
Using testing techniques for vulnerability detection
in C programs⋆

Amel Mammar1, Ana Cavalli1, Willy Jimenez1,
Wissam Mallouli2 and Edgardo Montes de Oca2

1 Télécom SudParis, SAMOVAR
9 rue Charles Fourier, 91011 Evry Cedex, France

{amel.mammar,ana.cavalli,willy.jimenez}@it-sudparis.eu
2 Montimage, 39 rue Bobillot Paris 75013, France

{wissam.mallouli,edgardo.montesdeoca}@montimage.com

Abstract. This paper presents a technique for vulnerability detection in C pro-
grams. It is based on a vulnerability formal model called “Vulnerability Detection
Conditions" (VDCs). This model is used together with passive testing techniques
for the automatic detection of vulnerabilities. The proposed technique has been
implemented in a dynamic code analysis tool, TestInv-Code,which detects the
presence of vulnerabilities on a given code, by checking dynamically the VDCs
on the execution traces of the given program. The tool has been applied to several
C applications containing some well known vulnerabilitiesto illustrate its effec-
tiveness. It has also been compared with existing tools in the market, showing
promising performances.

Keywords: Dynamic Code Analysis, Vulnerabilities Detection, Passive Testing.

1 Introduction

1.1 Context and motivations

The detection of vulnerabilities3 in software has become a major concern in the soft-
ware industry. Although efforts are being made to reduce security vulnerabilities in
software, according to published statistics, the number ofvulnerabilities and the num-
ber of computer security incidents resulting from exploiting these vulnerabilities are
growing [7].

One of the reasons for this is that information on known vulnerabilities is not eas-
ily available to software developers, or integrated into the tools they use. Thus many
activities are designed to support secure software development like security educa-
tion on vulnerability causes, security goal and vulnerability class identification, goal

⋆ The research leading to these results has received funding from the European ITEA-2 project
DIAMONDS.

3 In this paper, a vulnerability is defined as a specific instance of not intended functionality in
a certain product/environment leading to degradation of security properties or violation of the
security policy. It can be exploited by malicious code or misuse.

2

and vulnerability driven inspections etc. Vulnerability cause presence testing is one of
the main activities that support the validation of secure software. It is used to detect
vulnerabilities in software products in order to remove/mitigate them. Several testing
techniques can be used to perform this detection based on different models and ap-
proaches (static/dynamic code analysis, fuzz testing, active/passive testing, etc.). In this
paper, we present a systematic approach to increase software security by bridging the
gap between security experts and software practitioners. Indeed, we provide providing
software developers with the means to effectively prevent and remove occurrences of
known vulnerabilities when building software. To achieve this goal, we will rely on a
formal method for dynamic code analysis technique based on vulnerability detection
conditions (VDCs) models.

Currently, there are a large number of techniques and related tools that help devel-
opers improve software security quality. Among these techniques, we can cite formal
verification and validation (V&V)[11] and also the static and dynamic code analyzers
[20,16]. However, existing approaches are often limited and do not present rigorous
descriptions of vulnerabilities they deal with [9,12,15].It is quite difficult for a user to
know which vulnerabilities are detected by each tool since they are poorly documented.
A more detailed description of the related work is provided in section 2.

1.2 Contribution

Our approach combines a new formalism calledVulnerability Detection Conditions
(VDCs) and formal passive testing in order to implement a newmethod to detect vul-
nerabilities in C programs. These two concepts are detailedrespectively in sections 3
and 4.

A VDC allows to formally describe a vulnerability without ambiguity. This task
is performed by a security expert that needs to study vulnerabilities then determine its
causes. Each cause needs to be extracted and translated into a logical predicate on which
it becomes possible to reason. In a second step, VDCs descriptions are instantiated by
a dynamic analysis tool to allow the automatic detection of this vulnerability in any C
program. The tool is based on passive testing technique, which has proven to be very
effective for detecting faults in communication protocols[4]. In summary, the main
contributions introduced by this paper are:

– A new formalism, calledVulnerability Detection Conditions(VDCs), is designed
to describe vulnerability causes in a rigorous way without ambiguity. This formal-
ism also constitutes a good way to have a good understanding of each software
vulnerability and its causes. It bridges the gap between security experts, developers
and testers.

– An editor tool to build new VDCs based on a set of know vulnerability causes
described in the the SHIELDS SVRS4.

