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Adversarial attacks on Al systems are designed to exploit vulnerabilities in the Al algorithms that can be used
to manipulate the output of the system, resulting in incorrect or harmful behavior. They can take many forms,
including manipulating input data, exploiting weaknesses in the AI model, and poisoning the training samples
used to develop the Al model. In this paper, we study different types of adversarial attacks, including evasion,
poisoning, and inference attacks, and their impact on Al-based systems from different fields. A particular
emphasis is placed on cybersecurity applications, such as Intrusion Detection System (IDS) and anomaly
detection. We also depict different learning methods that allow us to understand how adversarial attacks work
using eXplainable Al (XAI). In addition, we discuss the current state-of-the-art techniques for detecting and
defending against adversarial attacks, including adversarial training, input sanitization, and anomaly detection.
Furthermore, we present a comprehensive analysis of the effectiveness of different defense mechanisms against
different types of adversarial attacks. Overall, this study provides a comprehensive overview of challenges and
opportunities in the field of adversarial machine learning, and serves as a valuable resource for researchers,
practitioners, and policymakers working on Al security and robustness. An application for anomaly detection,
especially malware detection is presented to illustrate several concepts presented in the paper.

1 INTRODUCTION

Artificial Intelligence (AI) has a wide range of ap-
plications in computer science (Jan et al., 2023;
Apruzzese et al., 2022), from data mining, natural lan-
guage processing, optimization and decision making,
to robotics and cybersecurity. While they offer many
benefits and opportunities, they also present a num-
ber of challenges and risks (Parnas, 2017)) including
bias and discrimination, lack of transparency, security
risks, dependence on data and even ethical concerns.
The security risks are mainly due to the fact that
Al models are vulnerable to adversarial attacks (Long
et al., 2022)), where attackers manipulate inputs in or-
der to induce the model to misbehave or provide in-
correct outputs. Adversarial machine learning (AML)
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is a field of research that focuses on studying how
machine learning models can be manipulated or at-
tacked by adversaries with the goal of causing mis-
classification or other harmful outcomes. Adversarial
attacks involve intentionally creating inputs specifi-
cally designed to cause unexpected outputs from a
machine learning model. Adversarial machine learn-
ing (Wang et al., 2019) is a significant challenge for
the security and reliability of machine learning mod-
els, particularly in high-stakes applications such as
autonomous vehicles, medical diagnosis, and finan-
cial fraud detection. Researchers are engaged in de-
veloping techniques to reduce the impact of adversar-
ial attacks(Alotaibi and Rassam, 2023)). This involves
developing more robust machine learning models, de-
signing algorithms that are more resilient to adversar-
ial attacks, and implementing more effective detection
and mitigation strategies.

The use of Al to conduct cyber attacks is a new
trending challenge for security experts. While Al has
been used extensively in cybersecurity to detect and
prevent attacks, attackers can also use Al to evade tra-



ditional security measures and conduct more sophis-
ticated attacks (Alotaibi and Rassam, 2023)). For this
reason, more sophisticated solutions are studied to
build more robust Al-based systems resilient to these
kinds of attacks. The topic of adversarial machine
learning has been extensively studied in computer vi-
sion literature, exploring different attack techniques
(Akhtar et al., 2021). Surveys have revealed the ef-
fectiveness of gradient-based methods against deep
neural networks(Akhtar et al., 2021) and the relative
robustness of decision trees (Papernot et al., 2017).
These surveys emphasize the importance of under-
standing attack effectiveness and identifying defense
mechanisms (Qiu et al., 2022).

An example of a technique that can be employed
to alleviate the consequences of adversarial attacks
is eXplainable Artificial Intelligence (XAI) (Arrieta,
2020). XAl facilitates this mitigation process by of-
fering enhanced transparency and understanding of
the internal mechanisms of machine learning mod-
els. Through explainability techniques, users gain
improved comprehension of the model’s functioning,
encompassing decision-making processes and the fea-
tures on which those decisions are based. By in-
creasing transparency, XAl aids in the identification
of potential vulnerabilities and weaknesses within the
model that adversaries could exploit.

