification of a system from a functional point
of view which can include time constraints. In particular, it
helps to provide a better common understanding of the sys-
tem. In addition, this operational model can also be used
as input to existing validation tools, such as interactive or
random simulators, model-checkers or (conformance) test
generation engines. To achieve this modeling goal, we rely
in this paper on TEFSM model [19]. A TEFSM modeling
of a system consists of a set of processes, each process de-
notes a TEFSM that can communicate with other processes
via FIFO channels.

Definition 1 A TEFSMM is a 7-tupleM = < S, s0, I, O,
~x, ~c, Tr > whereS is a finite set of states,s0 is the initial
state,I is a finite set of input symbols (messages possibly
with parameters),O is a finite set of output symbols (mes-
sages possibly with parameters),~x is a vector denoting a
finite set of variables,~c is a vector denoting a finite set of
clocks andTr is a finite set of transitions. A transitiontr

is a 4-tupletr =< si, sf , G, Act > wheresi and sf are
respectively the initial and final state of the transition,G is
the guard which is composed of predicates on variables and
clocks~x and~c (boolean expression) andAct is an ordered
set (sequence) of atomic actions including inputs, outputs,
variable assignments, clock setting, process creation and
destruction.

The execution of any transition is spontaneous in the
sense that the action(s) associated with this transition oc-
cur simultaneously and take no time to complete. The time
progress takes place in some states before executing the se-
lected transitions.

S 0 S 1

i npu t  A ,  P ,  T ,  se t  Ck  =  0 ,  ou tpu t  X
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    P

    T’
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_

Figure 1. Example of a simple TEFSM with
two states.

We illustrate the notion of TEFSM through a simple ex-
ample described in Figure 1. This TESFM is composed
of two statesS0, S1 and three transitions that are labeled
with two inputsA andB, two outputsX andY , one guard
(or predicate)P on variables, one clockCk and three tasks
T , T ′ andT ′′. The TEFSM operates as follows: starting
from stateS0, when the inputA occurs, the predicateP is
checked. If the condition holds, the machine performs the
taskT , starts the clockCk, triggers the outputX and moves
to stateS1. Otherwise, the same outputY is triggered but it
is actionT ′ that is performed and the state loops on itself.
Once the machine is in stateS1, it can come back to stateS0

when the clock exceeds the value 6 and receives the input
B. If so, taskT ′′ is performed and outputY is triggered.

In the following sections, iftr = < si, sf , G, Act >

anda ∈ Act, then we can denoteAct by {before(a), a,
after(a)} to express that actiona is performed within the
transition tr and that there is possibly other actions be-
fore or aftera (before(a) andafter(a) may be empty).
For instance, in the transition from stateS0 to S1 of Fig-
ure 1,Act = {input A, T, set Ck := 0, output X} can
be denoted byAct = {before(T ), T, after(T )} where
before(T ) = {input A} and after(T ) = {set Ck :=
0, output X}.

2.2 Security Rules Specification Using
Nomad Language

We rely in this paper on Nomad formal language to spec-
ify without any ambiguity the set of security properties that
the system has to respect. The choice of this language was



mainly motivated by the characteristics of Nomad that pro-
vides a way to describe permissions, prohibitions and obli-
gations related to non-atomic actions within elaborated con-
texts and mainly time constraints. By combining deontic
and temporal logics, Nomad allows to describe conditional
privileges and obligations with deadlines thanks to the time
concept it supports.

2.2.1 Nomad Syntax and Semantics

To meet the requirements of the functional model of the sys-
tem, we define an atomic action with the same concepts of
TEFSM actions.

Definition 2 (Atomic action) We define an atomic action as
one of the following actions: a variable assignment, a clock
setting, an input action, an output action, a process creation
or a process destruction.

Definition 3 (Non-atomic action) IfA andB are actions,
then (A; B), which means "A is followed immediatelyby
B" is a non-atomic action.

Definition 4 (Formulae) If A is an action thenstart(A)
(startingA), anddone(A) (finishingA) are formulae.

Here are some properties on actions and formulae:

• If α andβ are formulae then¬α, (α ∧ β) and(α ∨ β)
are formulae.

• If α is a formula thenOdα (α was trued units of time
ago if d ≤ 0, α will be true afterd units of time if
d ≥ 0) is a formula too.

• If α is a formula thenO<dα (within d units of time
ago,α was possibly true ifd ≤ 0, α will be possibly
true within a delay ofd units of time if d ≥ 0) is a
formula.

• If α andγ are formulae then(α|γ) is a formula whose
semantics is: in the contextγ, the formulaα is true.