4 The SHIELDS SVRS is a centralized repository that allows thestorage and sharing security
models in order to reduce known security vulnerabilities during software development

3

– A model-based dynamic analysis toolTestInv-Code5 that automatically detects vul-
nerabilities in C programs based on VDCs;

– An end-to-end methodology that allows to detect vulnerabilities and provides for
each detection information about the vulnerability, the different ways to avoid it
and the C code line where the vulnerability occurs (if the code is available).

– Application of the approach and the obtained results on an open source application
XINE that contains a known vulnerability.

The approach proposed in this paper is original since it covers all the steps of vul-
nerability detection, from the modelling phase relying on VDCs, to their automatic
detection on the executable traces using theTestInv-Codetool.

The rest of the paper is organized as follows. The section 2 presents different ap-
proaches used in literature for dynamic detection of vulnerabilities. Section 3 introduces
the VDC model, its basics and use. Section 4 introduces the dynamic code analysis
technique based on these models and its tool TestInv-Code. Section 5 introduces the
experimentation and results and Section 6 summarizes our work and describes future
work.

2 Related work

Different techniques have been proposed to perform dynamicdetection of vulnerabil-
ities [3]. Fuzz testingis an approach that has been proposed to improve the security
and reliability of system implementations [14]. Fuzz testing consists in stimulating the
system under test, using random inputs or mutated ones, in order to detect unwanted be-
havior as crashing or confidentiality violation.Penetration testingis another technique
that consists in executing a predefined test scenario with the objective to detect design
vulnerabilities or implementation vulnerabilities [22].Fault injectionis a similar tech-
nique that injects different types of faults in order to testthe behavior of the system [10].
Following a fault injection the system behavior is observed. The failure to tolerate faults
is an indicator of a potential security flaw in the system. These techniques have been
applied in industry and shown to be useful. However, most of the current detection tech-
niques based on these approaches are ad hoc and require a previous knowledge of the
target systems or existing exploits.

Model checking techniqueshave also been revisited for vulnerability detection.
Hadjidj et al.[13] present a security verification framework that uses a conventional
push down system model checker for reachability propertiesto verify software secu-
rity properties. Wang et al. [23] have developed a constraint analysis combined with
model checking in order to detect buffer overflow vulnerabilities. The memory size
of buffer-related variables is traced and the code is instrumented with constraints as-
sertions before the potential vulnerable points. The vulnerability is then detected with
the reachability of the assertion using model checking. Allmodel checking works are

5 TestInv-Code testing tool is one of Montimage tools (http://www.montimage.com). It is a dy-
namic code analysis tool that aims at detecting vulnerabilities by analyzing the traces of the
code while it is executing.

4

based on the design of a model of the system, which can be complex and subject to the
combinatorial explosion of the number of states.

In the dynamic taint approachproposed by Chess and West [8], tainted data are
monitored during the execution of the program to determine its proper validation be-
fore entering sensitive functions. It enables the discovery of possible input validation
problems which are reported as vulnerabilities. The sanitization technique to detect vul-
nerabilities due to the use of user supplied data is based on the implementation of new
functions or custom routines. The main idea is to validate orsanitize any input from
the users before using it inside a function. Balzarotti et al. [2] present an approach us-
ing static and dynamic analysis to detect the correctness ofsanitization process in web
applications that could be bypassed by an attacker.

3 Vulnerability Modelling

In order to describe the presence of a vulnerability in a program, we rely in this paper
on Vulnerability Detection Conditions (VDCs) formalism. VDCs basically indicate that
the execution of an action under certain conditions could bedangerous or risky for
the program. They permit to express in a logical predicate the different causes that
lead to the considered vulnerability. The main idea behind the definition of the VDC
formalism is to point out the use of a dangerous action under some particular conditions,
for instance “it is dangerous to use unallocated memory”. Thus, if we evaluate a piece
of code where we find such VDC we know that it is vulnerable.

3.1 Definitions

Definition 1. (Vulnerability Detection Condition). Let Act be a set of action names, Var
be a set of variables, and P be a set of predicates on (Var∪Act). We say that Vdc is a
vulnerability detection condition if Vdc is of the form (long brackets denote an optional
element):

Vdc::= a/P(Var,Act)|a[/P(Var,Act)];P′(Var,Act)

where a denotes an action, P(Var,Act) and P′(Var,Act) represent any predicates on
variables Var and actions Act. A vulnerability detection condition a/P(Var,Act) means
that action a occurs when specific conditions denoted by predicate P(Var,Act) hold.

