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Abstract: To improve software quality, it is necessary to introduce new metrics with the required detail and increased
expressive power, in order to provide valuable information to the different actors of software development.
In this paper we present two approaches based on metrics that contribute to improve software quality devel-
opment. Both approaches are complementary and are focused on the combination, reuse and correlation of
metrics. They suggest to the user indications of how to reuse metrics and provide recommendations after
the application of metrics correlation. They have been applied to selected metrics on software maintainabil-
ity, safety, security etc. The approaches have been implemented in two tools, Metrics Suggester and MINT.
Both approaches and tools are part of the ITEA3 MEASURE project and they have been integrated into the
project platform. To illustrate its application we have created different scenarios on which both approaches
are applied. Results show that both approaches are complementary and can be used to improve the software
process.

1 INTRODUCTION

Requests to improve the quality of software are in-
creasing due to the competition in software industry
and the complexity of software development (Akbar
et al., 2018) integrating multiple technology domains
(e.g, IoT, Big Data, Cloud, Artificial Intelligence, Se-
curity Technologies).

In addition, metrics start to play a crucial role to
improve software quality development. To select the
right metrics is also of prime importance for a suc-
cessful software development. They have a strong im-
pact on developers actions and decisions (Hauser and
Katz, 1998).

In order to improve the software quality, we need
to introduce new metrics with the required detail and
automation. Due to the modern development prac-
tices, new tools and methods, the traditional metrics
and evaluation methods are not sufficient anymore.
Even more, there is a large body of research related to
software metrics that aims to help industry while mea-
suring the effectiveness and efficiency of used soft-
ware engineering processes, tools and techniques to
help management in decision-making (Bouwers et al.,
2013).

To achieve software quality, it is required to in-
tegrate new metrics based on constraints combining
safety (the system always behaves as it is supposed
to) and security (authentication, data protection, con-
fidentiality and quality of service,...). Green metrics
also become relevant as they contribute to the reduc-
tion of energy consumption.

This paper focuses on the combination, reuse, sug-
gestion and correlation of metrics. We have devel-
oped two approaches, one based on metrics reuse,
combination and suggestion and the other on met-
rics correlation. They have been implemented in
two tools, Metrics Suggester and Metrics Intelligence
Tool (MINT). Both approaches contribute to improve
software quality development proposing new tech-
niques for metrics application and evaluation.

Regarding the Metrics Suggester approach, it is
based on the optimization of the current measurement
process which are manual and static and thus very
costly, by proposing an automated analysis and sug-
gestion as an approach, by using the learning tech-
nique Support Vector Machine1 (SVM), based on AI

1http://www.statsoft.com/Textbook/Support-Vector-
Machines



algorithms. In summary, it consists of suggesting rel-
evant and efficient measurement plans at runtime us-
ing a machine learning algorithm.

Regarding the MINT approach, the idea is to iden-
tify and design correlations between metrics that con-
tribute to the improvement of the development pro-
cess and help developers to take decisions about it.
The proposed correlations cover all aspects of the sys-
tem like functional behavior, security, green comput-
ing and timing. For instance, we have defined correla-
tions covering different phases of development. Also,
correlation of two metrics from the same development
phase or from different phases, this last to calculate
the same metric at different times. Techniques to cor-
relate metrics are provided and recommendations are
given as an outcome to the developer and project man-
ager. Recommendations will affect their actions and
decisions.

Both techniques are original and introduce inno-
vation with respect to classical methods. Moreover,
the application to the combination of metrics regard-
ing software development, security and green com-
puting is a novelty with respect to them.

Both approaches and tools are part of the Euro-
pean ITEA project MEASURE and they have been
integrated in the project platform2. Furthermore, in
order to reach that result, a close link has been de-
fined between academia and industry for several years
strengthened by the EU HubLinked project3 fostering
the U-I relationships (Universities-Industry).
In summary, the main contributions of this paper are:

- the design of new approaches to improve soft-
ware quality development process by introduction of
new correlation and suggestion techniques, these last
based on AI algorithms;

- the development of techniques and tools, Metrics
Suggester and MINT, for metrics correlation, reuse,
suggestion, and recommendation.

- a first functional experimentation of both tools.