In the rest of the paper, we use the notationO[<]d to
cover both casesOd andO<d. Notice also that using No-
mad formalism, we deal with a discrete time. The choice
of the unit of time can be very important and depends on
the studied system. In our work, we use real time units
like seconds, milliseconds or microseconds depending on
the desired precision.

Definition 5 (A security rule) Ifα andβ are formulae,R
(α | β) is a security rule whereR denotes one of the follow-
ing deontic operators: {P , F , O}. The security ruleP (α |
β) (resp. F (α | β), O (α | β) ) means that it is permitted
(resp. prohibited, mandatory) to executeα when contextβ
holds.

More details about the syntax and semantics of Nomad are
presented in [13].

2.2.2 Examples of Security Rules Specification

We present in this section some examples of security rules
specifications expressed in Nomad:

Example 1:

P(start (input ReqWrite(user,file.doc))|
O≤−5s (done (output AuthOK(user))∧
¬ done (output DisconnectOK(user)))

This rule expresses a permission granted to any user to
request to write in ‘file.doc’, if earlier within 5 seconds,
he/she was authenticated and his/her authentication is still
running.

Example 2:

O(start (output DisconnectOK(user))|
O≤−30min(¬ done (input Message(user)))∧

O−30mindone(output AuthOK(user)))

According to this obligation rule, the system must discon-
nect a running connection of any user if this latter remains
inactive for 30 minutes.

Example 3:

F(start ((output AuthOK(user)))|
O≤−0.01s done (output AuthOK(user)) ∧

(¬ done(output DisconnectOK(user))))

This prohibition rule means that it is forbidden that the sys-
tem manages more than two authentication requests in the
same millisecond.

3 Security Integration Methodology

In this section, we present our approach to integrate se-
curity rules into a TESFM specification describing the be-
havioral aspects of a system. We deal with rules of the form
R (start(A|O[≤]ddone(B)) where actionsA and B are
atomic actions. To integrate security rules into a TEFSM
specification, we have to make the following assumptions:

• The initial TEFSM specification representing the be-
havior of the system is correct. Indeed, it must be
deadlock free and each state must be reachable from
any other state.

• The initial TEFSM specification of the system does not
take into account the security requirements we would
like to integrate. It only specifies the system behav-
ior from its functional point of view. Such a property
can be verified using for instance model checking me-
thods [11]. If the rule is already satisfied by the initial
specification, there is no need to add it again.
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Figure 2. Prohibition Rule Integration : F (start(A) | O<−d done(B))

• The security rules to integrate are consistent. We as-
sume that it does not contain any incoherent or re-
dundant rules. Checking the consistency of the secu-
rity policy is out of the scope of this paper. We as-
sume that this issue has been checked. There are sev-
eral techniques to achieve this goal (see for instance
[12]). Here is an example of inconsistent security pol-
icy composed of two rulesO (start(A) |O−d done(B))
andF (start(A) | O−d done(B)): we can not oblige
the system to perform actionA in a context(C = O−d

done(B)) if this action is forbidden in the same con-
text.

3.1 Prohibitions Integration
(F(start(A|O[≤]ddone(B)))

The prohibited action usually relates to an already
existing action in the initial system. Considering the
TEFSM specification, actionB can appear on one or
several transitions. The basic idea of integrating such
prohibition rule in a TEFSM model is to check the rule
context before performing the prohibited action. If this
context is verified, the prohibited actionA must be skipped.
Otherwise, if the context is not valid, the action can be
performed without any rule violation. Since we deal with
a timed context, we have to define a clock to manage the
temporal aspect of the rule.

First Case: in the following, we present the differ-
ent steps to integrate a prohibition rule in the form ofF
(start(A) | O<−d done(B))within a TEFSM model where
(d > 0). This rule expresses that it is forbidden to per-
form actionA if within (d − 1) units of time ago,B was
performed. Three steps are to be considered:

• The creation of a public clockCk that can be modified
by all the TEFSM model processes.

• Clock Ck is set to 0 after each occurrence ofB in
the TEFSM. Intuitively,Ck measures the time elapsed
from the last execution of actionB. Before the first
execution ofB, clockCk is simply inactive.

• Before performing the prohibited actionA, we verify
if clock Ck is already activated. If so, we check its
valuation to deduce ifA can be performed or not. If
the clock is not activated, that means that the system
did not performB yet. In that case,A is allowed.

