
1

Security Rules Specification and Analysis
Based on Passive Testing

Wissam Mallouli1 Fayçal Bessayah1 Ana Cavalli1 and Azzedine Benameur2

1Institut Telecom SudParis, CNRS/SAMOVAR 2SAP Research
{wissam.mallouli, faycal.bessayah, ana.cavalli}@it-sudparis.eu

{azzedine.benameur}@sap.com

Abstract—Security is a critical issue in dynamic and open
distributed environments such as network-based services or
wireless networks. To ensure that a certain level of security is
maintained in such environments, the system behavior has tobe
restrained by a security policy in order to regulate the nature and
the context of actions that can be performed within the system,
according to specific roles. In this paper, we propose a passive
testing approach that permits to check whether a system respects
its security policy. To reach this goal, we specify this policy using
‘Nomad’ formal language which is based on deontic and temporal
logics. This language is well adapted to passive testing methods
that aim to analyze collected system execution traces in order to
give a verdict about their conformity with to the system security
requirements. Finally, we apply our methodology to an industrial
case study provided by SAP group to demonstrate its reliability.

Index Terms—Security Policy Checking, Nomad Language,
Trace Collection, Passive Testing.

I. I NTRODUCTION

A security policy is a set of rules that defines the desired
behavior of users within an information system. Its main goal
is to describe how data and other critical system resources
are protected. If a security policy is written in a natural
language specifying for example: ‘fileF is only accessible
from terminalT in the contextC ’, it will be very difficult to
verify its correct implementation using an automatic testing
approach because it is a completely informal specification.
Consequently, if such verification is not performed, there is
no guarantee that the security rules of the system are properly
implemented.

Nowadays, security policies are the key point of every
modern infrastructure. Challenging security issues concern-
ing network-based services or collaborative applicationshave
arisen because of the complexity and the variety of the
implemented system, as well as the high degree of reliability
required for their global security. To guarantee that the system
respects its security policy, we can rely on formal testing based
methods. The main ones are (i) the active testing [17] which
validates a system implementation by applying a set of security
test cases and analyzing its reaction and (ii) the monitoring
(or passive testing) that consists in observing, during the
execution, whether the system behavior is conform according
to its functional and security formal specification.

In some cases, active testing becomes difficult to perform.
This is the case when the tester is provided without any
direct interface (called also Observation and Control Point)
to interact with the implementation under test (IUT) or when

the implementation is built from components that are running
in their environment and cannot be shutdown or interrupted for
a long period of time. In such situations, there is a particular
interest in using passive testing techniques. Indeed, a passive
tester does not need to interact with the IUT, it only collects the
execution traces and then analyze them without perturbing the
IUT behavior. For this reason, we choose to rely in this paper
on the passive testing technique to study the conformance ofa
system according to its security requirements. To perform this
analysis, we rely on a dedicated formal language to describe
the security requirements of the system. Then, we check
using well adapted algorithms whether these security rules
are verified on the collected traces to deduce the appropriate
verdict about the system security conformance.

Our main contributions in this paper are (i) the formal
specification of security policies using a well adapted formal-
ism. This latter is used to describe advanced security rules
with temporal aspects regardless of the nature of the tested
application. To achieve this, we rely on Nomad language [8]
which is more convenient in use than a generic temporal logic
(like LTL). (ii) Then, we propose a passive testing approachto
analyze collected execution traces, and deduce automatically
a verdict concerning the respect of the system to its security
policy. We claim that with our methodology and algorithms,
all the verdicts are correct: we do not generate any false
alarm comparing with previously proposed approaches [2].
(iii) Finally, we present an industrial case study providedby
SAP group to demonstrate the reliability of our framework. A
discussion of the results is also provided.

The remainder of this paper is organized as follows. In
section II, we discuss the related work tackling with the
passive monitoring for checking security. Section III presents
the formalism we rely on to specify security policies. Our
checking methodology is presented in section IV. In section
V, we present a case study where SAP R/3 transactions are
audited in order to demonstrate the reliability of our testing
methodology. Finally, section VI presents the conclusion and
introduces the future work.