This paper is organized as it follows: Section II
gives a view of the MEASURE global platform and
presents the two approaches and the tools, Metrics
Suggester and MINT. Section III is devoted to pre-
senting the experiences that illustrate experiments.
Section IV presents the related works and Section V
gives the conclusion and perspectives of our work.

2https://itea3.org/project/measure.html
3http://www.hublinked.eu/

2 PROPOSED APPROACHES
AND TOOLS

2.1 The MEASURE platform

The MEASURE platform provides services to host,
configure and collect measures, storing measurement,
present and analyze them. These measures are first
defined in SMM (Structured Metrics Meta-model)
standard4 using the Modelio modelling tool5 and
its extension dedicated to SMM modelling. The
MEASURE platform can start collecting measure-
ment (data resulting of the execution of an instanti-
ated measure) thanks to external measurements tools
(e.g., Hawk (Garcı́a-Domı́nguez et al., 2016) for de-
sign and modelling related measurements, Sonar-
Qube (Garcı́a-Munoz et al., 2016) for testing related
measurements, MMT6 for operation related measure-
ments, etc.).

Direct measures collect data in physical world
while the Derived Measures are calculated using pre-
viously collected measurement as input. Collected
measurements are stored on a NoSQL database de-
signed to be able to process a very large amount of
data. To collect measurements, the direct measures
can delegate the collect work to existing MEASURE
tools.

Figure 1: The MEASURE platform

The measurements can also be processed by anal-
ysis tools to present consolidated results. The analysis
platform is composed of a set of tools that allow com-
bining and correlating measurements in a meaningful
way in order to provide suggestions and recommen-
dations for the software developers and managers.

4https://www.omg.org/spec/SMM/About-SMM/
5https://www.modelio.org/
6http://www.montimage.com/products.html



Finally, stored measurements and recommenda-
tions are presented directly to the end user follow-
ing a business structured way by the Decision-making
platform, a web application which allows organizing
measures based on projects / software development
phases and displays its under various forms of charts.

In order to study and improve the software quality
processes and ease the tasks of project engineers and
managers, we defined a methodology based on two
modules: Metrics Suggester and Metrics Intelligence.
The used terminology, the formal modelling language
and our two techniques are described in the following.

2.2 A Formal Software Measurement
context

2.2.1 Terminology

Several concepts are commonly used in the soft-
ware engineering context. We provide some measure-
ment terminologies in the following (Group, 2012;
ISO/IEC, 2010).

Measurand: a measurand is the measured object.
In this context, it is a software system, such as soft-
ware product, in use or software resource.

Software properties: the software properties are
the measurable properties of a software such as, for
instance, complexity or performance.

Measurement: a measurement is defined as a di-
rect quantification of a measured property (Fenton
and Bieman, 2014). This is the value of an evalua-
tion result in a single time. This is information on
the measured property, such as the percentage of the
memory used.

Measure: a measure is the definition of a concrete
calculation to evaluate a property, such as the calcula-
tion of the number of lines of code.

Metric: a metric is a measure space, in other
words, the specification of a measurement. This is
the formal definition of a measurement of a property
of a computer object by specifying the measurand, the
measure(s) and the software property to be measured.

Measurement Plan: a measurement plan is an or-
dered set of metrics. They are all expected to be ex-
ecuted at a specific time or during a well-defined du-
ration and according to an ordered metrics sequence.
They can be run sequentially or in parallel.

2.2.2 The OMG Structured Metrics Meta-model

Our methodology is based on the OMG SMM
(Structured Metrics Meta-model) standard to formally
model our metrics in terms of measure, scope (subset
of measured properties) and measurement but also in

Figure 2: The Class Complexity metric model in SMM.

order to easily generate the corresponding Java code
(Dahab et al., 2018). Our main purpose is to have a
standard documentation on the measurement architec-
ture with the SMM model, which will also optimize
the design phase of the implementation of a software
measurement. Indeed, this process will enable mea-
surement code generation from a measurement archi-
tecture model based on SMM. This will reduce the
developer’s burden of manual implementation.

SMM is a standard specification that defines a
meta-model to specify a software measurement ar-
chitecture. It defines the meta-models to express all
necessary concepts to specify a measurement con-
text. A wide range of diversified types of measures is
proposed to define the dependency type between de-
pendent measures (as the ratio, binary or grade mea-
sure). The language allows to define direct/indirect
measures and complex metrics:
- Direct Measure: is the measure independent of other
measures, thus it refers to the simple evaluation func-
tion.
- Indirect Measure: is a measure dependent on other
measures.
- Complex metric: a complex metric is a metric com-
posed of indirect measure(s).