These steps are provided in pseudo-code in Algorithm
1. To illustrate this algorithm, we present an example of
a prohibition rule integration in Figure 2. In the left, the
initial functional system contains several occurrences ofthe
atomic actionsA andB. We want to integrate the ruleF
(start(A)| O<−d done(B))that stipulates that it is forbidden
to perform actionA if within d units of time ago,B was
performed. Applying Algorithm 1, we obtain the secure
system depicted in Figure 2.b.

Algorithm 1 Prohibitions Integration (1/2)
Require: The TEFSM modelM =< S, s0, I, O, ~x,~c, T r > and the

prohibition security ruleF (start(A) | O<−d done(B))
1: Define a new integer variable k:=0;
2: Define a new clockCk within M ;
3: for each (transitiontr such that

(tr ∈ Tr ∧ tr =< Si, Sj , G, Act >)) do
4: if (B ∈ Act) then
5: tr := < Si, Sj , G, {before(B), B,

set Ck := 0, After(B)} >;
6: if ((A ∈ Act) ∧ A ∈ After(B)) then
7: /*tr = < Si, Sj , G, {before(B), B,

After(B)∩Before(A), A, After(A)} >*/
8: Create a new stateS′

k
and a new transitionTrk;

9: tr := < Si, S
′
k
, G, {before(B), B,

After(B) ∩ Before(A)} >;
10: trk := < S′

k
, Sj , {when (Ck > d − 1)},

{A, After(A)} >;
11: k++;
12: end if
13: else
14: if (A ∈ Act) then
15: Create a new transitiontrk ;
16: tr := < Si, Sj , {G, provided not active Ck},

{before(A), A, After(A)} >;
17: trk:= < Si, Sj , {G, provided active Ck, when (Ck >

d − 1)}, {before(A), A, After (A)} >;
18: k++;
19: end if
20: end if

21: end for



Second Case:this part gives the steps to follow in order
to integrate, within a TEFSM specification, a prohibition
rule of the formF (start(A) | O−d done(B))whered > 0.
This rule expresses that it is forbidden to perform action
A if B was performedd units of time ago. The first solu-
tion that comes to mind consists in defining -like in the first
case- a new clockCk which is set to0 each time actionB
is executed. Then, the guard of each transition that executes
actionA is reinforced by the guard {ck 6= d} to make the
transition fireable only if the elapsed time from the execu-
tion of actionB is different fromd (It may be more or less).
This solution is represented by a declination of Algorithm 1
by replacing {when Ck > d − 1} with { when Ck 6= d}.

Figure 3 illustrates the application of this algorithm on
the example of the initial TESM presented in Figure 2.a.
Basically, we have to check the valuation of the clockCk

to know whether it is permitted or not to executeA.
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Figure 3. First Intuition for Prohibition Rule
Integration

However, a deep analysis about the presented solution
shows that this latter is only conceivable if the interval be-
tween two successive executions of actionB is longer than
d. Indeed, let us assume that TEFSM system in Figure 3
follows the sequences of transitions shown in Table 1 and
that clockCk progresses after its activation in each stateSi

according to a given valuation.

Transition Arrival State Si Duration in Si

Tr1 S0 → S2 S2 2
Tr2 S2 → S0 S0 3
Tr3 S0 → S1 S1 2
Tr4 S1 → S2 S2 Not relevant

Table 1. A Transitions Sequence Example
with Time Progress

Let us suppose thatd is equal to5. gck denotes a master
clock that measures the system global time. The progress
of the secure system is described in Table 2.

We can notice that sinceCk is not equal to5, actionA

is ‘wrongly’ executed although the time elapsed from the
first execution of actionB is equal to5. This is due to the
reset action (Ck := 0) executed in the second occurrence
of B. In other words, this re-set action erases the previous
possible execution ofB from the system memory.

Transition States gck Ck Note
Tr1 S0 0 -1 Ck is not yet activated

S2 0 -1 Transitions are instantaneous
Time progress (2 units of time)

Tr2 S2 2 -1 Ck is not yet activated
S0 2 0 1st execution ofB

Time progress (3 units of time)
Tr3 S0 5 3 Both clocks progress

S1 5 0 2nd execution ofB
Time progress (2 units of time)

Tr4 S1 7 2 Both clocks progress
S2 7 2 Action A is performed

sinceCk 6= 5

Table 2. The Secure TEFSM System Progress

To cope with this limit, we suggest the following second
solution. Basically, we define a clockgck that denotes a
master clock that measures the time elapsed from the be-
ginning and an integer variablec that indicates the next
moment when the execution ofA is forbidden. Thus for
each execution of actionB, the system creates a new pro-
cessRHP (for Rule Handler Process) that waits duringd

units of time. Then, it updates the value ofc to state the
moment when the execution ofA is forbidden, then it stops
(it kills itself). The global clockgck is compared to the
value ofc before performingA. The algorithm 2 formally
defines these steps. Applying this algorithm on the TEFSM
of Figure 2.a gives the secured TEFSM depicted in Figure
4.
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Figure 4. Prohibition Rule Integration : F
(start(A) | O−d done(B)).