II. RELATED WORK

Previous work have focused on the definition of languages
that allow to specify security policies in a more formal way
and verify if there is or conflict [7], [12] between the specified
rules. With the great majority of languages, security rules
are defined with modalities like permissions, prohibitionsand

2

obligations that express possible constraints on the behavior
of the system [9]. Among these languages, we can mention
for instance Ponder [10] which is an object-oriented language
used to describe security rules and management policies in
distributed systems, or Or-bac [1] (for Organization Based
Access Control) which allows to specify more flexible rules
introducing the concept of ‘context’ that allows to describe
the circumstances in which certain security rules should be
applied. We can also mention Nomad [8] a security model
with ‘Non Atomic Actions and Deadlines’ which allows, not
only the specification of the rules context, but can also be used
to describe temporal constraints in security rules.

Once security policies are formally specified, it remains to
verify that the IUT is in conformity with its security policy.
Several researches [11], [16], [17] focused on the problem
and proposed, on one hand, some approaches based on active
testing techniques to generate test suites that can be applied
to the system under test. In [17] for example, the authors
proposed a framework to specify security policies and to test
their implementation on a system. The behavior of the system
is specified using the extended finite state machine (EFSM)
[15] formalism. The integration of security rules within the
system specification is performed using specific algorithms.
Then, the automatic tests generation is performed based on a
dedicated tool. In [16], the authors adapted model based testing
techniques for security policies checking. They proposed an
approach to produce test cases from a security policy specified
in Or-bac model. To achieve this goal, they first generate test
purposes from Or-bac rules then they generate test cases from
these test purposes.

On the other hand, some studies [3], [4], [13], [14] rely
on passive testing techniques to check the conformance of
a system with regards to its functional specification without
taking into account security issues. The security checkingis
usually performed using intrusion detection systems (IDS)that
employ either misuse detection or anomaly detection [6].

In this paper, we propose a new methodology based on
passive testing techniques to address the problem of the
conformance of a system according to its security policy
including temporal aspects.

III. SECURITY POLICY SPECIFICATION

A. Formal Language Presentation

To specify the set of security properties that the a system
has to respect, we rely on Nomad formal language. The choice
of this language was mainly motivated by the characteristics
of Nomad that provides a way to describe permissions, prohi-
bitions and obligations related to non-atomic actions within
different contexts. Nomad allows to express privileges on
non atomic actions. It combines deontic and temporal logics
and can describe conditional privileges and obligations with
deadlines.

Definition 1: (Atomic action) We define an atomic action
as the emission or the reception of a message between two
system entities (or components) using the following syntax:

Entity1 ?or! Msg(Par1,Par2,...,Parn) Entity2

Where: Entity1 and Entity2 represent the source or the des-
tination of the message. ’?’ and ’!’ define a reception and

an emission of a message by Entity1. Msg(Par1,Par2,...,Parn)
represents the message exchanged between Entity1 and Entity2
with its parameters. Entity1, Entity2, Msg, and Pari can be
replaced by the symbol∗ to represent any entity, any message
or any parameter.

Definition 2: (Non-atomic action) Ifα and β are actions,
then (α; β), which means "α is followed immediately byβ”
and (α; ∗; β), which means "α is followed byβ" are non-
atomic actions.

Definition 3: (Formula) If α is an action thenstart(α)
(action α is being started) anddone(α) (action α is done)
are formula.
Here are some properties on actions and formula:

• If A andB are formula then(A ∧ B) and (A ∨ B) are
formula.

• If A is a formulae then¬A, ⊕A (next in the trace,A
will be true),⊕nA (in the n next messages in the trace,
A will be true),⊖A (previously in the trace,A was true)
and⊖nA (in then previous messages in the trace,A was
true) are formula.

• If A is a formula thenO≤dA (−d units of time ago,A
was true ifd < 0 or in the nextd units of time,A will
be true ifd > 0) is a formulae.

• (A|C) is a formulae: in the context C the formula A is
true.

Definition 4: (Deontic modalities) If A is a formula then
modalityO ("A" is mandatory),F ("A" is forbidden) andP
("A" is permitted) are formula.
More details about the syntax and semantics of this formal
language are presented in [8].