As an example, the Figure 2 represents the model
of the Class Complexity metric in SMM with the
Modelio tool. This metric computes the cognitive
weight of OO code design. The cognitive weight rep-
resents the complexity of a code architecture in terms
of maintainability and code understanding. It returns
a numerical weight. A low weight means a better de-
sign information. This is a direct metric. Thus, it is
represented by a microscope. Then, the unit of mea-
sure of the Class Complexity metric is a weight and
represented in the figure by the yellow symbol ”{...}”.
Finally, this metric is applied on a OO architecture,
which is represented by the blue target in the model.
Each component is modeled as a UML class allowing
the code generation from a SMM metric model.

We describe in the following the two techniques
composing our methodology.



2.3 Software Metrics Suggester

As previously mentioned, one of our approaches con-
sists on suggesting relevant and efficient measurement
plans at runtime using a machine learning algorithm.
For that purpose, measurements are performed con-
tinuously and data analysis periodically processed ac-
cording to cycles (e.g., each 1s, 1mn, half-day, etc.)
well-defined by the expert. Besides, it considers a de-
fined set of features, metrics and software classes to
give an insight to the measured software quality char-
acteristics. A continuous analysis of the measure met-
rics and their significance is performed to be matched
to the most representative class. We finally suggest
a change in the measurement plan to only take into
consideration the relevant metrics to the project under
analysis during the period of analysis. This approach
utilizes several concepts that are described in the fol-
lowing. Besides, a tool, namely Metrics Suggester,
has been developed and integrated.

2.3.1 Basics

Support Vector Machine A support vector ma-
chine (SVM) (Vapnik and Vapnik, 1998) is a linear
classifier defined by a separating hyperplane that de-
termines the decision surface for the classification.
Given a training set (supervised learning), the SVM
algorithm finds a hyperplane to classify new data.
Consider a binary classification problem, with a train-
ing dataset composed of pairs (x1,y1), . . . ,(xl ,yl),
where each vector xi ∈ Rn and yi ∈ {−1,+1}. The
SVM classifier model is a hyperplane that separates
the training data in two sets corresponding to the de-
sired classes. Equation (1) defines a separating hyper-
plane

f (x) = wT x+b = 0 (1)

where w ∈ Rn and b ∈ R are parameters that control
the function. Function f gives the signed distance
between a point x and the separating hyperplane. A
point x is assigned to the positive class if f (x)≥ 0, and
otherwise to the negative class. The SVM algorithm
computes a hyperplane that maximizes the distance
between the data points on either side, this distance is
called margin. SVMs can be modeled as the solution
of the optimization problem given by (2), this prob-
lem maximizes the margin between training points.

min
w,b

1
2
‖ w ‖2

subject to: yi(wT xi +b)≥ 1, i = 1, . . . , l
(2)

All training examples labeled −1 are on one side of
the hyperplane and all training examples label 1 are
on the other side. Not all the samples of the training

data are used to the determine the hyperplane, only a
subset of the training samples contribute to the def-
inition of the classifier. The data points used in the
algorithm to maximize the margin are called support
vectors.

Features & Classes The set of measurements that
is classified using SVM is defined as a vector of
features. Each feature is a field of a vector and a
measurement of one specific measure. Each field is
unique. So a feature is a measurement composing a
vector for our classification. Further, the vectors are
classified into classes according to the feature values.
Each class refers to a measured software property,
such as the maintainability or reliability. The features
composing a vector are the measurements which give
information on the classes. Some of them can give
information on several classes or only one. The fea-
tures are chosen according to the metrics defined in
the starting measurement plan.

2.3.2 The Mapping System

In order to suggest relevant and effective measure-
ment plans, a mapping system is defined between
classes and metrics, and between metrics and features.
It aims at allowing an automate suggestion procedure.
This mapping is performed by the experts of the mea-
sured system. According to the type of interest (in
terms of numbers of vector contained) of the classes
highlighted by the SVM classification, some metrics
will be added or removed from the measurement plan.
Thus, new features will be gathered and others will no
longer be.

