
1

Testing Security Rules with Decomposable
Activities

Wissam Mallouli and Ana Cavalli
GET/INT, 9 rue Charles Fourier, 91011 Evry Cedex, France

{wissam.mallouli,ana.cavalli}@int-edu.eu

Abstract—Checking that a security policy has been correctly
deployed over a network is a key issue for system administrators.
Specification and testing of such policies constitute fundamental
steps in the development of a secure system. To address both
challenges, we propose a framework to describe how modalities
such as permissions, prohibitions and obligations -involving
decomposable activities- can be integrated in a functional EFSM
specification of a system to obtain a new specification of the
system that takes into account the security policy. Then, we
propose a method to automatically derive test sequences to test
the implementation, using a dedicated tool developed in our
laboratory. Finally, we apply our framework to a Weblog system
case study to demonstrate its reliability.

Index Terms—Security Policy, Extended Finite State Machine,
SDL, Verification and Testing, Test Generation.

I. INTRODUCTION

In modern networks, the heterogeneity and the increasing
distribution of the applications make security management
complex. In order to give a global understandable view of
network security, we make an abstraction from the technical
constraints by using security policy rules. These rules express
the security objectives of the network and specify the desired
behavior of the system. In such networks, it is quite difficult
to verify whether a system implementation conforms to its
policy. However, if no one can ensure of this conformance,
the global security can not be guaranteed anymore.

Most current works only concentrate on defining meta-
languages in order to express security policies and provide
unambiguous rules. [3] and [9] are typical examples of such
generic policy description models. Indeed, they do not depend
on the functional specification of the system. But, they suggest
several concepts to describe the security policy independently
of the system implementation. Once the security policy is
formally specified, it is essential to prove that the target system
implements this policy either by (1) injecting this policy in the
studied system or (2) by formally specifying the target system
and generating proofs that this system implements the security
policy or (3) by considering several strategies of formal tests.
This last methodology will be explored in this paper.

In this paper, we propose an approach that makes it possible
to validate security rules. This approach manipulates three
different inputs: a functional specification of the system based
on a well-know mathematically-based formalism: Extended
Finite State Machine [14], a specification of the security policy
(based on the OrBAC model [3]) that we would like to apply
on this system, and finally an implementation of the system.

We want to obtain a new specification of the system that
takes into consideration the security policy (we call it: secure
functional specification), and then to generate tests to check
whether the implementation of the system conforms to the
secure functional specification.

This paper distinguishes itself from classical conformance
testing work (see for instance [4]) by several significant dif-
ferences. In fact, we propose an approach to integrate security
rules involving decomposable activities within the functional
specification of a system. Thus, we describe how modalities
such as prohibitions, authorizations, obligations and delegation
can be integrated in an EFSM, either by restricting predicates
or by adding transitions and states. Then, we propose a method
to automatically derive test sequences from a set of rules as
well as an approach to restrict the number of test objectives
required to perform verification. But, we do not address issues
like checking the consistency of the security policy which is
out of the scope of this paper. We assume that this issue has
been checked. There are several techniques to achieve this goal
(see for instance [7]).

The remainder of this paper is organized as follows. In
section II, we discuss the related work tackling with the
description and the validation of security policies. Section III
presents the basic notions used for the management of security
rules. In section IV, we expose the approach to integrate these
security rules within an existing specification in EFSM as well
as the relative algorithms. In section V, we present a case
study: a weblog with security features, as well as the results
through generated test objectives. In section VI, we present
extensions of the approach. And finally, section VII concludes
the paper and introduces the future work.

II. RELATED WORK

Most work related to security policy can be divided into two
parts: the description of the policy itself and the verification
of rules. In many systems, there is no real policy specification
outside of a description in terms of low-level mechanisms
such as access control lists. Thereafter, the analysis of access-
control leads to the definition of a number of access control
models, which could provide a formal representation of secu-
rity policies, and in some cases, it allows the proof of access
control properties. With the great majority of models, security
rules are defined with modalities like permission, prohibition
and obligation that express the possible constraints on the
behavior of the system [8]. Among these models, we can



2

mention for instance the Policy Description Language (PDL)
[15], Ponder [9] and OrBAC (Organisationnal Based Access
Control) [3].