B. Examples of Security Rules Specification

We present in this section some examples of security rules
specifications according to Nomad language:
Example 1:

P(start (usr1! Msg (ReqWrite, fich1.doc) ServerA)|
⊖(done (usr1 ! Msg (AuthReq) ServerA)
∧ done (usr1? Msg (AuthOK) ServerA)

∧¬ done (usr1? Msg (DisconnectReq) ServerA)))

This rule expresses a permission granted to usr1 to write on
‘file1.doc’ which is managed by ServerA, if earlier, the user
usr1 was authenticated and not disconnected.
Example 2:

O(start (ServerA! Msg (DisconnectOK) user)|
O≤−30min¬ done (ServerA ? Msg() user))

According to this obligation rule, ServerA must disconnect any
user if this latter remains inactive for 30 minutes.
Example 3:

F(start (ServerA ? Msg (https, AuthReq) user)|
O≤−1s done (ServerA ? Msg (https, AuthReq) user

;*; ServerA ? Msg (https, AuthReq) user))

This prohibition rule means that ServerA can not accept
more than two authentication requests from the same user in
the same second.

The next section presents our passive testing approach to
verify security rules specified in Nomad.

3

IV. PASSIVE TESTING METHODOLOGY

A. Preliminaries

We can distinguish three steps in our passive testing method-
ology for security checking:

• The definition of passive testing architecture: in general,
to collect execution traces on a running system, we need
to install observation points (called also probes) into
specific strategic points. These observations points aim to
collect data exchanged between relevant entities. The col-
lected traces are usually stored in one or many trace files.
In some specific systems (mainly industrial systems), we
can have an integrated module within the system that
collects all the traces. In both cases, we retrieve trace files
that describe the communication between system entities.

• The description of the system security policy using a
formal specification language: the description concerns
the security rules that the studied system has to respect.
We rely in this paper on Nomad language introduced in
section III.

• The security analysis: based on the security policy speci-
fication, the passive tester has to perform security analysis
on the trace file(s) to deduce a global verdict. This verdict
is PASS if the system trace respects the specified security
policy and FAIL if it does not. TheINCONCLUSIVE
verdict is possible if the tester can not extract the neces-
sary information from the collected traces in the case of a
short trace for example. We assume here that if the trace
is long enough (according to the IUT) or if the traffic
collection is continuous, we can claim that it describes
the global behavior of the system and consequently the
verdict concerns the system conformance according to its
security policy.

B. Passive Testing Approach

To run the testing process, the security test tool needs two
different input files: the trace file collected by the observation
point or generated by the system (log file) and a second file
where are specified the security policies.

Figure 1. Tool Architecture for Security Checking.

First, the security test tool verifies through a syntax checking
module that security policies are well specified according to
the Nomad format. This avoids syntax-related bugs in the test
engine module.

Second, the collected traces files have to be analyzed using
a pre-processing module that performs the following tasks:

• Filtering the traces files keeping only the relevant infor-
mation for the protocol(s) under test. The basic idea is
to keep in the traces only the messages and parameters
corresponding to the specified properties to check.

• Parsing the global trace and creating a trace table which
constitutes the target of the ‘Test Engine’ module queries.
Each line of the trace table corresponds to an emission
or a reception of a message in the network.

Finally, the trace analysis is performed using three algorithms
according to the rule nature: permission, prohibition or obli-
gation. These three algorithms are based on the same concept:
each line in the trace table can correspond to (i.e. can be an
instantiation of) one or many atomic actions described in one
or many properties.

Definition 5: (L=Instantiation(A)) a lineL in the trace
table T is an instantiation of an atomic actionA described
in the security propertyPr if the sender componentS, the
receiver componentR and all the message parametersPi

mentioned in the actionA are the same existing in the table
line L.