Classes-Metrics A relationship between a class and
some metrics is needed to measure specific targeted
software properties. The classes are used for the
classification of the vectors according to their fea-
tures values. As above mentioned, our classification
method is to classify a vector in the class correspond-
ing to the property whose the values of the vector
show a type of interest.

Features-Metrics The features values inform about
the properties (classes) of interest. There are features
which give information on only one property and oth-
ers which can give information on several different
properties (complex metrics). Some of the measures
can be used by different metrics. Thus, the features
associated with a metric are the features correspond-
ing to the measures which composed the metric.
In order to ensure the sustainability of measurement
cycles by having at each cycle an information on all



measured properties, a set of metrics should always
be gathered. This set is called mandatory features. To
select the mandatory features, we use the RFE tech-
nique, explained below, based on SVM.

The Feature Selection The goal of the Feature Se-
lection (FS) process is to select the relevant features
of the raised classes. Its objective is to determine a
subset of features that collectively have good predic-
tive power. With FS, we aim at highlighting the fea-
tures that are important for classification process. The
feature selection method is Recursive Feature Elim-
ination (RFE) (Khalid et al., 2014). RFE performs
backward elimination that consists of starting with all
the features and test the elimination of each variable
until no more features can be eliminated. RFE be-
gins with a classifier that was trained with all the fea-
tures that are weighted. Then, the feature with the
absolute smallest weight is eliminated from the fea-
ture set. This process is done recursively until the de-
sired number of features is achieved. The number of
features is determined by using RFE and cross valida-
tion together. In this process each subset of features
is evaluated with trained classifier to obtain the best
number of features. The result of the process is a clas-
sifier trained with a subset of features that achieve the
best score in the cross validation. The classifier used
during the RFE process is the classifier used during
the classification process.

2.3.3 Measurement Plan Suggestion

Based on the classification, matching and FS, two sets
of classes are notified: the one with the most vectors
called Biggest and the other set constituted of all the
other classes called Others. The Biggest means that
the corresponding property is the most interested ele-
ment while the Others means that the corresponding
properties are not the elements of interest. Thereby,
our Suggestion procedure is applied for the property
corresponding to the Biggest. Indeed, the Biggest
property needs a further measurement, while the Oth-
ers one no longer need it. Basically, based on the pro-
cedures Analysis and Selection, we raise unnecessary
features for the classification that should be removed
from the measurement plan. Through this method,
the measurement load is increased only on needs and
decreasing due to less interested properties. This sug-
gestion approach allows to reach a lighter, complete
and relevant measurement plan at each cycle of the
software project management.

2.4 MINT- Metrics Intelligence Tool

MINT is a software solution designed to correlate
metrics from different software development life cy-
cle in order to provide valuable recommendations to
different actors impacting the software development
process. MINT considers the different measurements
collected by the MEASURE platform as events oc-
curring at runtime. The correlation is designed as
extended finite state machines (EFSMs) allowing to
perform Complex Event Processing (CEP) in order to
determine the possible actions that can be taken to im-
prove the diverse stages of the software life cycle and
thus the global software quality and cost.

2.4.1 Background

Metrics correlation The correlation can be defined
as a mutual relationship or association between met-
rics (or the values of its application). Metrics corre-
lation can be the basis for the reuse of metrics; it can
help to predict one value from another; it can indi-
cate a causal relation between metrics and can estab-
lish relations between different metrics and increase
the ability to measure. Examples of correlation are:
to correlate two metrics from the same development
phase; to correlate the same metric at different times;
to correlate a metric (a set of metrics) from phase X
regarding metrics of phase Y. As an outcome, rec-
ommendations and a selection of metrics will be pro-
posed to the developer to improve the software devel-
opment. MINT is based on correlation techniques.

Complex Events Processing Complex event pro-
cessing (CEP)(Grez et al., 2017) technology ad-
dresses exactly the need of matching continuously in-
coming events against a pattern. Input events from
data streams are processed immediately and if an
event sequence is matching a pattern, the result is
emitted straight away. CEP works very efficiently
and in real-time, as there are no overheads for data
storing. CEP is used in many areas that include for
instance manufacturing processes, ICT security, etc.
and is adapted in this paper for software quality as-
sessment process.

Extended Finite State Machine In order to for-
mally model the correlation process, the Extended Fi-
nite State Machine (EFSM) formalism is used. This
formal description allows to represent the correlation
between metrics as well as the constraints and com-
putations needed to retrieve a meaningful recommen-
dation related to software quality assessment.