Concerning the verification of rules, most work in this field
deals with firewall rules testing. Early proposals consisted of
performing testing of rules by hand. This implies that test
construction is performed by human experts who focus on
detecting traces of known attacks. Most recently, research
tended to concentrate on the verification of security rules in
order to detect errors or misconfigurations such as redundancy,
contradiction or collision [12], [13].

Some approaches propose to focus on validation by check-
ing the conformance of a system with respect to a security
policy. In [17], authors show how an organization’s network
security policy can be formally specified in a high-level
way, and how this specification can be used to automatically
generate test cases to test a deployed system. In contrast
to other firewall testing methodologies, such as penetration
testing, this approach tests conformance to a specified policy.
These test cases are organization-specific - i.e. they depend
on the security requirements and on the network topology of
an organization - and can uncover errors both in the firewall
products themselves and in their configuration. However, this
model is limited to the network management and specifically
to network and transport layer of the TCP/IP stack. Moreover,
it is still a theoretical approach and there exists no tool yet to
automate the testing process and to evaluate its effectiveness
on a real case-study.

In [10], the authors choose another approach to test net-
work security rules. They express the network behavior using
labeled transition systems formulae. Then, for each element
of their language and each type of rule, they propose a pattern
of test called a tile. Then, they combine those tiles into
“complete" test cases for the whole rule to perform validation.

Our approach differs from these propositions by proposing
a framework to formally specify rules that can be integrated
within an EFSM. It generalizes our previous work that cov-
ers testing rules with atomic activities [16] by considering
decomposed ones through the conception of new integration
algorithms.

III. PRELIMINARIES

In our approach, we consider two inputs: (1) the initial
system1 and (2) the security policy. Initial system refers to
the functionalities with no security consideration. After that,
a new context can be evolved to meet security considerations.
In the latter, the initial system will not be valid anymore since
it cannot satisfy the new requirements. It has to be completed
with a security policy, to fit the new context. In this paper,
we propose to automatically integrate the security policy rules
into the initial specification in the form of an EFSM using a
specific methodology. We assume that the specification of the
security policy is correct which means that we do not need to
search for conflicts or redundancies.

1Initial system is the system under test in its original state, i.e. before we
consider security (non-functional) aspect

A. The Initial Functional System

In order to model the initial functional system, we choose
to use the Extended Finite State Machine (EFSM) formalism.
This formal description is used not only to represent the
control portion of a system but also to properly model the
data portion, the variables associated as well as the constraints
which affect them.

Definition 1: (EFSM) An Extended Finite State Machine
M is a 6-tuple M = < S, s0, I , O, �x, Tr > where S is a
finite set of states, s0 is the initial state, I is a finite set of
input symbols (eventually with parameters), O is a finite set
of output symbols (eventually with parameters), �x is a vector
denoting a finite set of variables, and Tr is a finite set of tran-
sitions. A transition tr is a 6-tuple tr =< si, sf , i, o, P, A >
where si and sf are the initial and final state of the transition,
i and o are the input and the output, P is the predicate (a
boolean expression), and A is an ordered set (sequence) of
actions.

S0 S1

A/X, P, T

B/Y, T"

A/X

 P

 T’

_

Figure 1. Example of a simple EFSM with two states.

We illustrate the notion of EFSM through a simple example
described in Figure 1. The ESFM shown in Figure 1 is
composed of two states S0, S1 and three transitions that are
labeled with two inputs A and B, two outputs X and Y , one
predicate P , and three tasks T , T ′ and T ′′. The EFSM operates
as follows: starting from state S0, when the input A occurs,
the predicate P is tested. If the condition holds, the machine
performs the task T , triggers the output X and passes to state
S1. If P is not satisfied, the same output X is triggered but
the action T ′ is performed and the state loops on itself. Once
the machine is in state S1, it can come back to state S0 if it
receives input B. If so, task T ′′ is performed and output Y is
triggered.

B. The Security Policy Description

A security policy is the set of laws and practices that reg-
ulates how an organization manages, protects, and distributes
sensetive information.