3.2 Permissions Integration

Like prohibitions, permissions relate to actions which al-
ready exist in the initial functional system. Their integration
within a TEFSM specification relies on almost the same al-
gorithms for prohibition rules integration presented in the
last section. Indeed, by definition, giving the permission to
perform an actionA in a given contextC, means that when
this context is not verified,A must be denied. Thus, a per-
mission ruleP (α | β) is equivalent to the prohibition rule
F (α | ¬β). The algorithms used for the integration of per-
missions rules are very similar to algorithms 1 and 2. More
details are provided in [16].



Algorithm 2 Prohibition Integration (2/2)
Require: The TEFSM modelM =< S, s0, I, O, ~x,~c, T r > and the

prohibition security ruleF (start(A)| O−d done(B))
1: Define a new integer variable k:=0;
2: InM , define a new public clockgck and a new public integer variable

c;
3: In the initial State, set gck := 0; c := -1;
4: for each (transitiontr such that

(tr ∈ Tr ∧ tr =< Si, Sj , G, Act >)) do
5: if (B ∈ Act) then
6: tr := < Si, Sj , G, {before(B), B,

fork RHP ((integer)gck + d), After(B)} >;
7: /*RHP is a new process that handles variablec. It accepts an

integer parameter*/
8: if ((A ∈ Act) ∧ A ∈ After(B)) then
9: /*tr =< Si, Sj , G, {before(B), B,

After(B)∩Before(A), A, After(A)} >*/
10: Create a new stateS′

k
and a new transitiontrk ;

11: tr := < Si, S
′
k
, G, {before(B), B,

After(B) ∩ Before(A)} >;
12: trk := < S′

k
, Sj , {when gck 6= c},{A, After(A)} >;

13: k++;
14: end if
15: else
16: if (A ∈ Act) then
17: G := {G, when gck 6= c};
18: end if
19: end if
20: end for
21: for RHP (T)do
22: In the initial stateS0, define a transitiontr1;
23: tr1 := < S0, _ , when gck = T , {c := T, stop} >;

24: end for

3.3 Obligations Integration

To integrate an obligation security rule, we rely on a new
processRHP that ensures the execution of the mandatory
action. If the related mandatory action is not executed by
the initial specification, the process has the task to execute
it itself.

First Case: the integration methodology follows these
steps for a rule that is in form ofO (start(A)| O−d done(B))
whered > 0:

• The definition of a new process that can be createdn

times by the initial functional specification.n is the
maximum number of occurrences of the rule context
actionB that can be executed duringd units of time.

• The new process has to set a clock and wait until the
deadline is reached. At this moment, it performs the
mandatory actionA.

We assume that the initial systemS is not secure, that is, it
does not perform the actionA, d units of time after execut-
ing B. This task is then performed by theRHP process.

In Figure 5, we present the integration of an obligation
rule within the initial system depicted in Figure 2.a. In this

functional system, we can find several occurrences of the
atomic actionB.
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Figure 5. Obligation Rule Integration : O
(start(A) | O−d done(B)).

Second Case:to add an obligation rule of the form ofO
(start(A) | O<−d done(B)), we have to associate with each
occurrence of actionB an execution of actionA. This latter
action has to be performed within a delay of (d−1) units of
time. To perform such an integration, we have to follow the
steps given hereafter:

• We define an integer variablewaitA that counts the
number of occurrences of actionsB that are waiting
for an execution of actionA.

• We define a new processRHP where a clockCk is
activated to wait(d − 1) units of time (till actionA

has to be executed). When the deadline is reached,
processRHP checks whether we are waiting for any
execution of actionA (waitA > 0) and executesA if
necessary.

• VariablewaitA are updated as follows:waitA is in-
cremented each time actionB is executed. If the value
waitA is strictly positive, it is decremented each time
actionA is executed either by the initial specification
or by processRHP .

Intuitively, processRHP has to wait for a possible ex-
ecution of actionA during the allowed time(0..(d − 1)).
In case where the initial specification does not execute such
an action, processRHP must execute it. Figure 6 shows
the integration of obligation rule of the formO (start(A) |
O<−5 done(B)) within the initial system shown in Figure
2.a.

