
Metrics-driven DevSecOps

Wissam Mallouli1 a, Ana Rosa Cavalli1,2 b, Alessandra Bagnato3 c and Edgardo Montes de Oca1 d

1Montimage EURL, Paris, France
2SAMOVAR, Telecom SudParis, Institut Polytechnique Paris, France

3SOFTEAM, Paris, France
{wissam.mallouli, edgardo.montesdeoca}@montimage.com, alessandra.bagnato@softeam.fr,

ana.cavalli@telecom-sudparis.eu

Keywords: Continuous Measurements, DevOps, Security, Feedback Loop, Software Quality, Automation.

Abstract: Due to the modern iterative development practices and new automated software engineering tools and methods
brought by the DevOps agile method, the traditional metrics and evaluation methods are not enough to ensure
software security. Besides, the recent years have seen probably the most continuous and extreme software
security attacks ever recorded against organizations in an assortment of enterprises. Security is presently a
vast range, critical for business achievement. The existing metrics must be redefined, and new security metrics
should be determined based on multiple measures to increase the reliability of the values. Due to the short
cycles of iterative processes in DevOps method, the feedback must come quickly, so the measurement should
be automated and continuous. Due to the massive amount of information, the results must be visualized at a
suitable level of abstraction, which may be different for the various stakeholders. In this paper, we propose a
unique Metric-driven approach to help improve the software engineering processes by increasing the quality,
adaptability and security of software and decreasing costs and time-to-market.

1 INTRODUCTION

The current cybersecurity landscape has evolved to
the point that companies are facing increasingly so-
phisticated attacks (Tounsi and Rais, 2018), more and
more adapted to their specific products, targeting all
security measures across the application’s software
stack. At the same time, companies are faced with the
need to deliver products to the market at an increas-
ingly rapid rate and to adapt to new customer needs
and requirements. As such, many businesses must
find a difficult balance between the speed of software
delivery, dictated by the market they are part of, and
the need to invest effort and time to ensure that each
iteration of their product is hardened from a cyberse-
curity perspective.

The need to deliver software products in a fast
but still controlled and reliable manner has led to
the growth of DevOps teams in most large soft-
ware companies. However, since continuous delivery
must be integrated into security, the DevOps teams

a https://orcid.org/0000-0003-2548-6628
b https://orcid.org/0000-0003-2586-9071
c https://orcid.org/0000-0003-2675-0953
d https://orcid.org/0000-0001-6771-0689

have evolved to DevSecOps (Myrbakken and Pala-
cios, 2017). As such, the tool chain used by teams to
automatically test, prepare for deployment and deliver
a software product to the market has been changed to
include security controls. Each step of a software de-
ployment pipeline should, to date, include a series of
controls that ensure that the delivered product passes
a series of security requirements designed to prevent
malicious actors from exploiting them, or at the very
least, to alert all concerned parties when any security
breach occurs.

It is certainly necessary to include security con-
trols as part of the DevOps process, but what is more
important is to ensure that they are appropriate and
relevant for the system deployed. In most cases, De-
vSecOps teams must manually define the controls to
include in their process. The use of knowledge spe-
cific to an expert domain in this decision-making pro-
cess adds value, since the controls and validations
implemented are intended to prevent or alert against
the exploitation of known vulnerabilities. However,
the metrics measured to guarantee security (Medeiros
et al., 2017) are, in most cases, standard measures
intended to protect the application against known
threats.



This leads to software applications not protected
against the so-called ”unknown threats” - previously
unknown vulnerabilities which, when exploited, can
lead to problems ranging from loss of system services
to more serious cases such as data leaks. As such,
there is a clear gap that needs to be filled - develop a
way to discover the metrics that need to be monitored
in the DevSecOps pipeline in order to prevent or alert
when the system behaves in a non-expected manner,
indicating possible security issues.

In this paper, we propose a unique Metric-driven
approach to improve software engineering processes
by increasing the quality, adaptability and security of
software and decreasing costs and time-to-market by:

• Defining innovative metrics and developing meth-
ods and tools for measurement of software engi-
neering activities and artefacts, focusing on secu-
rity, privacy and robustness related metrics, that
will be adopted during the complete software life-
cycle.