Definition 1. An Extended Finite State Machine
M is a 6-tuple M = < S,s0, I,O, #»x ,Tr > where S is a
finite set of states, s0 is the initial state, I is a finite set
of input symbols (eventually with parameters), O is a
finite set of output symbols (eventually with parame-
ters), #»x is a vector denoting a finite set of variables,
and Tr is a finite set of transitions. A transition tr is
a 6-tuple tr = < si,s f , i,o,P,A > where si and s f are
the initial and final state of the transition, i and o are
the input and the output, P is the predicate (a boolean
expression), and A is an ordered set (sequence) of ac-
tions.

Figure 3: Example of a simple EFSM with two states.

We illustrate the notion of EFSM through a sim-
ple example described in Fig. 3. The ESFM is com-
posed of two states S0, S1 and three transitions that
are labeled with two inputs A and B, two outputs X
and Y, one predicate P and three tasks T , T ′, and T ′′.
The EFSM operates as follows: starting from state S0,
when the input A occurs, the predicate P is tested. If
the condition holds, the machine performs the task T,
triggers the output X and passes to state S1. If P is not
satisfied, the same output X is triggered but the action
T ′ is performed and the state loops on itself. Once the
machine is in state S1, it can come back to state S0
if receiving input B. If so, task T ′′ is performed and
output Y is triggered.

2.4.2 Writing correlation processes

Correlation process inputs and outputs The ba-
sic idea behind MINT approach is to specify a set of
correlation rules based on the knowledge of an expert
of the software development process. These rules can
rely on one or different sets of metrics (seen as inputs)
and allow different recommendations to be privided
(seen as outputs) to different kinds of actors:

• Actors from the DevOps team: Analysts, design-
ers, modellers, architects, developers, tester, oper-
ators, security experts, etc.

• Actors from the management plan: product man-
ager, project manager, responsible of human re-
sources, responsible of financial issues etc.

The automatic generation of such rules or their con-
tinuous refinement based on some artificial intelli-

gence techniques is an ongoing work and out of the
paper scope.

Example of correlation processes The correlation
processes rely on different measurements that are
computed and collected by external tools. Some ex-
amples of correlations are presented in the Figure 4.

Software Modularity
The assessment of the software modularity relies on
two metrics provided by the SonarQube tool that are
the class complexity and the maintainability rating.
The class complexity measure (also called cognitive
complexity) computes the cognitive weight of a Java
Architecture. The cognitive weight represents the
complexity of a code architecture in terms of main-
tainability and code understanding. The maintain-
ability rating is the ratio of time (according to the
total time to develop the software) needed to update
or modify the software. Based on these definitions,
and considering that a modular code can be more un-
derstandable and maintainable, we can correlate the
two metrics and compute the ratio R = class complex-
ity/maintainability rating. If this ratio is more than a
specific threshold set by an expert, the recommenda-
tion “Reinforce the modular design of your develop-
ment” will be provided to the software architect and
developers.

In the initial state, we can either receive the input
related the class complexity denote cc or the main-
tainability rating denoted mr. The process accesses
respectively to the states “cc received” or “mr re-
ceived”. If we receive the same measurement related
to the same metric, we update its value and loop on
the state. Otherwise, if we receive the complemen-
tary metric, we compute the ratio R = class complex-
ity/maintainability rating. If this ratio is less than the
defined threshold, we come back to the initial state
otherwise, we raise the recommendation. Timers are
used to come back to the initial state if the measure-
ments are too old. For sake of place, only this EFSM
is presented in Figure 5. All the others follow the
same principles.

Requirements quality
The assessment of the requirements quality can rely
on two metrics provided by the SonarQube tool that
are the total number of issues and the total number of
reopened issues. These numbers are collected during
the implementation phase and we can consider that
the fact that we reopen an issue many times during the
development process can be related to an ambiguous
definition of the requirement that needs to be imple-
mented. If we have a ratio R = number of reopened
issues/number of issues that is more than a specific
threshold, we can consider that the requirements are



Figure 4: Example of Correlation processes.

Figure 5: Software Modularity Correlation processes.

not well defined and that the development needs more
refinement about them. The recommendation “Refine
requirement definitions or provide more details” will
be provided to the requirements analyst.