This paper explores the various ways attackers can
exploit the weaknesses of AI/ML algorithms and tools
for performing adversarial targeted and non-targeted
attacks.A particular emphasis is placed on Al-based
Intrusion Detection Systems (IDSs) (Habeeb and
Babu, 2022). Indeed, adversarial attacks against IDSs
refer to the deliberate manipulation by an attacker of
network traffic or system behavior to evade detec-
tion by IDS. These attacks are designed to exploit the
weaknesses of the IDS by introducing subtle changes
in the traffic that make it difficult for the system to
accurately classify it as normal or malicious. An ex-
perimentation is also presented to attack an industrial
open-source IDS called “ACAS’ﬂ

In the context of network anomaly detection, ad-
versarial ML attacks can be carried out in several
ways like poisoning attacks, evasion attacks, gener-
ative adversarial attacks, etc. In this paper, we pro-
pose using different security mechanisms and differ-
ent learning methods to improve the reliability and re-
silience of Al-based systems. To mitigate adversarial
attacks, network anomaly detectors can employ vari-
ous techniques such as ensemble learning, input san-
itization, and model retraining. Ensemble learning
is combining anomaly detection models to improve
accuracy and robustness. Input sanitization involves
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removing or normalizing features that are vulnerable
to manipulation. Model retraining would be contin-
uously updating the model with new data to keep up
with the evolving threat landscape.

In particular, XAl, or explainable Al, is used to
comprehend, identify and defend against adversarial
attacks. One approach of employing XAI for adver-
sarial attacks is to develop visualizations that assist in
highlighting the regions of the input data that are most
vulnerable to changes or are most likely to be altered
by attackers. This can help to identify potential vul-
nerabilities in the model and inform the development
of more effective defense mechanisms.

The paper is organized as follows. In section 2,
we present our study on adversarial attacks against
machine learning relevant to Al-based intrusion de-
tection systems. Section 3 depicts the possible coun-
termeasures that we can apply to mitigate these at-
tacks. And finally, Section 4 presents an illustration
of all these technical concepts in the context of our
Al-based framework for anomaly detection with ex-
plainability and robustness. Section 5 concludes the
paper and discusses our future work.

2 ADVERSARIAL ATTACKS IN
MACHINE LEARNING

Adversarial machine learning (AML) is a crucial con-
cept to examine when building ML algorithms, aim-
ing to deceive or degrade the performance of ML
models on specific tasks. AML involves a game be-
tween ML algorithms and adversaries (Dasgupta and
Collins, 2019)), where the machine learns to correctly
classify new data, while the adversary attempts to
alter the existing data, new data, or the machine’s
parameters to cause misclassification. AML attacks
are constructed by introducing imperceptible pertur-
bations to the input samples of the model, result-
ing in misclassification with high confidence while
preserving the primary functionality of the samples.
In cybersecurity, adversarial attacks pose a critical
challenge, various approaches have been proposed to
defend against them (Rosenberg et al., 2021; Wang
et al., 2020). Adversarial attacks can be categorized
as attacks in the training stage and attacks in the test-
ing stage (Qiu et al., 2019). Concretely, poisoning
attacks (Barreno et al., 2006) occur during the train-
ing stage, while evasion attacks (Szegedy et al., 2014)
occur during the testing stage. Various frameworks
and algorithm-independent techniques have been pro-
posed for conducting theses attacks against a variety
of Al algorithms and datasets (Jagielski et al., 2021}
Mozaffari-Kermani et al., 2015). For deep learning



(DL) algorithms, back-gradient optimization is used
to reduce attack complexity (Munoz-Gonzalez et al.,
2017), and backdoor attacks (Dai and Chen, 2019)
have been implemented against long short-term mem-
ory networks based text classification.

2.1 Threat model and adversarial
capabilities

The threat model is a concept that defines the at-
tacker’s objectives, information gathering, and attack
steps. It enables systematic and theoretical analy-
sis of adversarial machine learning. The common
threat model taxonomy for machine learning systems
characterizes attacks using three dimensions (Barreno
et al., 2000): influence, specificity, and security viola-
tion. Influence defines the attacker’s control level over
the training process (causative or exploratory). Speci-
ficity measures the degree of precision with which
the attacker’s target is specified (targeted, indiscrim-
inate). Security violation refers to the attacker’s aim
to induce misclassifications (integrity or availability
attack) (Shi and Sagduyu, 2017).