For example, the first line of the table 1 is an instantiation
of one of theses actions:
- Bob ! Msg (AuthReq, ’password = Bob08’) ServerA

- Bob ! Msg (AuthReq, *) ServerA

- * ! Msg (AuthReq, ’password = Bob08’) ServerA

- ServerA ? Msg (AuthReq, *) *

Msg_Type Sender Receiver Message_Text
L1 AuthReq Bob ServerA ‘password = Bob08’

Table I
AN EXAMPLE OF A L INE IN A FORMATTED TABLE

C. Algorithms for Security checking

In this section, we describe the general idea of rules
checking algorithms and provide in particular the overview
of the algorithm dealing with obligation rules.

1) Obligations Handler:The algorithm that allows check-
ing obligation rules begins first by parsing the trace table line
by line to verify the validity of each ruler on a given line
l. It begins by verifying the context rule then its mandatory
action following these steps: (i) the algorithm verifies ifl is an
instantiation of an atomic actiona mentioned in the context
of r. If it is the case, it checks if the chronological order of
actions described in the context is verified (using the procedure
Check_Context), then it can deduce if the whole context is
verified or not. (ii) If the context is verified, the algorithm
has to ensure that the action described in the first part of the
obligation (the mandatory action) is present in the trace. If it
finds such action (usingCheck_Mandatory_Actionprocedure),
the verdict isPASS. Otherwise, it concludes that the current
rule is not verified, the verdict in this case is:FAIL . If the
trace length is not long enough to ensure the verification, the
produced verdict isINCONCLUSIVE.

Algorithm 1 presents the pseudo-code of the procedure used
to check obligation rules on a trace and deduce the appropriate
verdict. For each ruler , we define ‘r.action’ as its mandatory
action and ‘r.context’ as its context. ‘r.action’ (resp. ‘r.context’)
is composed of one or many chronologically ordered atomic
actions ‘r.act.actioni’ (respectively ‘r.context.actionj’) where
i (respectivelyj) is the number of atomic actions in the
prohibited action (respectively context).

4

Algorithm 1 Obligation Rules Handler

Require: ORS[r]: Obligation Rules Set +Tr[l]: the trace
table.

1: for each Rule r of ORS do
2: Context(r) = ‘not verified’
3: end for
4: for each line l of Tr do
5: for each Rule r of ORS do
6: if (Context(r)=‘verified’)then
7: verdict[r] := INCONCLUSIVE
8: if (Obligation deadline Reached)then
9: (a mandatory action has a deadline predefined

in the context rule)
10: verdict[r] := FAIL
11: Memorize error and position in the trace
12: else
13: if (∃ i where l=instantiation(r.act.actioni)) then
14: verdict [r] := Check_Mandatory_Action

(r.action,l)
15: if (verdict [r] := ‘PASS’) then
16: Context(r)=‘not verified’
17: else
18: if (verdict [r] := ‘FAIL’) then
19: Memorize error and position in the trace
20: else
21: Memorize verified parts of the manda-

tory action (case of verdict [r] := ‘IN-
CONCLUSIVE)

22: end if
23: end if
24: end if
25: end if
26: end if
27: if (∃ j where l=instantiation(r.context.actionj)) then
28: Context(r) = Check_Context(r.context,l)
29: if (Context(r) = ‘verified’)then
30: Calculate Obligation deadline
31: else
32: if (Context(r) = ‘not yet verified’)then
33: Memorize verified parts of the context

(Context (r) = ‘not yet verified’ if some ac-
tions of the context are verified and are in
the right chronological order. But the whole
context is not yet verified. We have to check
next messages in the trace, to deduce if the
tested system is in the right context or not.)

34: else
35: Erase memorized parts of the context if exist

(This is case when the context is no more
verified)

36: end if
37: end if
38: end if
39: end for
40: end for

2) Prohibitions Handler: For prohibitions rules, the ap-
proach is very similar to the one used for testing obligations
rules. We start first by checking whether the context of the
rule is verified. Then, we check if the action specified in the
first part of the rule is present in the trace. If it is the case,the
verdict isFAIL otherwise it isPASS. If the trace is not long
enough to check the context, the verdict isINCONCLUSIVE.