• Developing Machine Learning and Arificial In-
telligence (ML/AI) based methods and tools for
analysing real-time data produced by the continu-
ous measurement to enable increasing trust, secu-
rity, and reliability, while at the same time main-
taining the necessary system performance and en-
ergy savings.

• Supporting decision-makers by visualising the re-
sults of continuous measurement at targeted level
of abstraction, i.e. providing different visualisa-
tions for developers, operators, security experts,
managers and other stakeholders. This includes
providing clear and actionable recommendations
for continuous security assurance.

• Proposing an agile development process (i.e. De-
vSecOps) that relies on the developed metrics to
ensure better reliability and resiliency of artefacts.

The rest of paper contextualises the proposed ap-
proach in Section 2, then it details the proposed
methodology and presents a concrete architecture of
such framework in section 3. Section 4 concludes this
paper.

2 CONTEXT AND MOTIVATION

2.1 Metric-driven Software Engineering

Measuring has become a fundamental aspect of soft-
ware engineering (Bagnato et al., 2017). Accurate
measurement is proving to be highly effective in var-
ious domains. For example, measurement is vital

for the provision of high quality decision-support and
prediction systems, in the context of improving soft-
ware development and maintenance. Furthermore, ac-
curate measurement is required for the evaluation and
enforcement of a system’s quality (by highlighting
problematic areas), and in the determination of better
work practices with the aim of assisting practitioners
and researchers in their work.

Software Measurement needs tools that assist in
the evaluation and industrialisation of Software Pro-
cess Improvement in the organizations that develop
them. Software Measurement is, in fact, a key ele-
ment in initiatives such as SW-CMM (Capability Ma-
turity Model for Software), ISO/IEC 15504 (SPICE,
Software Process Improvement and Capability deter-
mination) and CMMI (Capability Maturity Model In-
tegration). The ISO/IEC 90003:2004 standard also
highlights the importance of measurements in man-
aging and guaranteeing quality.

There exist various methods and standards con-
cerning how to carry out measurements in a precise
and systematic manner, of which the most representa-
tive are:

• Goal Question Metric (GQM): the basic princi-
ple of GQM is that measurement must always
be oriented towards an objective. GQM defines
an objective, refines that objective into questions
and defines the measures which attempt to answer
those questions (Koziolek, 2005).

• Practical Software Measurement (PSM): the PSM
methodology is based on the experience obtained
from organizations on the manner in which to best
implement a software measurement program with
guarantees of success (Card, 2003).

• ISO/IEC 15939: this international standard iden-
tifies the activities and tasks which are necessary
to successfully identify, define, select, apply and
improve software measurement within a general
project or within a business’s measurement struc-
ture.

In addition, the availability of a formal description
language that allows representing the elements which
must be taken into account by the measurement pro-
cess can be considered as important in the decision
making and process improvement.

2.2 Cybersecurity Related Risks

The recent years have seen probably the most con-
tinuous and extreme software security attacks ever
recorded against organizations targeting different
kinds of enterprises. Security has become critical for
business achievement and shown the importance of



safety and risk management for dealing with the pro-
tection of a company from destructive cyber-attacks
and implementing more and more strict regulations.
Thus, assessing the trustworthiness of a software from
its early stages in its development lifecycle becomes
a must. Many security metrics and indicators, have
been identified and implemented in several security
tools from requirements to operations. However, a
global view of security practices are not always avail-
able for product owners, developers, operators, man-
agers and other stakeholders (Casola et al., 2017).

2.3 DevOps Agile Process

Today, DevOps is a concept that is gaining serious
traction within organizations – large to small – try-
ing to bridge the gap between development and oper-
ations. DevOps outlines a cyclic approach to various
stages of the software development lifecycle such as
conception, test and deployment of software artefacts.
Specific tools are used in every stage of the DevOps
cycle to improve the final outcome. DevOps is cen-
tred on two core principles, automation and continu-
ous improvement, and has become a crucial part of
software development.

Nowadays, real-time integration, deployment, and
monitoring of applications is a necessity where as-
sessment and feedback are the foundations and em-
bedded in every step. It forms a series of feedback
loops that provide immediate insight and response to
each preceding step in the process and delivers feed-
back from customers and users into the application’s
business value. This automatic and continuous feed-
back process is referred to as Continuous Assessment.