Code reliability
The assessment of the code reliability relies on two
metrics provided by the SonarQube tool that are the
number of issues categorized by severity and the reli-
ability rating. The issues in SonarQube are presented
with severity being blocker, critical, major, minor or
info and the reliability rating are from A to E: A is

to say that the software is 100% reliable and E is to
say that there is at least a blocker bug that needs to be
fixed. Based on these definitions and considering that
a reliable code should be at last free of major or crit-
ical issues, we can check that there is no major, criti-
cal nor blocker issues and the reliability rating is < C
corresponding to 1 major bug. If this condition is not
satisfied, the recommendation “There is unsolved ma-
jor issues in the code, make a code review and check
untested scenarios” will be provided to the software
developers and testers.

Software security
The assessment of the software security relies on two
metrics, one provided by the SonarQube tool that is
the security rating and the other is provided by MMT
that is the number of security incidents. The secu-
rity rating in SonarQube provide an insight of the de-
tected vulnerabilities in the code and are presented
with severity being blocker, critical, major, minor or
no vulnerability. The number of the security inci-
dents provided by MMT reports on successful attacks
during operation. The evaluation of security demon-
strates that if an attack is successful this means that
the vulnerability in the code was at least major be-
cause an attacker was able to exploit it to perform



its malicious activity. Based on these definitions, and
considering that a reliable code should be at last free
of major vulnerabilities, we can check if there is a
major vulnerability and that the number of attacks at
runtime are more than a threshold. If this condition is
satisfied, the recommendation “Check code to elim-
inate exploitable vulnerabilities” will be provided to
the software developers ans security experts.

Software Performance
The assessment of the software performance relies on
two metrics provided by the MMT tool that are the re-
sponse time and the bandwidth usage. The response
time denotes the delay that can be caused by the soft-
ware, hardware or networking part that is computed
during operation. This delay is in general the same for
a constant bandwidth (an equivalent number of users
and concurrent sessions). Based on this finding, we
can correlate the two metrics and compute that the re-
sponse time is not increasing for during time for the
same bandwidth usage. If this response time is in-
creasing, the recommendation “Optimize the code to
improve performance and minimize delays” will be
provided.

3 EXPERIMENTS

Experts of the MEASURE platform (mainly its
administrator and the project manager) selected 15
metrics and provided a training data set of 1,000 la-
belled vectors. We applied our two techniques and
tools on the MEASURE platform and detail the re-
sults in this section.

3.1 Suggester Experiment

The suggestion process is evaluated by analyzing the
new measurement plans (MP) based on the results of
the classification process. These results are used in
the feature selection process to identify the class of
interest. The objective is to highlight the effects of
using the proposed measurement plans and its impact
on the classification of new data and on the amount of
data collected by this plan.

The used and analyzed measurement data are the
measurement results provided by our industrial MEA-
SURE platform. Data are collected at runtime from
selected features/metrics.

3.1.1 Setup

We herein considered the following measurement
plan which determined by our expert. An initial MP

Table 1: Each metric and its assigned index during the sug-
gestion process.

Index Metric
1 Cognitive Complexity
2 Maintainability Index
3 Code Size
4 Number of issues
5 Response Time
6 Running Time
7 Usability
8 Computational Cost
9 Infrastructure Cost
10 Communication Cost
11 Tasks
12 I/O Errors
13 Precision
14 Stability Response Time
15 Illegal Operations

can be defined by 15 features, 15 metrics and 4 soft-
ware quality properties. Each metric is composed
of only one feature and the mapping between met-
rics and classes is the following: (i) Maintainability
(Class 1): Cognitive Complexity, Maintainability In-
dex, Code Size, Number of issues, (ii) System Per-
formance (Class 2): Computational Cost, Infrastruc-
ture Cost, Communication Cost and Tasks, (iii) Per-
formance (Class 3): Response Time, Running Time
and I/O Errors, (iv) Functionality (Class 4): Usability,
Precision, Stability Response Time and Illegal Oper-
ations.

Using the previously described plan, we consid-
ered the class with the most predicted instances dur-
ing each cycle. A huge set of 16,000,000 unclassi-
fied vectors (unlabelled) were collected and processed
(representing a collection of diverse data during a
long period of time). This data set was divided into
32 subsets each containing 500,000 vectors. For each
period of the suggestion process, only one subset was
used as input.