Definition 2: (A Security Rule) is a relation between orga-
nizations, roles (sets of subjects with similar properties), views
(sets of objects that satisfy a common property), activities2

and context2. It is defined as a role having the permission,
prohibition or obligation to perform within an organization an
activity on a view in a given context. A view is a set of objects
to which the same security rules apply. A typical security rule
has the following form:

Obligation (S, R, A, V, C)
This rule means that within the system S, the role R is obliged
to perform the activity A targeting the objects of view V in

2redefined later.



3

the context C. (The definition is similar for permission and
prohibition)

Definition 3: (A Rule Context) can be divided into two
parts (each part may be empty):
(1)- An EFSM context with conditions related to the position
in the EFSM.
(2)- A variables context with conditions related to variables
values.
In this paper, we will manage specification written using
SDL (Specification and Description Language) [5] based
on the EFSM formalism. The EFSM and variables contexts
are defined considering this language (SDL). Using an other
specification language is possible since the definition can be
easily adapted.
Definition 3.1 : (EFSM Context) The EFSM context denoted
SDLc is a formula generated by the following rules:
- True, false are formula;
- (sdlc = Instance) is a formula, if sdlc is an SDL
command possible within a transition (like input, task, output
, set , reset , export, create_request , procedure_call , or
remote_procedure_call) and Instance is an instance of the
SDL command. For example, (input=message1) is an EFSM
context formula;
- if p is a formula then ¬p is a formula too;
- if p and q are formulas, p ∧ q and p ∨ q are formulas too.
Definition3.2 : (Variables Constraint) The constraint on the
variables vi denoted VARc is a formula generated by the
following rules:
- True, false and boolean variables are formulas;
- (vi Op dv) is a formula if Op is an SDL infix operator
(like <,≤, >,≥, = or �=) and dv belongs to the domain of
variables values;
- if p is a formula then ¬p is a formula too;
- if p and q are formulas, p ∧ q and p ∨ q are formulas too.

Definition 4: (An Activity) refers to a possible action
within the EFSM functional description of the system. It can
be either atomic or decomposable activity. Definition 4.1 : (An
Atomic Activity) is a basic part of an EFSM transition. It is
defined as an SDL command like an input, a task or an output
etc.
Definition 4.2 : (A Decomposable Activity) is an activity
which can be composed of a set of atomic activities. It can
be:
(1) Either a partial EFSM activity EFSM_ACT: A partial
EFSM activity is a connected part of the initial EFSM func-
tional specification (from the point of view of the graph
theory). The cut points can be anywhere in the transitions.
Only the EFSM_ACT activities3 will be treated in this paper.
(2) Or a sequential activity SEQ_ACT: a sequential activity is
a concatenation of atomic activities. For example, if αi (1≤ i
≤ n) are n atomic activities then (α1; α2; ... ; αn ) is a non
atomic activity (α1 followed by α2 followed by ... followed
by αn). It refers to a workflow.

3The SEQ_ACT activities integration will be exposed in a next paper since
the integration methodology is largely different.

Definition 5: (An EFSM_ACT) is partial EFSM activity.
This partial EFSM can be composed of three different parts
(may be empty): (1) the starting transitions set STS: includes
the set of transitions that the system can follow to start the
activity. It is the first transition(s) level in the EFSM activity,
(2) the ending transitions set ETS: includes the set of transi-
tions that the system can follow to end the activity. It the last
transition(s) level in the EFSM activity, (3) the intermediate
transitions set ITS: includes the remaining transitions.
The transitions that starts from states in the activity and finish
in states beyond the activity are called outgoing transition set
OTS.

S1

S3

EFSM_ACT (S1:S6)

S0

S4

S2 S5

S6

S7 S8

ST1

ST2

IT1

IT2

IT3

ET1

ET2

OT1

Figure 2. An example of a partial EFSM activity

In the Figure 2, we present an example of a partial EFSM
activity composed of 6 states and 7 transitions. In this example,
we can define 2 starting transitions (ST 1 and ST 2), 3 inter-
mediate transitions (IT 1, IT 2 and IT 3), 2 ending transitions
(ET 1 and ET 2) and 1 outgoing transition (OT 1).