By integrating security in DevOps, the main pur-
pose is to build on the mindset that ”everyone is re-
sponsible for security”. The goal is to distribute se-
curity decisions with speed and at a scale required so
that those that can act can do so with out sacrificing
other factors of the business process.

With an increased business demand for DevOps,
agile and cloud services, traditional security pro-
cesses have become a major roadblock that some-
times needs to be bypassed all together. Traditional
security operates from the position that once a system
has been designed, its security defects can determined
by the security staff and corrected by the business op-
erators before the system is released. This required
a limited amount of security skills for producing the
outcomes and avoided the need to expand the secu-
rity context of larger systems. But a process designed
this way only work when the business activities are
organised as a waterfall with agreement among all in-
volved parties. Unfortunately, the belief that security

must operate this way is flawed with the introduction
of iteration, creating inherent risks within the system
due to the lack of coordination and cooperation.

In this paper, we target to answer these challenges
by introducing a new Metrics-driven DevOps method-
ology (Forsgren and Kersten, 2018) that allows to
continuously check the quality of a software from de-
sign to operation by gathering different metrics from
different software artifacts. A specific focus on trust-
worthiness related metrics is performed to ensure re-
liable and resilient products.

3 METRICS-DRIVEN DevSecOps
METHODS

The proposed architecture is based on the state-of-the-
art architecture derived from two projects, in particu-
lar from ITEA3’s MEASURE project1 and H2020’s
MUSA Project2.

The solution (represented in Figure 1) is built
on a centralized platform dedicated for measuring,
analysing, and visualising metrics (mainly quality and
trustworthiness metrics) to extract and derive infor-
mation concerning the software engineering process
(Dahab et al., 2019). This platform:

• Implements methodologies and tools to automat-
ically measure software engineering processes
during the whole software lifecycle by execut-
ing measures defined using the SMM (Structured
Metrics Metamodel) standard and extracted from
a catalogue of formal and platform-independent
measurements;

• Provides methodologies and tools which allow
developing a catalogue of formal and platform-
independent measures with a specific focus on
trustworthiness;

• Integrates a storage solution for storing and pro-
cessing measurements obtained by capturing met-
rics in a big data context;

• Relies on the visualization tools to expose the ex-
tract results in an easy-to-read fashion, so allow-
ing a quick understanding of the situation to de-
termine the possible actions that can be taken to
improve the diverse stages of the software lifecy-
cle.

• Includes an open API facilitating the integration
of the measurement platform with external tools
and services including other measuring and anal-
ysis tools.

1https://itea3.org/project/measure.html
2https://www.musa-project.eu/



Figure 1: The Metrics-Driven DevSecOps Architecture.

The platform activity is organized around its abil-
ity to collect measurement by executing measures
defined by the SMM standard. SMM measures
are auto-executable components, implemented exter-
nally, which can be interrogated by the platform to
collect measurements.

The Metrics-Driven DevSecOps presented in this
paper consists of defining metrics and its support-
ing tools for measuring modern software engineer-
ing activities with respect to trustworthiness, energy
efficiency and quality. The measurement process
needs to be automated in order to reduce the devel-
opment time. This can help the DevOps team dur-
ing their decision-making. The measuring methods
and tools rely on predictive and reactive security en-
ablers that can be applied during the development
and operation phases. These enablers include: se-
curity requirements specification, secure modelling
(i.e. security-by-design), secure coding, vulnerability
scanning, static and dynamic code analysis, contin-
uous risk analysis, intrusion and anomaly detection,
root cause analysis, and the application of resilience
mechanisms at the design (called remediation mech-
anisms) or at the operation (called countermeasures)
phases.

3.1 Measure Catalogue

The measures rely on an extension of SMM (Struc-
tured Metrics Meta-model) format, an OMG Stan-
dard. A “collect and compute component” provides
services to register a “Metric” defined in specific ex-

ecutable format derived from the SMM standard us-
ing a communication API. Registered measures are
stored in the Measure Catalogue3. Once registered,
the measure catalogue allows the platform to access:
the measure’s meta-data that contains the informa-
tion required to identify the measure (i.e. an unique
id); the measure’s type (e.g. Direct Measures, Col-
lective Measures, Binary Measures); the information
on the measure’s implementation, which is the format
of data returned by the measure (i.e. Unit) and a list
of configuration points provided by the measure (i.e.
Scope).