Adversarial capabilities represent the attacker’s
ability to access and use the greatest amount of in-
formation about the target model. These capabili-
ties depend entirely on whether the model is attacked
in the training or testing phase. During the train-
ing phase, the adversary can manipulate the model’s
logic (logic corruption), alter the dataset before the
training (data modification), or insert new adversar-
ial samples into the training dataset (data injection)
(Nawaz et al., 2018)). During the testing stage, adver-
sarial assaults attempt to persuade the targeted model
to produce false outputs. The effectiveness and speci-
ficity of these attacks are primarily determined by the
knowledge of the model available to the adversary
(Qmu et al., 2019).

A white-box attack scenario refers to the attacker
having complete knowledge of the target model, data
distribution, and model parameters, which makes it
easier to identify the most vulnerable feature space of
the target model. Conversely, in black-box attacks,
the attacker has limited access to the target model
(Barreno et al., 2006). Adaptive black-box attacks en-
able the adversary to query the model to obtain corre-
sponding labels, use this information to label a care-
fully selected dataset, train a new model, and then
use white-box attacks to defeat the original model. In
contrast, in non-adaptive black-box attacks, the adver-
sary can only access the model’s training data distri-
bution (Chang Xiao, 2019). Strict black-box attacks
involve collecting pairs of input-output values from
the target classifier without changing the inputs (Xu

et al., 2021), similar to a known-plaintext attack in
cryptography. Hence, this attack requires a large set
of input-output data.

2.2 Adversarial Learning Methods

Adversarial machine learning approaches rely on di-
rection sensitivity estimation (Qiu et al., 2019) to
identify the dimensions of X that provide expected ad-
versarial performance with minimal perturbation. A
variety of theoretical adversarial learning approaches
can be used to generate adversary samples. These
techniques differ in complexity, performance, type
of data and generation rate. AML approaches are
based on the notion that when adding relatively in-
significant perturbation d to an original sample X, the
crafted sample X* can express adversarial properties
(Rosenberg et al., 2021). The generated adversarial
sample will be categorized differently by the target
model. Table [T] shows a summary of common non-
deep learning methods used for attacking machine
learning models, including gradient-based, and score-
based attack (Rosenberg et al., 2021). Gradient-based
attacks (e.g., FGSM) require knowledge of the target
classifier’s architecture, gradients and thus are con-
sidered white-box attacks (Munoz-Gonzalez et al.,
2017). Score-based attacks (ZOO) rely on the con-
fidence score of the target classifier. This section fo-
cuses on black-box decision-based attacks that exclu-
sively rely on the predicted label. Such attacks are
particularly significant in real-world scenarios where
targeted models are usually shielded from any di-
rect access. Within this context, we explore GAN-
based attacks, which demonstrate remarkable efficacy
due to their ability to generate adversarial examples
that are both realistic and diverse. These attacks
pose a considerable challenge for conventional de-
fense mechanisms, making them highly promising for
future advancements in adversarial attack strategies.

GAN-based attacks Generative Adversarial Net-
works (GANs), first developed in 2014 (Goodfellow
et al., 2014)), involve a game between two linked neu-
ral networks, a generator and a discriminator, that
compete to learn from each other’s experience to
reach Nash equilibrium. The generator creates ad-
versarial examples that are extremely similar to the
original set, whereas the discriminator tries to differ-
entiate the original sample from the fake/generated
one. GANs have multiple applications including im-
age and video synthesis, natural language processing,
and drug discovery. However, GANs can also gen-
erate adversarial examples that pose security risks to
machine learning models.



Table 1: Overview of the most commonly studied gradient-based adversarial attacks.

Attack Description

Advantages / Limits

Fast Gradient Sign Method
(FGSM) (Goodfellow

et al., 2015) function

One-step adversarial attack method that perturbs input feature
by adding small noise in the sign of the gradient of the loss

Fast and simple, generates easily de-
tectable adversarial examples, unstable
for large perturbations

Jacobian-based Saliency
Maps Attacks (JSMA)

(Papernot et al., 2016) trix of the model’s output

Iterative adversarial attack method that perturbs the input by
changing the least salient features based on the Jacobian ma-

Effective for targeted attacks that can
handle non-differentiable models.
Computationally expensive and may
not find global optimum

Limited-memory Broyden-
Fletcher-Goldfarb-Shanno

(L-BFGS) images (Szegedy et al., 2014)

Optimization algorithm that maintains an approximate Hessian
matrix, used to minimize the amount of perturbations added to