Similarly, a vulnerability detection condition a[/P(Var,Act)];P′(Var,Act)) means
that action a used under the optional conditions P(Var,Act) is followed by a statement
whose execution satisfies P′(Var,Act). Naturally, if action a is not followed by an action,
the predicate P′(Var,Act) is assumed to be true.

More complex vulnerability detection conditions can be built inductively using the
different logical operators according to the following definition.

Definition 2. (General Vulnerability Detection Conditions). If Vdc1 and Vdc2 are vul-
nerability detection conditions, then(Vdc1∨Vdc2) and(Vdc1∧Vdc2) are also vulner-
ability detection conditions.

5

3.2 Some examples

Let us define a vulnerability detection conditionVdc1 that can be used to detect possible
accesses to a free or an unallocated memory. If we denote byAssign(x,y) the assignment
of valuey to the memory variablex andIsNot_Allocateda condition to check if memory
x is unallocated then the VDC is given by the expression:

Vdc1 = Assign(x,y)/IsNot_Allocated(x)

In programming languages like C/C++, there are some functions that might lead
to a vulnerability if they are applied on out-of-bounds arguments. The use of a tainted
variable as an argument to a memory allocation function (e.g. malloc) is a well-known
example of such a vulnerability, which is expressed by the vulnerability detection condi-
tion Vdc2 below. A variable is tainted if its value is obtained from a non-secure source,
or in other words, produced by reading from a file, getting input from a user or the
network, etc.

Vdc2 = memoryAllocation(S)/tainted(S)

3.3 Describing vulnerabilities with formal Vulnerability Detection Conditions

An informal description of a vulnerability states the conditions under which the execu-
tion of a dangerous action leads to a possible security breach. So, it should include the
following elements:

1. A master action: an action denotes a particular point in a program where a task or
an instruction that modifies the value of a given object is executed. Some examples
of actions are variable assignments, copying memory or opening a file. A master
actionAct_Masteris a particular action that produces the related vulnerability.

2. A set of conditions: a condition denotes a particular state of a program defined by
the value and the status of each variable. For a buffer, for instance, we can find out
if it has been allocated or not. Once the master action is identified for a scenario,
all the other facts are conditions {C1, . . . ,Cn} under which the master action is exe-
cuted. Among these conditions, a particular conditionCk may exist, calledmissing
condition, which must be satisfied by an action followingAct_Master.

Let {P1, . . . ,Pk, . . . ,Pn} be the predicates describing conditions{C1, . . . ,Ck, . . . ,Cn}.
The formal vulnerability detection condition expressing this dangerous scenario is de-
fined by:

Act/(P1∧ . . .∧Pk−1∧Pk+1 . . .∧Pn);Pk

Finally, the vulnerability detection condition representing the entire vulnerability
is defined as the disjunction of the all sub-vulnerability detection conditions for each
scenario (Vdci denotes the VDC associated with each scenarioi):

Vdc1∨ . . .∨Vdcn

6

For example, consider the vulnerability CVE-2009-1274, a buffer overflow inXINE
media player. According to the description, the vulnerability is the result of computing
a buffer size by multiplying two user-supplied integers without previously checking the
operands or without checking the result of the allocation. An attacker may cause the ex-
ecution of arbitrary code by providing a specially crafted media file to the user running
theXINE application. A scenario associated to this vulnerability can be expressed as:

1. An allocation function is used to allocate a buffer
2. The allocated buffer is not adaptive
3. The size used for that allocation is calculated using tainted data (data read from the

media file)
4. The result returned by the allocation function is not checked

To define the VDC associated with this scenario, we have to express each of these
conditions with a predicate:

Use of malloc/calloc/reallocthe program uses C-style memory management functions,
such asmalloc, calloc or realloc to allocate memory. For each memory function
allocation f , applied on valueV to allocate a bufferB, the following predicate holds:

memoryAllocation(f ,B,V)

Use of nonadaptive buffersthe program uses buffers whose sizes are fixed when they
are allocated (allocation may take place at run-time, e.g.malloc, or at compile-time).
Non-adaptive buffers can only hold a specific amount of data;attempting to write be-
yond their capacity results in a buffer overflow. Adaptive buffers, in contrast, can adapt
themselves to the amount of data written to them. For each declared nonadaptive buffer
B, the following predicate holds:

nonAdaptiveBuffer(B)

User supplied data influences buffer sizethe size of a dynamically allocated buffer is
computed, at least in part, from user-supplied data. This allows external manipulation
of the buffer size. If a buffer is made too large, this may result in a denial of service
condition; if it is too small, then it may later result in a buffer overflow. For each variable
V whose value is produced from an insecure source, the following predicate holds:

tainted(V)

Note that a tainted variable will be untainted if it is bound checked by the program.