3) Permissions Handler:The permission to perform an
action in a particular context does not mean that action must
be systematically executed when this context is verified. Inthe
case of checking permission rules, we first look in the traces
file the permitted activity then we ensure that the context was
true to conclude that the rule is well respected (verdictPASS),
otherwise the verdict isFAIL . If the trace is not long enough
to check the context, the verdict isINCONCLUSIVE.

V. CASE STUDY: AUDIT SYSTEM OF SAP R/3

In this section, we apply our methodology on an industrial
case study and consider the SAP R/3 technology product of
SAP1 group.

A. System Presentation

SAP R/3 is an enterprise solution developed by SAP group.
It is a package that incorporates various functions groupedin
distributed modules that can interact with each other through
a centralized information system based on a client/server
architecture.

SAP R/3 is a real time based system. Thus, every consump-
tion (purchase, sale, etc.) or movement (in stocks for example)
has to be immediately valued by updating all system modules
involved in this activity. Let us study for example the operation
of a shipment confirmation. This operation engenders an auto-
matic billing operation, an operation for recording movements
in stocks and bills, and possibly other updates at certain
accounting services of the company. All these operations have
to be done in real time, hence the conception of SAP R/3 as
an integrated management software able of updating data of
different modules instantaneously.

B. SAP R/3 Security

In SAP R/3, any transaction that could be performed by
users is identified by a unique code named: transaction code.
For example, the function used to change theprincipal supplier
field of the system information table has the transaction code
FK02, and the codeFB60 is used to describe the transaction,
that managescustomer invoicesetc. SAP R/3 administrators
have defined a set of rules including permissions, prohibitions
and obligations that regulates performing each transaction.
However, certain combinations of these transactions codescan
lead to situations of conflict and/or incoherence. To avoid such
situations, SAP R/3 system uses a generator profile to define
generic roles that can be assigned later to users.

In SAP R/3, many security rules are defined to guarantee the
system integrity and to control the access to critical data.We
identified more than 120 different rules relatives to 10 clients
and 26 possible operations (see section V-D).

1http://www.sap.com

5

Date Time Client User Code Terminal ID Message Text
E1 01.04.2007 08:55:04 600 Bob S826-01 AU2 Login Failed
E1 01.04.2007 08:56:30 600 Bob S826-01 AU1 Login Successful
E2 01.04.2007 13:43:11 600 Bob F110 S826-01 AU4 Transaction F110 Failed
E3 08.04.2007 08:55:04 654 John S826-01 AU2 Login Failed
E3 08.04.2007 08:55:06 654 John S826-01 AU2 Login Failed
E3 08.04.2007 08:55:08 654 John S826-01 AU2 Login Failed
E3 08.04.2007 08:55:09 654 John AUM User John Locked

in Client 654

Table II
EXAMPLE OF FORMATTED CONTENTS IN A FILE AUDIT

C. Trace Collection: Audit System

SAP R/3 has an audit system that permits to store all the
events and transactions that occur during a period of time and
to give the system administrators an overview about the users’
activities within the system. It provides a set of files that
contain detailed information about every activity undertaken
by system users. These files represent the execution traces
of SAP R/3 and constitute an important source of data for
all kinds of testing or checking system security to detect any
intrusion attempts, fraud, or any other malicious activity. In
our case, we will use these files to test the respect of SAP R/3
to its security policy specified by administrators.

In our case study and for confidentiality reasons, we col-
lected the execution traces of a running SAP R/3 system
managing a fake database (with fake users’ names and fake
transactions). All the transactions are performed randomly and
many times by all the users. The obtained log file has a size of
800 MByte and contains the details of 2.5 millions transactions
(lines). Each transaction has a pre-formatted structure which
can be divided into 8 fields.