Effective at generating adversarial
examples, but are resource-demanding

Deepfool (Moosavi-
Dezfooli et al., 2016)
system at each iteration

Iterative method that estimates the minimum L2 perturbation
required to cross a linear decision boundary by solving a linear | data

Fast and effective for low-dimensional

C&W (Carlini and Wag-
ner)(Carlini and Wagner,

Optimization-based attack method that finds the minimum
perturbation using a custom loss function that balances mis-
2017) classification and perturbation size

One of the most effective and widely
used adversarial attacks but is resource
intensive

| Zeroth Order Optimization
(ZOO) (Chen et al., 2017)

Model-agnostic and gradient-free attack method that iteratively
approximates gradients using finite differences and performs
local search to find adversarial examples

Effective for black-box attacks but
requires many queries

The generator (G) in GANSs finds utility in vari-
ous contexts after being trained to a certain number
of epochs. For instance, it can serve as an oversam-
pler for data augmentation (He Zhang, 2019). This
technique can be employed as a defensive mechanism
(adversarial training) to enhance the detection perfor-
mance of ML classifiers (Bai et al., 2021). How-
ever, GAN-generated adversarial examples can also
be exploited by black-box attackers to generate eva-
sion samples (Randhawa et al., 2022} Lin et al., 2022).
Consequently, it is crucial to develop robust ML clas-
sifiers that can defend against adversarial evasion to
protect Al-based systems (et al., 2021)).

CTGAN (Conditional GAN for Tabular Data) is
a type of generative model based on GANs that
learns the joint distribution of tabular data and gen-
erates synthetic data that closely resembles the orig-
inal data (Xu et al., 2019). CTGAN employs con-
ditional GANs to model the conditional distribution
of each column and solves non-Gaussian and mul-
timodal distribution problems using a mode-specific
normalization approach (Wang et al., 2022). It
also addresses the issue of data imbalance in dis-
crete columns through the use of conditional gener-
ators and training-by-sampling. CTGAN has many
applications, including data augmentation, privacy-
preserving data sharing, and model training with lim-
ited data (Stavroula Bourou and Zahariadis, 2021)). In
the field of cybersecurity, CTGAN has been used to
generate synthetic network traffic data for anomaly or
intrusion detection (Lin et al., 2022), or to create ad-
versarial malware samples that bypass malware clas-
sifiers without compromising their damaging func-
tionality (Hu and Tan, 2017).

Another generative model based on GANSs is
table-GAN (Park et al., 2018]), which was designed to

synthesize tabular data with categorical, discrete, or
continuous values that closely resemble the original
data. Table-GAN incorporates a classifier neural net-
work to improve the semantic integrity of synthetic
records and prevent information leaking, making it
difficult to detect that the table is fabricated. Unlike
other GANS that generate images or text, TableGAN
generates data that can be organized into tables, mak-
ing it with CTGAN useful for cybersecurity applica-
tions such as traffic generation and malware mutation
(Stavroula Bourou and Zahariadis, 2021; | Hu and Tan,
2017).

There are many other applications of GANs an
in cybersecurity, including system robustness (et al.,
2021; [Iftikhar Rasheed, 2020), malware adaptation
(Renjith G, 2022), phishing (Sern et al., 2020), or
password guessing (Hitaj et al., 2019). However, in
low-volume data regimes such as medical diagnos-
tic imaging and security, more specific models are
required due to the restricted number of anomalous
samples. EVAGAN (Randhawa et al., 2022)) a model
proposed for low data regime challenges that lever-
age oversampling for detection enhancement of ML
classifiers, can both generate evasion samples and op-
erate as an evasion-aware classifier. GANs-generated
adversarial samples have effectively been used in gen-
erating network attacks (Ahmed Aleroud, 2020), in-
cluding SynGAN (Charlier et al., 2019) to generate
malicious packet flow mutations using real attack traf-
fic, and IDSGAN (Lin et al., 2022) for adversarial
malicious traffic records formation with the aim of de-
ceiving and evading intrusion detection systems.

Adversarial attacks threat remain significant to
machine learning models, especially those used
in critical applications such as autonomous vehi-
cles (Iftikhar Rasheed, 2020) and medical diagnosis



(Mozaftari-Kermani et al., 2015). As discussed in
this chapter, various types of adversarial attacks can
exploit vulnerabilities in the model’s inputs and lead
to incorrect predictions. Next, we will present several
defense mechanisms against such attacks.