Failed to check return value from callocthe program does not contain mechanisms to
deal with low memory conditions in a safe manner (i.e. deal with NULL return values
from calloc). Running out of memory in programs that are not written to handle such
a situation may result in unpredictable behavior that can possibly be exploited. This
cause is detected when the return valueB of an allocation function is not followed by
a check statement. For each valueB returned from an allocation memory function, the
following formula is defined:

7

notChecked(B,null)

The vulnerability detection condition expressing this scenario is then defined by:

memoryAllocation(f ,B,V)/

nonAdaptiveBuffer(B)
∧

tainted(V)

 ;notChecked(B,null)

This last vulnerability detection condition expresses a potential vulnerability when a
given allocation functionf is used with a non-adaptive bufferB whose sizeV is pro-
duced from an insecure source and its return value is not checked with respect to NULL.

3.4 VDC editor

The VDC editor is a GOAT6 plug-in, which offers security experts the possibility to
create vulnerability detection conditions (VDCs). These VDCs will be used to detect
the presence of vulnerabilities by checking software execution traces using Montimage
TestInv-Code testing tool. The VDC editor user interface includes some features that
allow simplifying the construction and composition of VDCs. The VDC editor has the
following functionalities:

– The creation of new VDCs corresponding to vulnerability causes from scratch and
their storage in an XML format.

– The visualization of already conceived VDCs.
– The editing (modification) of existing VDCs in order to create new ones.

Fig. 1. Vulnerability detection condition for “Use of tainted value to malloc" in GOAT.

The VDCs are stored in an XML file that constitutes one of the inputs for the Mon-
timage TestInv-Code tool. A vulnerability is discovered ifa VDC signature is detected
on the execution trace. A VDC is composed within the editor ofat most 3 parts:

1. Master condition:The triggering condition called also master action (denoted a).
When analysing the execution trace, if this condition is detected, we should verify
if the state and post conditions of the VDC hold as well. If this is the case, then a
vulnerability has been detected. The master condition is mandatory in a VDC.

6 http://www.ida.liu.se/divisions/adit/security/goat/

8

2. State condition:A set of conditions related to the system state (denoted P(Var,Act)).
The state condition describes the states of the specified variables at the occurrence
of the master action. The state condition is mandatory in a VDC.

3. Post condition:A set of conditions related to the system future state (denoted
P′(Var,Act)). If a master action is detected in the state condition context, then we
should verify if the post condition holds in the execution that follows. If this is the
case, a vulnerability has been detected. This post condition is not mandatory in a
VDC.

4 Dynamic code analysis for vulnerability detection

4.1 Basics: Passive testing

Our approch for dynamic code analysis is inspired from the classical passive testing
technique [1,19,17] designed for telecommunication traffic analysis. Passive testing al-
lows to detect faults and security flaws by examining captured trafic packets (live trafic
or log files) according to a set of events-based properties that denote either:

– a set of functional or security rules that the trafic has to fulfill[4,5,18], or
– a set behavioral attacks like those used in classical intrusion and detection systems.

In the case of executable code analysis, events are assimilated to the disassembled in-
structions that are being executed in the processor. They are produced by executing the
program under the control of theTestInv-Codetool, similar to what a debugger does.

For dynamic program analysis to be effective, the target program must be executed
with sufficient test inputs to cover different program behaviours. Use of classical testing
techniques for code coverage helps to ensure that an adequate part of the program’s set
of possible behaviours has been observed. Also, care must betaken to minimize the
effect that instrumentation has on the execution (including temporal properties) of the
target program.

While static analysis collects information based on sourcecode, dynamic analy-
sis is based on the system execution (binary code), often using instrumentation. The
advantages that can be expected from using dynamic analysisare:

– Has the ability to detect dependencies that are not detectable in static analysis. Ex.:
dynamic dependencies using reflection, dependency injection etc.