In Table II, we present three formatted examples of events
that we can find in a file log of SAP R/3. In the first one
(E1), the user’Bob’ connects from the workstation 1 which
is located in Room S826. In second event (E2), the same user
tried unsuccessfully to execute the transaction F110 which
deals with a payment operation. In E3, the user’John’ has
made three attempts to connect without success. Hence this
account has been locked by the system.
D. Security Policy Formal Specification

Based on nomad language, we specified formally the 120
security rules. For matter of space, only 3 basic rules are
presented in this section:
- Rule 1:P(start(John ! Msg(Tr.Code = FK01) R/3))

This rule means that‘John’ is permitted to execute the
transaction FK01.
- Rule 2:F(start(User ! Msg(∗) R/3)|

⊖ done(User ? Msg(ID = AUM) R/3)∧

¬done(User ? Msg(ID = UNLOCK) R/3))

This rule expresses that any user whose access has been locked
by the system is prohibited to perform transactions.
- Rule 3: O(Start(User ? Msg(ID = AUM) R/3)| ⊖

done((User ! Msg(ID = AU2) R/3); (User ! Msg(ID = AU2)

R/3); (User ! Msg(ID = AU2) R/3)))

This obligation rule expresses that the R/3 system has to
lock any user who has made three unsuccessful connection
attempts.

E. Passive Tester Implementation

The passive tester dedicated to monitoring SAP R/3 system
respects the design presented in section IV-B. This tool is
entirely programmed using Java language and is designed to
offline passive testing.The extraction of the traces file is not
taken into account in this passive tester tool.

We can distinguish in the graphical interface of the tool,
presented in Figure 2, three different features: (i)‘A Policy
File Browse Button’ that allows to upload the security rules
specified using nomad language (ii)‘An Audit File Browse
Button’ that allows to upload the collected traces of SAP
R/3 execution. (iii) ‘A Blank Space’ that allows to display
the result of the security checking and to give the final verdict
and eventually the violated rule.

Figure 2. Passive Tester Interface in the Case of a Fail Verdict

F. Passive Testing Results

We first performed our test to check the 120 rules on the
SAP R/3 collected traces. The result of this first test was
a PASS verdict which means that according to information
contained in the audit file, all security rules were respected (we
checked manually that each rule was verified at least once). To
obtain this final verdict, the tester performed a simple Boolean
operation, which combines the three partial verdicts already
established by the three different sub-modules dedicated for
permissions, prohibitions and obligations. Thus, if one ofthese
verdicts is INCONCLUSIVE or FAIL the final verdict will be
too. Otherwise PASS is the verdict to be deduced.

To demonstrate the reliability of our tester, we manually
edited the file containing traces of SAP R/3 system. We have,
for instance, added a transaction that violates the rule number
3. The verdict given by the tester shown in Figure 2 is FAIL:
the violation of the rule has been detected which indicates the
correctness of the tester.

To study the performances of the passive tester, we tried to
vary the number of security rules and the Traces file size. The
results are shown in Figures 3.

6

 0

 10

 20

 30

 40

 50

 60

 70

 10 20 30 40 50 60 70 80 90 100

D
ur

at
io

n
(s

)

Number of Rules

Execution time

 0

 10

 20

 30

 40

 50

 60

 70

 100 1000 10000 100000 1e+006 1e+007

D
ur

at
io

n
(s

)

Trace Length

Execution time

(a) Tool performance with (b) Tool Performance with
a variable number of Rules a variable audit file length

Figure 3. Tool Performances

In Figure 3.a, we vary the number of security rules from 5 to
120 and we fix the audit file length to 2.5 millions transactions.
We obviously observe that the curve is growing. The curve is
not linear; the slope of the curve depends on the complexity
of the added rules. The memory consumption increases and
leads to bigger time to deduce a verdict.

Contrary to Figure 3.a, in Figure 3.b, we vary the audit file
length and we consider that the number of rules is fixed to 100.
The curve is also growing in non linear manner. This result
is predictable and is due to a bigger complexity to verify a
rule context. The memory consumption also increases with the
number of lines in the audit trace and leads to bigger duration
to deduce a verdict. When the trace size becomes bigger than
one million lines, the execution time becomes exponential due
to memory swapping but remains reasonable.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we presented a security policies specification
model well adapted for passive testing. We first began by defin-
ing the syntax and the semantics of the proposed formalism
and illustrated it with a few examples of specifications. The
next step was to expose our passive testing methodology and to
demonstrate its effectiveness, through an industrial casestudy
proposed by SAP group namely: SAP R/3.