3 COUNTERMEASURES

Adversarial attacks exploit vulnerabilities in machine
learning models to bypass security measures. To pro-
tect models against such attacks, numerous counter-
measures have been proposed in the literature (Qiu
et al., 2019). One of the most effective techniques
in the literature is the adversarial training (Madry
et al., 2019). It involves training the model with
adversarial examples to improve their robustness.
However, the model may still be vulnerable to new
attacks.Gradient-masking aimed at impeding attack-
ers from estimating model gradients by building a
model in which their gradients are useless. Never-
theless, models are still vulnerable to adversarial ex-
amples.

Defensive distillation technique uses a complex-
primary model trained and the output is given to a
smaller secondary model to learn the output function
and probabilities. This approach is adaptable to un-
known attacks and acts as an extra layer of protec-
tion. However, it stills vulnerable to poisoning at-
tacks during the training (Qiu et al., 2022). While
Feature squeezing compresses input features of the
models to improve security, particularly in image pro-
cessing by changing the color depth or adding blur
to the image(Xu et al., 2018)). While its application
to other contexts decrease their effectiveness, (Rosen-
berg et al., 2021)) consider that feature squeezing can
be applied. To block transferability or black-box at-
tacks the authors in (Hosseini et al., 2017) present a
defense mechanism that adds a new Null label indicat-
ing that the example is from an adversary and discard
it instead of classifying it to the original label.

Defenses against universal perturbation attacks
include adversarial training and distillation. Other de-
fenses train a network to extract features of adver-
sarial examples and gives the output to another net-
work to identify adversarial examples. The authors in
(Akhtar et al., 2018) propose a defense against uni-
versal perturbations, where from clean data, image-
agnostic adversarial examples are generated and then
given to a perturbation rectifying network (PRN). The
perturbation detection network extracts features from
the differences between the inputs and the outputs of
the PRN and outputs a binary classifier.

Next, we will discuss explainable Al for adversar-

ial attack detection. This approach offers the poten-
tial to mitigate the limitations of the aforementioned
countermeasures by enhancing the interpretability of
machine learning models.

4 FRAMEWORK FOR ANOMALY
DETECTION WITH XAI AND
ROBUSTNESS

4.1 XAI and adversarial attacks

Explainability (XAI) and adversarial attacks are both
critical aspects to consider in the development of ma-
chine learning models. XAI (Arrieta, 2020) is a
promising set of technologies that increases the Al
black-box models’ transparency to explain why cer-
tain decisions were made. XAl is crucial to enhance
trust for people to use future Al-based applications
by offering understandable explanations for its pre-
dictions and decisions. Some popular post-hoc ex-
plainability methods are visual explanations, LIME
local explanations (Ribeiro et al., 2016), explanations
by example, and SHAP feature relevance explanations
(Lundberg and Lee, 2017). Adversarial attacks, on
the other hand, involve intentionally manipulating in-
put data to misguide a machine learning model into
making erroneous predictions.

Using XA to detect attacks XAl can help in detect-
ing adversarial attacks in machine learning models.
The authors of (Malik et al., 2022) propose a three-
stage approach to adversarial training improve the de-
tection of cyber threats in network traffic data. They
first use GAN to produce adversarial examples, ap-
ply XAl techniques to generate explanations, and then
retrain the detection model using those explanations.
Furthermore, SHAP signatures are useful to detect ad-
versarial examples by comparing the signatures of the
original input and the perturbed input (Fidel et al.,
2020). If the signatures differ significantly, the input
is classified as adversarial.

Adversarial attacks against XAI Despite XAl meth-
ods providing transparency and explainability to Al
systems to prevent cyber threats, the current XAl
models are at risk due to the possibility of being
fooled by cyber attackers. The explanations generated
by some of the most popular XAI explanation meth-
ods (Slack et al., 2020), such as LIME and SHAP,
have been shown to be counter-intuitive. Therefore,
defensive approaches should focus more on protect-
ing the explanation results of XAl-based systems, in
addition to their prediction results.