– Allows the collection of temporal information.
– Allows the possibility of dealing with runtime values.
– Allows the identification of vulnerabilities in a runtime environment.
– Allows the use of automated tools to provide flexibility on what to scan for.
– Allows the analysis of applications for which you do not haveaccess to the actual

code.
– Allows identifying vulnerabilities that might be false negatives in the static code

analysis.
– Permits validating static code analysis findings.
– It can be conducted on any application.

9

4.2 Using VDCs inTestInv-Code

In order to use theTestInv-Codetool, the main step consists in defining the vulnerabili-
ties causes that are of interest. Starting from informal descriptions of the vulnerabilities
and VDCs models, a set of conditions that lead to a vulnerability are derived. These
conditions are formally specified as regular expressions that constitute the first input
for TestInv-Codetool.

Thus, end-to-end code analysis usingTestInv-Codeproceeds along the following
steps:

1. Informal definition of vulnerable scenarios.A security expert describes the differ-
ent scenarios under which a vulnerability may appear. A scenario denotes a set of
causes that produces the vulnerability.

2. Definition of VDC.A VDC, expressing formally the occurrence of the related vul-
nerability, is created for each possible situation that leads to the vulnerability using
the VDC editor.

3. Vulnerability checking.Finally, TestInv-Codechecks for evidence of the vulnera-
bilities during the execution of the program. Using the VDCs, it will analyze the
execution traces to produce messages identifying the vulnerabilities found, if any,
indicating where they are located in the code.

Fig. 2.Passive testing for vulnerability detection.

Figure 2 depicts the passive testing architecture for vulnerability detection. As shown,
theTestInv-Codetool takes as input:

1. The vulnerability causes.The file containing the vulnerabilities causes formally
specified using VDCs.

10

2. The executable.The Executable Linked Format (ELF) file for the application that
is to be tested. This file contains the binary code of the application and it should
include debug information if we want the tool to be able to determine the line
of code where the vulnerability occurs and provide this information in the final
verdicts.

In order to detect the presence of a VDC in an execution trace,it needs to be pro-
cessed in such a way that it is detected when and if it occurs during the execution of the
program. In the case ofTestInv-Code, predicates and actions in the VDCs correspond
to functions that allow analysing the executed instructions and determining it they are
satisfied. The tool keeps information on the state of all the variables used by the pro-
gram, heap or stack memory addresses and registers. The states, are for instance, tainted
or not, bound checked or not, allocated or not etc. It also maintains information on the
potential VDCs. The tool is able to detect when a system call is made, the controls that
are made on variables or return values from function calls, when buffer allocations are
made, etc. Thus it can verify all the conditions that are usedin the VDCs and generate
messages if the VDCs are satisfied. The symbolic tables are necessary to be able to
determine the line of code that provokes the vulnerability that is detected.

It must be noted that the functions used to detect the VDC conditions could vary de-
pending on the execution environment, the compiler and the compilation options used.
In this work we assume that the execution environment is Linux version 2.6, the com-
piler is gcc version 4.3.3 and that the compilation was performed for debugging (in-
cluding symbolic tables) and without any optimisations. Other variants could work but
this has not yet been tested on other platforms. Certain optimizations performed by the
compiler could make it necessary to adapt the algorithms of the functions to certain
particularities introduced by the compiler.

5 Experiment and Results

5.1 XINE application

We demonstrate the application of our vulnerability detection method to an open source
application and free multimedia player that plays back audio and video, XINE7 written
in C. This application was selected as an example since it is areal world application,
open source (so the source files are available free of copyright), and contains a number
of known vulnerabilities which can be used to demonstrate the effectiveness of our
approach.

The application contains a set of modules and librairies. The one we are concen-
trated on isxine-lib8 (xine core). This is a module developed in C language and which
has several vulnerabilities inside its files. We will selectan obsolete version of xine-lib
so we can use the vulnerabilities found in them.

7 http://www.xine-project.org
8 Xine-lib source code can be downloaded from: http://sourceforge.net/projects/xine.

11

5.2 Xine selected vulnerability

The xine v1.1.15 application has a number of vulnerabilities. The one that we will deal
with is CVE-2009-1274.