The initial measurement plan used during the ex-
periment consisted of the following 5 metrics: Main-
tainability Index, Response Time, Running Time, Us-
ability, Computational Cost. These metrics where se-
lected by the expert as an example of a measurement
plan with a small number of metrics that has links to
all software quality properties. During the suggestion
process a number was assigned to each metric. In our
experiments the number of each is shown in Table 1.

3.1.2 Results

During the suggestion process, 15 metrics (Table 1)
were available to suggest new MP. Fig. 6 shows how



Table 2: Measurement plans used during the suggestion process and the cycles where they were used. Metrics of the plans
are represented by the indexes described in Table 1.

Metrics Cycles
MP1 2, 5, 6, 7, 8 1
MP2 4, 5, 6, 12 2, 4, 17, 22, 23, 24
MP3 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15 3, 5, 18
MP4 8, 9, 10, 11 6, 30
MP5 7, 8, 9, 10, 11 7, 8, 9
MP6 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15 10
MP7 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 11, 19, 20
MP8 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 12, 21
MP9 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 13, 14, 15, 16

MP10 3, 4, 5, 6, 8, 9, 10, 11, 12 25
MP11 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 26, 32
MP12 1, 2, 3, 4, 5, 6, 8, 9, 10, 11 27
MP13 1, 3, 4, 5, 6, 8, 9, 10, 11, 12 28
MP14 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 29
MP15 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 31

the classification of the vectors was distributed during
the cycles and the percentage of the vectors assigned
to each class. From these metrics, 15 unique mea-
surement plans were used in the suggestion process.
Table 2 lists the plans and in which cycle they were
used.

Figure 6: Classification results of each cycle. The results
show the percentage in the predictions of each cycles for
the 4 classes.

MP1 was only used at the beginning of the pro-
cess, this was the plan suggested by the expert. We
note that MP2 was the most used plan during the pro-
cess (6 times). This plan is composed by the met-
rics linked to the Performance property and was sug-
gested when the classification of vector to class 3
overwhelmed the other classes. This tells us that if
we focus on the Performance property then the met-
rics in MP2 are sufficient.

MP3 was suggested when the four classes were
present in the classification results and class 4 was the

class of interest. The tool suggests to take into con-
sideration more than the linked metrics to the class, it
seems that these features help to the classification of
class 4.

MP4 was suggested when the input vectors were
only classified to class 2, this MP2 consists of the met-
rics linked to that class. This happens when the input
vectors are classified to only one class, the same can
be observed in cycle 1 but with class 3. MP5 has only
one more metric than MP4, Usability. It is also a MP
focused on System Performance property. MP11 was
also suggested when class 2 overwhelmed the number
of classifications during the classification phase.

MP7, MP8 and MP9 are very similar measure-
ment plans. These plans have the highest number
of metrics, MP7 15 metrics and MP8&9 14 metrics.
These plans are suggested when the classification re-
sults usually have more than 2 classes. This is because
the classes do not share any metric between them. A
measurement plan with the majority of the metrics is
expected to classify well the majority of the classes.
MP10, MP12, MP13, MP14 and MP15 where sug-
gested in the same case as the previously mentioned
plans but these plans where only suggested one time
during the process.

3.2 MINT Experiment

To test the efficiency of the MINT tool, we created ten
scripts enabling to generate different values for the ten
metrics that are relevant for the correlation processes
defined in the Figure 4. For each correlation, we cre-
ated 2 scripts: one that meets the condition that sat-
isfies the recommendation and another that does not
satisfy it. The 10 scripts are summarized in Table 3.



Table 3: Experiments scripts

Correlation Script Metrics constraint
Code 1 Class complexity/maintability rating
Modularity > threshold
Code 2 Class complexity/maintability rating
Modularity < threshold
Specification 3 Number of reopened issues / number of issues
Quality > threshold
Specification 4 Number of reopened issues / number of issues

< threshold
Management 5 Issues by severity = Major or Critical
Quality Reliability rating > 1 Major bug
Management 6 Issues by severity 6= Major and 6= Critical

or Reliability rating < 1 Major bug
Security 7 Security vulnerability > Major vulnerability

Security incident > threshold
Security 8 Security vulnerability < Major vulnerability

or Security incident < threshold
Performance 9 Reponse timet > reponse timet−1

bandwidtht = bandwidtht−1
Performance 10 Reponse timet <= reponse timet−1

or bandwidtht > bandwidtht−1

Each script pushes the metric values into an event
bus that feeds the 5 correlation processes defined in
Section II.D.2.b. The results correspond to the de-
sired recommendations and the Figure 7 displays an
example of recommendation provided by the MINT
tool.