3.2 Measure Configuration and
Instances

A Measure is composed of a set of meta-data associ-
ated with an implementation and represents a generic
data collection algorithm that has to be instantiated
and configured to be applied on a specific context.
Consequently, in order to be executed by the platform,
it’s required to define an instance of a registered mea-
sure that fills the configuration values described in the
measure’s meta-data. As an example, a measure in-
stance contains:

• An identifier for the measure instance.

• Information related to the collection cycle of the
measurement; in other words, when and in what
interval a measurement is to be collected.

3Examples of metrics can be found following this link:
https://github.com/ITEA3-Measure/Measures/wiki



• Information required for identifying the measured
system (i.e. configuration values).

• Information related to the required measure input
and output for a Derived Measure.

• Information related to the data structure returned
by the measure.

Once instantiated, the data related to the measure in-
stances are stored in a centralized database.

3.3 Collecting Measures using the SMM
Engine Measuring Tools

The SMM standard defines two main types of mea-
sures: (1) the direct measures, which are measures
collected from the physical world, and (2) calculated
measures (e.g. Collective Measures and Binary Mea-
sures), which are measures derived from the direct
measures.

• Direct Measure Collecting. The SMM engine will
invoke the implementation of the direct measure
after having communicated to it the configuration
parameters defined by the measure instantiation.

• Derived Measure Calculation. Using pre-
existent measurements stored in the measurement
database and from direct measures, the SMM En-
gine will provide services to calculate the derived
measures.

The SMM Engine provides services to execute mea-
sures. The execution of a measure can be triggered
manually or can be scheduled and repeated over time.
In the second case, the SMM Engine uses a specific
scheduling component to organise the executions of
measures. Once collected or calculated, the SMM
engine stores the resulting measurements in the mea-
surement database.

3.4 Measurement Storage

Collected and calculated measurements are to be
stored in a database for future exploitation by the
analysis tools. In this context, it is necessary to deal
with a very large quantity of data. Furthermore, due
to the nature of the measures, flexibility related to
the nature of the data to store in this database is also
needed. In fact, it should not be necessary to make hy-
pothesis on the nature of the measurements returned
by the measurement tools. A measurement can be a
simple value or a complex and structured data. Elastic
Search can be a good candidate to perform this task.

3.5 Analysis Tool and Decision Support

The primary goal of the analysis is to provide a work-
ing environment driven by measures that can help
managers during their decision-making process. It
implements analytic algorithms, to correlate the dif-
ferent phases of software development and to perform
the tracking of metrics and their values. The plat-
form also connects and assures the interoperability
among the tools and defines actions for improvement
and possible countermeasures. The analysis tools pro-
vide a way to display graphical representations of
the measured information as graphics and produce re-
ports by defining and organizing several dashboards.
Each dashboard presenting a selected pool of mea-
sures using graphics, tables and/or specific indicators.
The main services offered by this component are:

• Provide a web application which allows the De-
vOps team (including the product owner and the
project manager) to organise and configure mea-
sures computation.

• Provide a web application which will be able to
present measures execution results and measure-
ments as customisable charts.

• Allow organising these charts with respect to
projects, phases and dashboards, in order to fa-
cilitate modern iterative development practices.

• Integrate consolidated results provided by the
analysis tools.

One of the approach’s innovation consists in
analysing measurement results for identifying what
and how to automatically improve the software qual-
ity or the software engineering process quality. Such
highly automated and easy-to-deploy solution can be
considered a breakthrough solution, as current tools
only support this type of approach with a very lim-
ited scope. The analysis of retrieved measurements
can rely on several algorithms for correlating them
and learning from previous experiences in similar de-
velopment projects. Machine learning (ML) and ar-
tificial intelligence (AI) can be used to perform clus-
tering, measurement plan scheduling, metrics predic-
tions and recommendations to the DevOps team in or-
der to react to any detected/predicted issues (Dahab
et al., 2019). As a concrete example, if we measure
that one detected risk was classified as low (e.g., data
breaches) and not mitigated at the design phase, but
during operation, we detect several attacks exploiting
the vulnerability resulting to this risk (data is exfil-
trated). A recommendation would be to activate a se-
curity control (e.g., protect data by encrypting it or by
using a secure communication channel).