– Summary: Integer overflow in the qt_error parse_trak_atom function in
de-muxers/demux_qt.c in xine-lib 1.1.16.2 and earlier allows remote attackers to
execute arbitrary code via a Quicktime movie file with a largecount value in an
STTS atom, which triggers a heap-based buffer overflow.

– Published: 04/08/2009
– CVSS Severity: 5.0 (MEDIUM)

The exploitation occurs when someone is trying to play with xine a Quicktime
encod-ed video that an attacker has modified to make one of itsbuilding blocks (the
“time to sample" or STTS atom) have an incorrect value. The malformed STTS atom
processing by xine leads to an integer overflow that triggersa heap-based buffer over-
flow probably resulting in arbitrary code execution. The patch to this Vulnerability is in
v1.1.16.1 that is also included in the v1.1.16.3.

CVE-2009-1274 is a vulnerability instance and can be considered as part of the
family or class of vulnerabilities named “Integer Overflow"has the ID CWE 190 in the
Common Weakness Enumeration database. The CWE 190 description is summarised as
follows “The software performs a calcu-lation that can produce an integer overflow or
wraparound, when the logic assumes that the resulting valuewill always be larger than
the original value. This can introduce other weaknesses when the calculation is used for
resource management or execution control" [21].

Fig. 3. VDC model of CVE-2009-1274 vulnerability.

5.3 Vulnerability modelling

Starting from the informal description of CVE-2009-1274 vulnerability, we have de-
signed the 3 VDCs and the corresponding regular expressionsto be used for input to
theTestInv-Codetool.

12

1. Calloc(buffer, buffer_size) / Fixed(buffer)∧ Result(buffer_size, user_input)∧ Re-
sult(buffer_size, addition); Unchecked(buffer, NULL)

2. Calloc(buffer, buffer_size) / Fixed(buffer)∧ Result(buffer_size, user_input)∧ Re-
sult(buffer_size, addition)∧ Unchecked(buffer_size, buffer_bounds)

3. CopyVar(loop_counter, user_input) / Fixed(buffer)∧ Unchecked(loop_counter,
counter_bounds); CopyData(buffer, user_input, loop_counter)

Using the VDC editor, we can build the VDC models for each cause scenario. Figure
3 illustrates the VDC model for the first scenario.

5.4 Application of TestInv-Code

The created VDCs are one of the inputs needed by the TestInv-Ctesting tool. In or-
der to analyse the xine-lib it is necessary to use it. To be able to reach the plug-in that
contains the error (the quicktime file demuxer), the muxine application was run on a
quicktime file. The TestInv-Code tool allows performing theanalysis on all the appli-
cation’s functions (including those of the library and the plug-ins). The user can also
identify a given function or set of functions that he wants toanalyse. Using this feature
is necessary to avoid performance issues, particularly in applications that perform in-
tensive data manipulations (like video players). The complete list of available functions
can be obtained automatically. Another feature that helps improve the performance of
the tool is the possibility of limiting the number of times a piece of code in a loop is
analysed. The followingXINE code is executed:

Code fragment from demux_qt.c

...

1907 trak->time_to_sample_table = calloc(

1908 trak->time_to_sample_count+1,

sizeof(time_to_sample_table_t));

1909 if (!trak->time_to_sample_table) {

1910 last_error = QT_NO_MEMORY;

1911 goto free_trak;

1912 }

1913

1914 /* load the time to sample table */

1915 for(j=0;j<trak->time_to_sample_count;j++)

...

wheretrak->time_to_sample_table is tainted since it is set from information
taken from the external QuickTime file.

The tool will detect the particular vulnerability used here(CVE-2009-1274) when
it is launched on the muxine application using a quicktime video file. This needs to be
done using the option to analyse all the functions (of the application, the library and the
plug-ins) or just the function parse_trak_atom in the quicktime plug-in. The result of
the vulnerability cause presence testing activity provided by TestInv-Code is shown in
figure 4.

13

Fig. 4. Screenshot of TestInv-Code result for xine vulnerability.

5.5 Analysis

If we apply the same VDCs to other code under the same programming environment, we
will be able to detect the same types of vulnerabilities. Forinstance, we applied the same

14

VDCs on ppmunbox, a program developed by Linköpings university to remove borders
from portable pixmap image files (ppm) and we detected the same vulnerabilities.

This vulnerability is located in the ppmunbox.c file specifically in the following:

Code fragment from ppmunbox.c

...