Figure 7: Recommendation triggered by script 1.

This experiment showed the efficiency of the tool.
More work is planned to apply this tool to real
datasets provided by real users in the context of the
software development process.

4 RELATED WORK

Many efforts have been done to define metrics
for software quality (Fenton and Pfleeger, 1996),
(Kitchenham, 2010), (Bouwers et al., 2013). These
works can be associated with standardized qual-
ity models such as ISO 9126 quantifying proper-

ties with software metrics (Carvallo and Franch,
2006). Learning techniques are currently arising to
effectively refine, detail and improve the used met-
rics and to target more relevant measurement data.
Current works such as (Laradji et al., 2015)(Shep-
perd et al., 2014)(Malhotra, 2015) raise that issue
by proposing diverse kinds of machine learning ap-
proaches for software defect prediction through soft-
ware metrics. These studies have shown the impor-
tance of gathering information on the software en-
gineering process in particular to ensure its quality
through metrics and measurements analysis (Fenton
and Pfleeger, 1996). Thanks to that, standardization
institutes worked in that way to propose two well-
known norms, ISO/IEC25010 (Kitchenham, 2010)
and OMG SMM (Bouwers et al., 2013) to guide the
measurement plan specification. These two standards
have been reviewed by the research and industrial
community, and are adapted and applied in many do-
mains.

However, even if these techniques have introduced
considerable progress to improve the software qual-
ity, they have still some limitations. The measure-
ment plan is, in general, manually fixed by the project
manager, the implementation of the measures is de-
pendent on the developer and reduce the scalability,
maintainability and the interoperability of the mea-
surement process.

For software metrics correlation, there are many
works focused on the relations between internal and



external software metrics. In (Shweta and Singh, ),
the impact of software metrics on software quality is
presented and the internal and external attributes of a
software product are studied because the relationship
between them directly affects its behaviour. The met-
rics are combination of these attributes. As the num-
ber of metrics used in a software project increases,
the management and controlling of the project also
increases. In (van der Meulen and Revilla, 2007), the
authors investigated the relationship between differ-
ent internal and external software metrics by analyz-
ing a large collection of C/C++ programs submitted
to a programming competition, the Online Judge. In
(Kevrekidis, ), they analyze the links between soft-
ware reliability and software complexity for evaluat-
ing the effectiveness of testing strategies.

These works have been applied mainly to estab-
lish correlations between internal and external met-
rics, and to specific ones. These works are very useful
for our future work. Even though our approaches are
generic and can be applied to any metric, we plan to
apply our approaches to evaluate the relation between
specific and well selected metrics.

5 CONCLUSION

This paper presents two approaches and two soft-
ware tools, Metrics Suggester and MINT, which anal-
yse the large amount of measurement data generated
during the software development process. The anal-
ysis is performed at different phases from the design
to the operation and using different measuring tools
(e.g., SonarQube and MMT). The data analysis plat-
form implements analytic algorithms (SVM and CEP)
to correlate the different phases of software develop-
ment and perform the tracking of metrics and their
value. Correlations cover all aspects of the system
like modularity, maintainability, security, timing, etc.
and evaluate the global quality of the software devel-
opment process and define actions (suggestions and
recommendations) for improvements.

The Metrics Suggester tool is very valuable to re-
duce the energy and cost in gathering the metrics from
different software life cycle phases and allows to re-
duce the number of the collected metrics according to
the needs defined as profiles or clusters. It uses the
support vector machine (SVM) that allows to build
different classifications and provide the relevant mea-
suring profile, the MP.

MINT is a rule based analyser using the ESFM
formalism. It acts as a complex event processor that
corrects the occurrence of measurements on time and
provides a near real-time recommendation for the

software developers and managers.
The presented experimentation’s showed the ef-

ficiency of the two developed tools and their com-
plementarity. Future works regarding performance,
scalability and an extended number of metrics are ex-
pected.
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