Property 1: An activity within a permission or prohibition
is an existing activity. It can correspond to one transition
(we call it 1_Tr activity) or a sequence of transitions which
represents a partial EFSM (we call it n_Tr activity).

Property 2: An activity within an obligation can be a new
activity (refers to new states and transitions. It begins with an
obligation state OS and ends with one or many end obligation
states EOSi), partially new, or an already existing activity
contained in the initial system EFSM.

Property 3: If the activity within an obligation is an exist-
ing activity, it can correspond to one transition (1_Tr activity)
or a set of transitions which represents a partial EFSM (n_Tr
activity).

Property 4: An atomic activity is 1_Tr activity.

C. Specific Modalities

Modality 1: If a security policy rule introduces a new role
and/or new variables (not already defined in the initial func-
tional specification), precise definitions have to be provided to
enable a correct integration of the rule within the functional
specification (type of variable, default value, etc.).

Modality 2: The EFSM context SDLv is mandatory in an
obligation. It permits to determine the transitions to revise in
the initial system EFSM.



4

IV. INTEGRATION METHODOLOGY

In this section, we define algorithms to automatically inte-
grate the security policy rules into the initial specification in
the form of an EFSM. It is possible that the security policy
defines some new concepts that cannot be directly incorporated
into the initial specification. In particular, a rule can express
an activity that does not exist in the specification (new role,
different object, new action, etc.). In that case, the new activity
must firstly be created in the specification. That means some
new states might be created in order to make the EFSM
accept the new elements. Moreover, for each n_Tr activity,
the algorithm creates a new Boolean variable Acti that has
fault as a default value.

The beginning of the algorithm is the same for the three
kinds of rules (permission, prohibition and obligation). It
parses the EFSM specification and for each transition, it
identifies the rules that map the activity and the EFSM context
(only the EFSM context in the case of a new activity). If no
rule maps the transition, the default one will be applied. After
rules have been identified for each transition, we can proceed
to their integration. Notice that several rules may apply to
the same transition. In this case, the algorithm is recursively
applied to each relevant rule.

A. Permissions Integration

Permissions relate to activities which already exist in the
initial system. The algorithm 1 shows the permissions integra-
tion within the EFSM system.

Algorithm 1 Permission integration
Require: The permission with role R, variable context V ARc

and activity i that maps the transition(s).
1: if (1_Tr activity) then
2: Revise the associated predicated to the transition: P :=

P ∧ (V ARc ∧ R)
(Note that if no predicate is associated to this transition,
we create a new one P := V ARc ∧ R)

3: end if
4: if (n_Tr activity) then
5: Add the task ′Acti := true;′ to the STS.
6: Add the task ′Acti := false;′ to the OTS
7: Duplicate the ETS into ETS1 and ETS2

8: Revise the associated predicated to the ETS1: P :=
P ∧ Acti ∧ (V ARc ∧ R)

9: Revise the associated predicated to the ETS2: P :=
P ∧ (Acti = false)

10: Add the task ′Acti := false;′ to the ETS1.
11: end if

Considering the EFSM, each activity corresponds to one
(or many) transitions. (1) In the case of 1_Tr activity, only
one transition will be modified. If this transition contains no
predicate, a predicate has to be added. On the other hand, if a
predicate is already defined in the specification, it only needs
to be further restrained (the condition is stronger). (2) If we
are dealing with an n_Tr activity, the restriction will be only

in the ending transitions set. The STS, ITS and OTS will
only mention that we are dealing the right activity or not.

If many permissions can be applied the same transition,
the predicate is restrained using a logical sum: P := P ∧
(∨i(V ARci ∧ Ri).

B. Prohibitions Integration

Like permissions integration, prohibitions integration con-
sists either of adding a new predicate or restraining an existing
one (it becomes stronger).