76:/* Read the dimensions */

77:if(fscanf(fp_in,"%d%d%d",&cols,&rows &maxval)<3){

78: printf("unable to read dimensions from PPM file");

79: exit(1);

80 }

81:

82:/* Calculate some sizes */

83:pixBytes = (maxval > 255) ? 6 : 3;

84:rowBytes = pixBytes * cols;

85:rasterBytes=rows;rasterBytes=rowBytes*rows;

86:

87:/* Allocate the image */

88:img = malloc(sizeof(*img));

89:img->rows = rows;

90:img->cols = cols;

91:img->depth = (maxval > 255)?2:1;

92:p = (void*)malloc(rasterBytes);

93:img->raster = p;

94:

95:/* Read pixels into the buffer */

96:while (rows--) {

...

To illustrate the applicability and scalability of TestInv-Code, it has been applied to six dif-
ferent open source programs to determine if known vulnerabilities can be detected using a single
model. The following paragraphs describe the vulnerabilities and give a short explanation of the
results obtained. The results are summarized in table 1.

Table 1.Summary of results running TestInv-Code with VDC codes

Vulnerability Software Detected ?
CVE-2009-1274 Xine Yes
Buffer overflow ppmunbox Yes
CVE-2004-0548 aspell Yes (two)
CVE-2004-0557 SoX Yes
CVE-2004-0559 libpng Yes
CVE-2008-0411Ghostscript Yes

Besides, the application of the tool to the case study gave good performances. We did some
experiments in order to check the scalability of the tool by the application of a high number
of VDCs (more than 100) to a software data intensive (as in thecase of video decoders). The
tool performance remains good. We compared the performanceof our tool according to known

15

dynamic code analysis tools in the market like Dmalloc9, DynInst 10, and Valgrind11 and the
results were comparable. Indeed, the detection based on ourtool does not insert a big overhead
(the execution time is almost equal to the programm execution time).

To optimize our analysis, the tool is being modified so that the user can select specific func-
tions to check in the program. But in this case all the input parameters for this function are marked
as tainted even if they are not. Another solution that is being studied is to only check the first it-
eration of loops in the program, thus avoiding to check the same code that is executed more than
once.

At present, we have checked applications written in C, whichdo not have a complex archi-
tecture. We are now starting to experiment more complex applications with architectures that
integrate different modules, plugins, pointers to function, variable number of parameters or mix-
ing different programming languages.

6 Conclusions and future work

Security has become a critical part of nearly every softwareproject, and the use of automated
testing tools is recommended by best practices and guidelines. Our interest lies in defining a
formalism, calledVulnerability Detection Conditions, to describe vulnerabilities so we can detect
them using automated testing.

In this paper, we have also shown how a model-based dynamic code analysis tool,TestInv-
Code, is used to analyze execution traces and determine if they show evidence of a vulnerability
or not. VDCs can be very precise, we believe making it possible to detect vulnerabilities with a
low rate of false positives. This is planned to be studied anddemonstrated in future work.

Since the vulnerability models are separate from the tool, it is possible for any security expert
to keep them up-to-date and to add new models or variants. It also becomes possible for the tool
user to add e.g. product-specific vulnerabilities and usingthe tool to detect them. This is very
different from the normal state of affairs, where users haveno choice but to rely on the tool vendor
to provide timely updates. Nevertheless, it should be notedthat if new predicates or actions are
required, the function that will allow to detect them needs to be added to the tool.

The work presented in this paper is part of the SHIELDS EU project [21], in which we have
developed a shared security repository through which security experts can share their knowledge
with developers by using security models. Models in the SHIELDS repository are available to a
variety of development tools;TestInv-Codeis one such tool.

Looking to the future, we plan on applying the methods presented here to various kinds
of vulnerabilities in order to identify which predicates are required, and whether the formalism
needs to be extended.

9 Dmalloc is a library for checking memory allocation and leaks. Software must be recompiled,
and all files must include the special C header file dmalloc.h.

10 DynInst is a runtime code-patching library that is useful indeveloping dynamic program anal-
ysis probes and applying them to compiled executables. Dyninst does not require source code
or recompilation in general, however non-stripped executables and executables with debugging
symbols present are easier to instrument.

11 Valgrind runs programs on a virtual processor and can detectmemory errors (e.g. misuse of
malloc and free) and race conditions in multithread programs.