Finally, at the end of this paper, we presented the ex-
perimental results we had obtained and discussed about the
performance of the implemented tester. It is important to notice
that the performances of our tester are very suitable compared
to the complexity of the described rules and the length of
the trace. We also showed that our approach permitted us
to specify and verify temporal security constraints that are
considered as an important issue in security policies testing.

As future work, we plan to adapt the proposed model for
a specific type of applications such as Web services and
authentication protocols. We are also investigating several
approaches to improve the test algorithms so that we will be
able to perform online passive testing, possibly by including
vulnerability cause graphs [5] of the implementation under
test. This will enable us to detect on real-time system crashes
and security rules violations and most importantly to be able
to stop this kind of malicious behaviors without any delay.

REFERENCES

[1] A. Abou El Kalam, R. E. Baida, P. Balbiani, S. Benferhat, F. Cuppens,
Y. Deswarte, A. Miège, C. Saurel, and G. Trouessin. Organization Based
Access Control. In4th IEEE International Workshop on Policies for
Distributed Systems and Networks (Policy’03), June 2003.

[2] A. Alharby and H. Imai. IDS false alarm reduction using continuous
and discontinuous patterns. InACNS, pages 192–205, 2005.

[3] E. Bayse, A. R. Cavalli, M. Núñez, and F. Zaïdi. A passive testing
approach based on invariants: application to the wap.Computer
Networks, 48(2):235–245, 2005.

[4] A. Benharref, R. Dssouli, R. H. Glitho, and M. A. Serhani.Towards
the testing of composed web services in 3rd generation networks. In
TestCom, pages 118–133, 2006.

[5] D. Byers, S. Ardi, N. Shahmehri, and C. Duma. Modeling software
vulnerabilities with vulnerability cause graphs. InICSM, pages 411–
422, 2006.

[6] Y. Chen, Y. Li, X. Cheng, and L. Guo. Survey and taxonomy offeature
selection algorithms in intrusion detection system. InInscrypt, pages
153–167, 2006.

[7] F. Cuppens, N. Cuppens-Boulahia, and M. B. Ghorbel. Highlevel
conflict management strategies in advanced access control models.
Electr. Notes Theor. Comput. Sci., 186:3–26, 2007.

[8] F. Cuppens, N. Cuppens-Boulahia, and T. Sans. Nomad: A security
model with non atomic actions and deadlines. InCSFW, pages 186–
196, 2005.

[9] N. Damiannnou, A. Bandara, M. Sloman, and E. Lupu.Handbook
of Network and System Administration, chapter A Survey of Policy
Specification Approaches. Elsevier, 2007 (to appear).

[10] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. Ponder: An
object-oriented language for specifying security and management poli-
cies. In 10th Workshop for PhD Students in Object-Oriented Systems
(PhDOOS’2000), 12-13 June 2000, Sophia Antipolis, France, 2000.
Extended Abstract.

[11] V. Darmaillacq, J.-C. Fernandez, R. Groz, L. Mounier, and J.-L. Richier.
Test generation for network security rules. InTestCom, pages 341–356,
2006.

[12] J. García-Alfaro, F. Cuppens, and N. Cuppens-Boulahia. Analysis of
policy anomalies on distributed network security setups. In ESORICS,
pages 496–511, 2006.

[13] H. Hallal, S. Boroday, A. Ulrich, and A. Petrenko. An automata-based
approach to property testing in event traces. InTestCom, pages 180–196,
2003.

[14] T. Jéron, H. Marchand, S. Pinchinat, and M.-O. Cordier.Supervision
patterns in discrete event systems diagnosis. Technical Report 1784,
Irisa, 2006.

[15] D. Lee and M. Yannakakis. Principles and methods of testing finite state
machines - A survey. InProceedings of the IEEE, volume 84, pages
1090–1126, 1996.

[16] K. Li, L. Mounier, and R. Groz. Test generation from security policies
specified in or-bac. InCOMPSAC (2), pages 255–260, 2007.

[17] W. Mallouli, J.-M. Orset, A. R. Cavalli, N. Cuppens-Boulahia, and
F. Cuppens. A formal approach for testing security rules. InSACMAT,
pages 127–132, 2007.