Algorithm 2 Prohibition integration
Require: The permission with role R, variable context V ARc

and activity i that maps the transition(s).
1: if (1_Tr activity) then
2: Revise the associated predicated to the transition: P :=

P ∧ (¬V ARc ∨ ¬R)
(Note that if no predicate is associated to this transition,
we create a new one P := ¬V ARc ∨ ¬R)

3: end if
4: if (n_Tr activity) then
5: Add the task ′Acti := true;′ to the STS.
6: Add the task ′Acti := false;′ to the OTS
7: Duplicate the ETS into ETS1 and ETS2

8: Revise the associated predicated to the ETS1: P :=
P ∧ Acti ∧ (¬V ARc ∨ ¬R)

9: Revise the associated predicated to the ETS2: P :=
P ∧ (Acti = false)

10: Add the task ′Acti := false;′ to the ETS1.
11: end if

If many permissions can be applied the same transition,
the predicate is restrained using a logical sum: P := P ∧
(∨i(¬V ARci ∨ ¬Ri).

C. Obligation Integration

We will only consider in this paper the EFSM_ACT ac-
tivities. These activities begins by a starting obligation state
OS and ends with a set of end obligation states EOSi. The
OS and EOSi can be part of the initial functional system
specification. Thanks to the EFSM context of the obligation,
the algorithm identifies the transition which will be split
into two (pre/post transitions), to insert the EFSM_ACT of
the obligation. Then, the algorithm needs to know how the
components of this transition will be distributed relatively to
the obligation (pre/post transitions). This can be determined
using the cut point, that corresponds to the last component
of the initial transition (state, input, task or output, but not
a predicate) which maps the EFSM context. Each component
until this cut point (included) will be attributed to the pre-
transition (through the obligation) while other ones will be
attributed to the post-transition. Finally, a last transition has
to be added to bypass the obligation in the case the initial
predicate is not satisfied (see Algorithm 3).

The Figure 3 shows an example of the process. In this case,
the initial transition is “A/X, if(P ), T ". The EFSM_ACT



5

Algorithm 3 Obligation integration
Require: The transition tr =< S1, S2, A, X, P, t1...tn > that

maps the obligation with an activity specified by the mean
of an EFSM with OS as a first state and EOSi as a last
one

1: for all (transitions from OS) do
2: if (∃ associated predicate Q) then
3: Q := Q ∨ (V ARc ∧ R)
4: end if
5: end for
6: determine the cut point CutPoint

7: delete the transition tr
8: create transitions C1, C2 and C3 such that
9: if (CutPoint == S1) then

10: C1 :=< S1, OS,−,−,−,− >
if (¬ ∃ EOS state in M ) then C2 :=<
EOSi, S2, A, X, P, t1...tn > end if
C3 :=< OS, S2, A, X,¬V ARc ∨ ¬R, t1...tn >

11: else
12: if (CutPoint == A) then
13: C1 :=< S1, OS, A,−, P,− >

if (¬ ∃ EOSi state in M ) then C2 :=<
EOSi, S2,−, X,−, t1...tn > end if
C3 :=< OS, S2,−, X,¬V ARc ∨ ¬R, t1...tn >

14: else
15: if (CutPoint == ti where i ∈ {1, ..., n}) then
16: C1 :=< S1, OS, A,−, P, t1...ti >

if (¬ ∃ EOS state in M ) then C2 :=< EOSi, S2,
−, X,−, ti+1...tn > end if
C3 :=< OS, S2,−, X,¬V ARc ∨ ¬r, ti+1...tn >

17: else
18: if (CutPoint == X) then
19: C1 :=< S1, OS, A, X, P, t1...tn >

if (¬ ∃ EOS state in M ) then C2 :=< EOSi,
S2,−,−,−,− > end if
C3 :=< OS, S2,−,−, ¬V ARc∨ ¬R, − >

20: end if
21: end if
22: end if
23: end if
24: minimize the resulting EFSM by deleting silent transitions

(without input nor output nor action)

activity is a new partial EFSM with two states (OS and EOS)
and one transition characterized by the input B, the task T ′

and the output Y . According to the EFSM context, the cut
point is the Input A. By the following, the transition C1 (pre-
transition) is defined by the input A and the predicate P . The
transition C2 (post-transition) is defined by the task T and the
output X . Obligation integration is shown in the Algorithm 3.

D. Integration Result

The security rules integration allows us to obtain a new
specification of the system that takes into account the security
policy. This formal specification is described in the EFSM
formalism that is a well adapted one to model communicating

Figure 3. Obligation (S, R, new activity, _ , (Input = A) and C ).

systems. Using SDL (Specification Description Language) [5]
based on this formalism we can easily derive test sequences
to check whether the implementation of the system conforms
to the secure functional specification. The classical test gener-
ation methodology is presented in the ISO9646 standard [2].