Tradeoff The tradeoff between XAI and adversarial
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Figure 1: Architecture of our Al-based malware detector.

attacks is complex and multifaceted. On one hand, in-
creasing transparency and interpretability of a model
can expose it to vulnerabilities from adversarial at-
tacks. An attacker can use the explanations provided
by a XAl system to identify weaknesses in the model
and craft more effective adversarial examples. For ex-
ample, for NN-based models, an attacker could use
the explanations provided by XAl to identify the neu-
rons that are most sensitive to changes in input data.
On the other hand, if a model is not transparent or in-
terpretable, it can be challenging to not only compre-
hend why the model made a particular prediction or
decision, but also to detect and diagnose adversarial
attacks. Therefore, it is important to strike a balance
between XAI and adversarial attacks when develop-
ing secure and robust machine learning models.

4.2 Architecture

In this section, we propose an Al-based framework
for anomaly detection in encrypted traffic with high
performance, explanation and robustness against ad-
versarial attacks. Figure [T] shows the architecture of
our anomaly detection framework.

Data acquisition module collects raw traffic data
from networks or IoT testbed in either online or of-
fline mode. It can also use Cyber Threat Intelligence
(CTI) sources, e.g., deployed honeypots, to learn and
continuously train our model using attack patterns and
past anomaly information in the database.

Data analysis & processing module employs the
open source Montimage monitoring t00 (MMT) to
parse a wide range of network protocols (e.g., TCP,
UDP, HTTP, and more than 700) and extract flow-
based features. In particular, we extract 59 features,
including basic features in packet headers and statisti-
cal features after performance traffic aggregation into

Zhttps://github.com/Montimage/mmt-probe

flows. Finally, the restructured and computed data is
transformed into a numeric vector so that can be eas-
ily processed by our AI model.

Al-based malware detector module is responsi-
ble for creating and utilizing a ML model able to
classify the vectorized form of network traffic data.
Our proposed approach involves a hybrid model that
combines two DL techniques: Stacked Autoencoders
(SAE) and Convolutional Neural Networks (CNN).
We first train two SAEs, one for each class of data
(normal or malware). Each SAE is designed with one
hidden dense layer and trained separately with their
respective data. The output of each SAE is then con-
catenated to form a single vector, which is then passed
as input to the CNN. The CNN structure is based on
the well-known VGG16 model (Simonyan and Zis-
serman, 2014), which consists of three repeated seg-
ments that are built from two convolutional layers
(Conv1D) followed by a MaxPool layer (MaxPool-
ing1D). After three blocks of such a structure, a flatten
layer (Flatten) followed by two dense layers (Dense)
are used in order to provide the final classification.

Adversarial attacks module injects various eva-
sion and poisoning adversarial attacks for robustness
analysis of our system. As we use a complex hard-
to-interpret DL model with a large number of fea-
tures for malware detection purposes, interpretability
is crucial to earn trust of its end user. Explainable
Al module aim at producing post-hoc global and lo-
cal explanations of predictions of our model. As we
need to consider the tradeoff between explainability,
robustness and performance of our system, Metrics
module allows to measure quantifiable metrics for its
accountability and resilience. Finally, Defense mech-
anisms module provides countermeasures to prevent
attacks against both Al and XAI models.

We designed our anomaly detection framework to
be easily accessible for users or developers through a
Dashboard. 1t provides a range of ML services, in-
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cluding extract features, build or retrain the model,
inject adversarial attacks, produce explanations and
evaluate our model using different metrics. Each of
these services is exposed through dedicated APIs that
can be accessed through the server, making it easy to
integrate with other applications and systems.

S CONCLUSION & FUTURE
WORK

This paper presented a comprehensive study of vari-
ous adversarial ML techniques and their significance
in designing attacks and countermeasures. We ex-
plored the role of explainability as a countermea-
sure technique, highlighting its potential to enhance
transparency and user trust in Al-based applications.
Specifically, we discussed its application to an Al-
based framework for malware detection in encrypted
traffic, showcasing its effectiveness in providing ex-
planations and robustness against adversarial attacks.

For future work, firstly, it is crucial to explore and
implement additional defense mechanisms to safe-
guard our model against potential attacks from ad-
versarial ML and XAI models. Secondly, extending
the framework to different use cases, such as user
network classification in the context of 5G networks,
would greatly expand its practical utility. These direc-
tions hold immense potential for further customized
techniques and advancements in the field of Al and
XA, ultimately leading to more trustworthy and effi-
cient Al-based solutions.
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