4 Case-study: Travel Application

To prove the effectiveness of our framework, we carried
out a case-study on a travel application which is an inter-
nal service used by France Telecom company to manage
‘missions’ corresponding to traveling of its employees. In
our case study, we only consider at first a simple travel ap-
plication where a potential traveler can connect to system
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Figure 6. Obligation Rule Integration : O (start(A) | O<−d done(B)).

to request for a travel ticket and a hotel reservation duringa
specific period according to a specific objective (called mis-
sion). This request can be accepted or rejected by his/her hi-
erarchical superior. In the case of an acceptance, the travel
ticket and hotel room are booked by contacting a specific
travel agency. The specification of this ‘Travel’ Web ap-
plication is performed using a TEFSM model through IF
formalism [6].

4.1 Functional Specification of Travel Sys-
tem

To perform this formal specification, we rely in our ap-
proach on one of the languages based on TEFSM: IF for-
malism. IF is usually used to model functional behavior of
communicating systems such as network protocols, services
and Web applications. The Intermediate Format (IF) lan-
guage can be considered as a common representation model
for other existing languages. It was originally developed to
sit between languages as SDL, Promela or Lotos [5] but it
has been extended to tackle other notations, as UML [10].

The semantic of time in IF language is the same as in
TEFSM. That is: (i) a timed behavior of a system can be
controlled through clocks (or timers). (ii) The time progress
in some states before executing the selected transitions. (iii)
Transitions take zero time to be executed (instantaneous
transitions). The specification of ‘Travel’ system using IF
language provides the metrics presented in Table 3.

Processes States Transitions Signals Variables
basic_traveler 5 9 10 7

travel 2 7 7 8
traveler_mission 7 12 11 8
travel_mission 7 11 14 6

validator_mission 4 6 5 5

Table 3. IF Travel System Specification

4.2 Security requirements for Travel Sys-
tem

France Telecom proposed a preliminary version of the
case study Travel, in which some informal security require-

ments are provided. Basing on these requirements, we for-
mally specified later a set of 34 security rules using Nomad
language. Several of these rules are time-related. For matter
of space, we only present in this paper two of them:

• Rule 1. The following prohibition rule expresses that 2
mission requests of the same traveler must be separated
by at least 2 minutes:

F (start (output req_create_mission(t))|
O≤−2min done (output req_create_mission(t)))

• Rule 2. The following permission rule expresses that
a traveler can request for another travel propositions
list within a delay of 10 minutes after the last possible
request:

P (start (output req_proposition_list(t, m))|
O≤−10min ¬ done (output req_proposition_list(t,m)))

• Rule 3. The following obligation rule expresses that if
a traveler requested for the validation of his/her mis-
sion and if he/she did not received an answer, the sys-
tem must send another request to remind the potential
mission validator. This reminder is sent within a delay
of (10080 min = 7 days):

O (start (output req_validation())|
O−10080mindone(output req_validation()) ∧

O≤−10080min (¬done(input recv_validate_notification())
∧ ¬done(input recv_unvalidate_notification())))

4.3 Rules Integration

The integration of the security rules was performed
based on the methodology described in sections 3. This
integration allowed to add several clocks, transitions, pro-
cesses and to restrain several transitions. The following
table 4 shows some metrics about the modifications after
the integration of some specific rules: the modified and
added transitions (M&A Transitions), the added variables
and clocks (Added Var & Ck), the added processes (Added
Proc).



Rule M&A Transitions Added Var & Ck Added Proc
1 1+1 1 0
2 2+1 1 0
3 4+3 4 1

Table 4. IF Travel System Modifications Ac-
cording to Each Rule

5 Conclusion and Future Work

In this paper, we presented a framework for integrating
timed security policies specified in Nomad within a func-
tional specification of the system described in Timed Ex-
tended Finite State Machine model. We proposed several
algorithms to automate this integration process. Then, we
applied our framework to a representative industrial case-
study provided by France Telecom. We showed that our ap-
proach allows the specification of various modalities such
as obligation, permission and prohibition with timed con-
straints and makes it possible to obtain a secure system
specification. Notice that our integration approach dealing
with timed security rules is original since no previous work
dealt with it before. Furthermore, the obtained secure sys-
tem can be useful for several purposes such as code gener-
ation, specification correctness proof, model checking and
automatic test generation.

As future work, we will use the formal secure specifica-
tion of Travel system to derive automatically test cases to
validate its implementation. The automatic test generation
will target security issues. This task will be performed us-
ingTestGen-IF tool [8, 20] developed in our laboratory.
TestGen-IF is based on Hit-or-Jump [7] algorithm that
is especially used for components testing to perform test se-
quences generation from IF system specifications.
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