V. CASE-STUDY: A WEBLOG

A. Weblog Description

To prove the effectiveness of our framework, we choose
to carry out a case-study on a weblog (also called blog): a
blog is a website used to post stories or news (such as in a
journal or diary) to make them available for reading by any
other party. Here, we consider at first, a simple weblog with
various features, such as those commonly used on the World
Wide Web. First of all, the service is open. That means anyone
cannot only read but also post content in the form of news
or stories. Then, other readers might add comments relating
to any content. Possibly, a blogger4 might take the decision
to delete a posted content depending of its freshness or its
relevance. The weblog can thus be seen as a mutable list of
stories, which constitute themselves a content associated with
a mutable, possibly empty, list of comments.

Init InBlog

ReadBlogReq/DispBlog

ReadBlog

QuitReq/Exit

QuitBlog

InPost

BackBlogReq/DispBlog

ReadBlog

ReadPostReq/DispPost

Exists Post

ReadPost

AddPostReq/PostAdded

AddPost

DelPostReq/PostDeleted

ExistsPost

DelPost

AddComReq/ComAdded

AddCom

DelComReq/ComDeleted

Exists Com

DelCom

Figure 4. The initial system EFSM.

As one can notice, the initial model is voluntarily open and
as a consequence, presents obvious security flaws. Indeed,
no authentication is performed so that any user can delete
numerous posted contents, which leads to a kind of denial of
service attack. To tackle this problem, we specify a security
rule whose goal is to protect the information within the
organization, by preventing illegitimate users to delete any
content.

For this purpose, the security rules will define a hierarchy
of users, by defining three different roles. The first one is the

4Contraction for weblog user.



6

administrator (admin). It has the responsibility to maintain the
global organization of the website. It is the only one authorized
to delete a posted content or to suspend the activity of the
website (in the case of maintenance for example). Beside
the administrators, the policy will define another role: the
bloggers. Bloggers are users which can post stories and also
commentaries, relating to their own content or not. Moreover,
they are allowed to perform the delete action but only on
their own content. Finally, the normal users (called visitors
or anonymous) can only read stories and commentaries; that
means delete and write actions are prohibited for them.

B. The formal specification

To specify the Web application, we used ObjectGEODE
[19] and SIRIUS [6] tools. They are based on a language
specifically dedicated to the formal specification of interac-
tive systems: SDL which is a specification and description
language standardized by the ITU5 (International Telecommu-
nication Union). The key features of the language are:

• The ability to be used as a wide spectrum language from
requirements to implementation;

• Suitability for real-time, stimulus-response systems;
• A model based on communicating processes (extended

finite state machines);
• Object oriented description of SDL components.

C. The Security Policy Specification and Integration

The global system on which relate all modalities in the
security policy is the Website. The objects will naturally
correspond to each of the components defined initially, that
are the blog, the posts and the comments. In the same manner,
the first actions will be chosen among the existing in the initial
system: read, write and delete. As for the context, it defines
the set of conditions expressed by a rule, which have to hold to
allow an activity. Based on these considerations, we specified
24 rules constituting the policy that manages the security of
our weblog. Here are 3 different examples of theses rules:

1) Obligation(Website, anonymous, Authentication, _ , in-
put = AddPostReq)

2) Permission(Website, admin, ‘Reading Blog’, blog,_ )
3) Prohibition(Website, anonymous, ‘Adding Post’, Post, _

)

After the specification of all rules, we step to the second
phase of the process, which is their integration within the
extended finite state machine. This integration process respects
the methodology described in section 4 and leads to a secure
functional specification.

Thus, we performed syntaxic and semantic verification of
the new specification to ensure its correctness. Table I shows
some metrics about the two weblog specifications (before and
after security rules integration)

5http://www.itu.int

States Transitions Signals Nb of lines
Before 3 15 15 350
After 3 23 18 594

Table I
METRICS OF THE WEBLOG SPECIFICATION

D. Test Generation

1) Fixing the test objectives: In the Weblog case study,
our aim was to test the security rules. The first idea was to
define for each rule one or several test objectives. However,
we noticed that one generated test sequence can verify more
than one security rule. Then, we tried to minimize the number
of the test objectives to test the entire modified transitions. We
specified at the end 17 test objectives that represent more than
94% of the specification transitions.