4 CONCLUSIONS

The main objectives of Metrics-driven DevOps ap-
proch presented in this paper is to design and de-
velop a centralized platform provided as PaaS to be
deployed on the users premises or in a public/private
cloud for building trustworthy software that rapidly
adapts to changing requirements while maintaining
key qualities indicators (e.g. reliability, availability,
performance, security, privacy). This platform gath-
ers measurements from the different software devel-
opment lifecycle phases and during the production
in order to detect/predict potential issues and pre-
vent them. This verification relies on different soft-
ware engineering tools (like risk analysis, intrusion
and anomaly detection etc.) and allows providing real
time recommendations to the DevOps team to im-
prove the security/privacy of their software as well as
resiliency. Different ready-to-deploy security mecha-
nisms are needed to support such a platform.

ACKNOWLEDGEMENTS

This work is partially funded by the ongoing Euro-
pean project ITEA3-MEASURE started in Dec. 1st,
2015 (https://itea3.org/project/measure.html), and the
H2020 ENACT project started in Jan. 1st, 2018
(https://www.enact-project.eu/).

REFERENCES

Bagnato, A., Sadovykh, A., Dahab, S., Maag, S., Cavalli,
A. R., Stefanescu, A., Rocheteau, J., Mallouli, S., and
Mallouli, W. (2017). Modeling OMG SMM metrics
using the Modelio modeling tool in the MEASURE
project. Génie logiciel, (120):46 – 52.

Card, D. N. (2003). Practical software measurement. In
Clarke, L. A., Dillon, L., and Tichy, W. F., edi-
tors, Proceedings of the 25th International Conference
on Software Engineering, May 3-10, 2003, Portland,
Oregon, USA, pages 738–739. IEEE Computer Soci-
ety.

Casola, V., Benedictis, A. D., Rak, M., and Villano, U.
(2017). A security metric catalogue for cloud applica-
tions. In Barolli, L. and Terzo, O., editors, Complex,
Intelligent, and Software Intensive Systems - Proceed-
ings of the 11th International Conference on Complex,
Intelligent, and Software Intensive Systems (CISIS-
2017), Torino, Italy, July 10-12, 2017, volume 611
of Advances in Intelligent Systems and Computing,
pages 854–863. Springer.

Dahab, S., Maag, S., Mallouli, W., and Cavalli, A. (2019).
Smart measurements and analysis for software quality
enhancement. In van Sinderen, M. and Maciaszek,

L. A., editors, Software Technologies, pages 194–219,
Cham. Springer International Publishing.

Forsgren, N. and Kersten, M. (2018). Devops metrics. Com-
mun. ACM, 61(4):44–48.

Koziolek, H. (2005). Goal, question, metric. In Eusgeld,
I., Freiling, F. C., and Reussner, R. H., editors, De-
pendability Metrics: Advanced Lectures [result from
a Dagstuhl seminar, October 30 - November 1, 2005],
volume 4909 of Lecture Notes in Computer Science,
pages 39–42. Springer.

Medeiros, N. P. D. S., Ivaki, N., Costa, P., and Vieira,
M. (2017). Software metrics as indicators of secu-
rity vulnerabilities. In 28th IEEE International Sym-
posium on Software Reliability Engineering, ISSRE
2017, Toulouse, France, October 23-26, 2017, pages
216–227. IEEE Computer Society.

Myrbakken, H. and Palacios, R. C. (2017). Devsecops: A
multivocal literature review. In Mas, A., Mesquida,
A. L., O’Connor, R. V., Rout, T., and Dorling, A.,
editors, Software Process Improvement and Capabil-
ity Determination - 17th International Conference,
SPICE 2017, Palma de Mallorca, Spain, October 4-5,
2017, Proceedings, volume 770 of Communications
in Computer and Information Science, pages 17–29.
Springer.

Tounsi, W. and Rais, H. (2018). A survey on technical threat
intelligence in the age of sophisticated cyber attacks.
Comput. Secur., 72:212–233.