16

References

1. B. Alcalde, A. R. Cavalli, D. Chen, D. Khuu, and D. Lee.Network Protocol System Passive
Testing for Fault Management: A Backward Checking Approach, In FORTE, pages 150–166,
2004.

2. D. Balzarotti, M. Cova, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna.Saner: Composing
Static and Dynamic Analysis to Validate Sanitization in WebApplications. In IEEE Sympo-
sium on Security & Privacy, pages 387–401, 2008.

3. S. Bardin, P. Herrmann, J. Leroux, O. Ly, R. Tabary, A. Vincent.The BINCOA Framework for
Binary Code Analysis. CAV conference. pp 165-170. 2011.

4. E. Bayse, A. Cavalli, M. Núnez, and F. Zaidi.A Passive Testing Approach Based on Invariants:
Application to the Wap. Computer Networks and ISDN Systems, 48(2):247–266, 205.

5. A. R. Cavalli, C. Gervy, and S. Prokopenko.New Approaches for Passive Testing using an
Extended Finite State Machine Specification. Information & Software Technology, 45(12),
pages 837–852, 2003.

6. A. R. Cavalli and D. Vieira.An Enhanced Passive Testing Approach for Network Protocols.
In ICN,ICONS,MCL,pages 169–169, 2006.

7. CERT Coordination Center. CERT/CC statistics. (accessed October 2007).
8. B. Chess and J. West.Dynamic Taint Propagation: Finding Vulnerabilities without Attacking.

Information Security Technical Report, 13(1):33–39, 2008.
9. Coverity.Prevent. (accessed September 2008).
10. W. Du and A. Mathur.Vulnerability Testing of Software System using Fault Injection. In

Proceedings of the International Conference on DependableSystems and Networks (DSN
2000), Workshop on Dependability Versis Malicious Faults,2000.

11. Stefan Fenz, Andreas Ekelhart.Verification, Validation, and Evaluation in Information Se-
curity Risk Management. IEEE Security and Privacy (IEEESP) 9(2):58-65. 2011.

12. Fortify Software.Fortify SCA.(accessed September 2008).
13. R. Hadjidj, X. Yang, S. Tlili, and M. Debbabi.Model Checking for Software Vulnerabilities

Detection with Multi-Language Support. In Sixth Annual Conference on Privacy, Security and
Trust, pages 133–142, 2008.

14. M. Howard.Inside the Windows Security Push. In IEEE Symposium on Security & Privacy,
pages 57–61, 2003.

15. Klocwork.K7. (accessed September 2008).
16. C. Kuang, Q. Miao, and H. Chen.Analysis of Software Vulnerability. In ISP 06: Proceedings

of the 5th WSEAS International Conference on Information Security and Privacy, pages 218–
223, Stevens Point, Wisconsin, USA, 2006. World Scientific and Engineering Academy and
Society (WSEAS).

17. D. Lee, A. N. Netravali, K. K. Sabnani, B. Sugla, and A. John. Passive Testing and Applica-
tions to Network Management. In ICNP 97: Proceedings of the 1997 International Conference
on Network Protocols (ICNP 97), Washington, DC, USA, 1997. IEEE Computer Society.

18. W. Mallouli, F. Bessayah, A. Cavalli, and A. Benameur.Security Rules Specification
and Analysis Based on Passive Testing. In The IEEE Global Communications Conference
(GLOBECOM 2008), 2008.

19. R. E. Miller and K. A. Arisha.Fault Identification in Networks by Passive Testing. In Ad-
vanced Simulation Technologies Conference (ASTC), pages 277–284. IEEE Computer Soci-
ety, 2001.

20. S. Redwine and N. Davis.Processes to Produce Secure Software. 2004. Task Force on Secu-
rity Across the Software Development Lifecycle, Appendix A.

21. SHIELDS:Detecting Known Security Vulnerabilities from within Design and Development
Tools. “D1.4 Final SHIELDS approach guide".

17

22. H. Thompson.Application of Penetration Testing. In IEEE Symposium on Security & Pri-
vacy, pages 66–69, 2005.

23. L. Wang, Q. Zhang, and P. Zhao.Automated Detection of Code Vulnerabilities Based on
Program Analysis and Model Checking. In Eighth IEEE International Working Conference
on Source Code Analysis and Manipulation, pages 165–173, 2008.