2) Generation with SIRIUS: SIRIUS is based on Hit-or-
Jump [6], an algorithm especially used for components testing
to perform test sequences generation through the specification.
This research is guided by objectives which are illustrated by
predicates on transitions (and written in SDL). Research in
the partial reachability graphs is performed in depth, width or
both at the same time, and is restricted by a limited depth.
In order to initialize the generation of test sequences, several
parameters are necessary. Four main files must be developed.
The first is the service specification (component to be tested),
the second allows the initialisation of some variables if nec-
essary, the third one mentions the stop conditions (i.e. test
objectives) and finally the last one allows the expert to guide
the system at the beginning of the simulation, this file is called
preamble. This last one is very important; it allows reducing
in a consequent way the length of the test sequence and the
duration of its generation.

E. Discussions

The results are obtained after a BFS (breadth-first search)
exploration of the reachability graph. This choice is due to
the specificity of the weblog service which has to take into
account, after each transition, all the possible inputs injected
by the user to analyze them and generate the right output. The
test objectives are reachable via short sequences according
to the specification size of the system and do not need a
DFS or BDFS exploration that tries to search in depth of the
reachability graph. The generated test sequences are usable
since they can be produced in TTCN [18] and MSC [1]
standard notations facilitating their portability.

VI. EXTENSIONS

A. Delegation Integration

A delegation rule allows the handing of a task over to
another person, usually a subordinate. It is the assignment
of authority and responsibility to another person to carry out
specific activities. It allows a subordinate to make decisions,
i.e. it is a shift of decision-making authority from one organi-
zational level to a lower one. We can consider the delegation
as a permission given to a specific subject (and not all the
subjects of a specific role). Thus, the integration algorithm for
delegation rules is the same as for permission.



7

B. Security Policy Updating

In this paper, initial system refers to its functionalities (or
behaviors) with no security consideration. We can revise this
assumption, to consider an initial system as a system that takes
into account an initial security policy. Later, a new context can
evolve to meet new security considerations. Within this new
one, the initial system is not valid anymore since it cannot
satisfy new requirements. We can always use our methodology
to integrate the new security rules to fit the new context.

C. Test Objectives Optimization

The integration of the security policy rules into the initial
specification Specinit results in a new system specification
NewSpec. If the system specification is modified, we need
obviously to modify the implementation of the system con-
sidered as the new IUT (Implementation Under Test). The
modification of the specification concerns only some transi-
tions (some added or revised transitions). The automatic test
generation can be targeted and as a result, easier and less
time consuming. In fact, if we assume that the unmodified
implementation ImpIn has been tested and is equivalent to
the unmodified specification SpecIn and that only transitions
that correspond to modified transitions of SpecIn are modified
in ImpIn, we are not obliged occording to [11] to check and
test all the new implementation. It is even enough to test only
the modified transitions when the final state of each modified
transition has a correspondent state in the unmodified part of
the modified NewSpec and when each modified transition
is reachable through unmodified transitions in the modified
NewSpec. We call this method incremental testing.

The table below presents experimental results using differ-
ent percentages of modification of the initial specification. H
is the ratio calculated by the division of the length of test cases
using HSI (for Harmonized State Identification) test generation
method [20] by the length of test cases using incremental
testing.

Modification 0-5% 5-10 % 10-15 % 15-20 %
H 36.0 11,3 6.1 4

We can clearly notice that the ratio H slightly increases when
the number of transitions increases.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a framework for testing a
security policy in a formal manner. We proposed an algorithm
to automate the integration of security rules within an EFSM.
Then, we presented a scheme to derive test objectives from
the rules formal specification in order to test the conformance
of a security policy with respect to its implementation. We
described the process of our framework through a repre-
sentative case-study. We showed that our approach allows
the specification of various modalities such as obligation,
permission, prohibition and delegation and makes it possible
to obtain relevant test objectives. It is important to notice that
our algorithm allows us to verify that the security policy has
no gap (missing rules) when no rule is found to be applied on
a functional specification transition.

As a future work, we are currently investigating several
approaches to enhance this framework. At first, we consider
extending our integration scheme to be able to take into
account more complex modalities (such temporal rules (which
denote actions limited in time) and interoperability of rules
(that is testing if a rule can be deployed on several systems)).
We are also working on a new approach to test of workflow
represented by sequential activities.

REFERENCES

[1] IUT-T Rec. Z. 120 Message Sequence Charts, (MSC). Geneva, 1996.
[2] I. 9646-1. Information Technology - Open Systems Interconnection

- Conformance testing methodology and framework Part 1: General
Concepts.

[3] A. Abou El Kalam, R. E. Baida, P. Balbiani, S. Benferhat, F. Cuppens,
Y. Deswarte, A. Miège, C. Saurel, and G. Trouessin. Organization Based
Access Control. In 4th IEEE International Workshop on Policies for
Distributed Systems and Networks (Policy’03), June 2003.

[4] A. V. Aho, A. T. Dahbura, D. Lee, and M. U. Uyar. An optimiza-
tion technique for protocol conformance test generation based on uio
sequences and rural chinese postman tours. pages 427–438, 1995.

[5] A. Cavalli and D. Hogrefe. Testing and validation of SDL systems :
Tutorial. In SDL’95 forum, 1995.

[6] A. Cavalli, D. Lee, C. Rinderknecht, and F. Zaïdi. Hit-or-Jump: An
Algorithm for Embedded Testing with Applications to IN Services.
In Formal Methods for Protocol Engineering And Distributed Systems,
pages 41–56, Beijing, China, october 1999.

[7] F. Cuppens, N. Cuppens-Boulahia, and M. B. Ghorbel. High-level
conflict management strategies in advanced access control models. In
Workshop on Information and Computer Security (ICS), Timisoara,
Roumania, September 2006.

[8] N. Damiannnou, A. Bandara, M. Sloman, and E. Lupu. Handbook
of Network and System Administration, chapter A Survey of Policy
Specification Approaches. Elsevier, 2007 (to appear).

[9] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The ponder policy
specification language. In POLICY ’01: Proceedings of the International
Workshop on Policies for Distributed Systems and Networks, pages 18–
38, London, UK, 2001. Springer-Verlag.

[10] V. Darmaillacq, J.-C. Fernandez, R. Groz, L. Mounier, and J.-L. Richier.
Test generation for network security rules. In TestCom, pages 341–356,
2006.

[11] K. El-Fakih, N. Yevtushenko, and G. von Bochmann. Fsm-based
incremental conformance testing methods. IEEE Trans. Software Eng.,
30(7):425–436, 2004.

[12] J. García-Alfaro, F. Cuppens, and N. Cuppens-Boulahia. Analysis of
policy anomalies on distributed network security setups. In ESORICS,
pages 496–511, 2006.

[13] J. García-Alfaro, F. Cuppens, and N. Cuppens-Boulahia. Towards
filtering and alerting rule rewriting on single-component policies. In
SAFECOMP, pages 182–194, 2006.

[14] D. Lee and M. Yannakakis. Principles and methods of testing finite state
machines - A survey. In Proceedings of the IEEE, volume 84, pages
1090–1126, 1996.

[15] J. Lobo, R. Bhatia, and S. A. Naqvi. A policy description language. In
AAAI/IAAI, pages 291–298, 1999.

[16] W. Mallouli, J.-M. Orset, A. Cavalli, N. Cuppens, and F. Cuppens. A
formal approach for testing security rules. In SACMAT, Nice, France,
2007.

[17] D. Senn, D. A. Basin, and G. Caronni. Firewall conformance testing.
In TestCom, pages 226–241, 2005.

[18] E. TTCN-3. TTCN-3 – Core Language.
[19] Verilog. ObjectGEODE Simulator, Reference manual, 1997.
[20] N. Yevtushenko and A. Petrenko. Synthesis of test experiments in some

classes of automata. Automatic Control and Computer Sciences., (4):pp
: 50–55, 1998.


