Using testing techniques for vulnerability detection
in C programs™

Amel Mammat, Ana Cavallt, Willy JimeneZ,
Wissam Malloulf and Edgardo Montes de Gca

1 Télécom SudParis, SAMOVAR
9 rue Charles Fourier, 91011 Evry Cedex, France
{amel.mammar,ana.cavalli,willy.jimenez}@it-sudparis.eu
2 Montimage, 39 rue Bobillot Paris 75013, France
{wissam.mallouli,edgardo.montesdeoca}@montimage.com

Abstract. This paper presents a technique for vulnerability detaedtioC pro-
grams. Itis based on a vulnerability formal model calledf\érability Detection
Conditions" (VDCs). This model is used together with pass$ésting techniques
for the automatic detection of vulnerabilities. The pragbsechnique has been
implemented in a dynamic code analysis tool, Testinv-Coedech detects the
presence of vulnerabilities on a given code, by checkingadyinally the VDCs
on the execution traces of the given program. The tool has épglied to several
C applications containing some well known vulnerabilitiesllustrate its effec-
tiveness. It has also been compared with existing tools eénntlarket, showing
promising performances.

Keywords: Dynamic Code Analysis, Vulnerabilities Detection, Passiesting.

1 Introduction

1.1 Context and motivations

The detection of vulnerabiliti€sn software has become a major concern in the soft-
ware industry. Although efforts are being made to reduceirstycvulnerabilities in
software, according to published statistics, the numbewubferabilities and the num-
ber of computer security incidents resulting from exptatihese vulnerabilities are
growing [7].

One of the reasons for this is that information on known vidbdities is not eas-
ily available to software developers, or integrated inte thols they use. Thus many
activities are designed to support secure software dewedap like security educa-
tion on vulnerability causes, security goal and vulnergbdlass identification, goal

* The research leading to these results has received fundingthe European ITEA-2 project
DIAMONDS.

3 In this paper, a vulnerability is defined as a specific instasfcnot intended functionality in
a certain product/environment leading to degradation cfisgy properties or violation of the
security policy. It can be exploited by malicious code oruses.



and vulnerability driven inspections etc. Vulnerabiliguse presence testing is one of
the main activities that support the validation of securwsre. It is used to detect
vulnerabilities in software products in order to removeigaite them. Several testing
techniques can be used to perform this detection based faredtift models and ap-
proaches (static/dynamic code analysis, fuzz testingedpassive testing, etc.). In this
paper, we present a systematic approach to increase sefbeaurity by bridging the
gap between security experts and software practitionedgdd, we provide providing
software developers with the means to effectively prevedtr@move occurrences of
known vulnerabilities when building software. To achiekistgoal, we will rely on a
formal method for dynamic code analysis technique basedudmerability detection
conditions (VDCs) models.

Currently, there are a large number of techniques and tetatds that help devel-
opers improve software security quality. Among these tegkes, we can cite formal
verification and validation (V&V)[11] and also the staticcadynamic code analyzers
[20,16]. However, existing approaches are often limited do not present rigorous
descriptions of vulnerabilities they deal with [9,12,1K]is quite difficult for a user to
know which vulnerabilities are detected by each tool sihey tare poorly documented.
A more detailed description of the related work is providedection 2.

1.2 Contribution

Our approach combines a new formalism calladnerability Detection Conditions
(VDCs) and formal passive testing in order to implement a mesthod to detect vul-
nerabilities in C programs. These two concepts are detadsplectively in sections 3
and 4.

A VDC allows to formally describe a vulnerability without dmguity. This task
is performed by a security expert that needs to study vulnii@ras then determine its
causesEach cause needs to be extracted and translated into allpggdicate on which
it becomes possible to reason. In a second step, VDCs désos@re instantiated by
a dynamic analysis tool to allow the automatic detectiorhaf vulnerability in any C
program. The tool is based on passive testing techniquehalifas proven to be very
effective for detecting faults in communication protocpl$ In summary, the main
contributions introduced by this paper are:

— A new formalism, called/ulnerability Detection Condition§/DCs), is designed
to describe vulnerability causes in a rigorous way withgabaguity. This formal-
ism also constitutes a good way to have a good understandliagah software
vulnerability and its causes. It bridges the gap betweenrgg@xperts, developers
and testers.

— An editor tool to build new VDCs based on a set of know vulnéitgbcauses
described in the the SHIELDS SVRS

4 The SHIELDS SVRS is a centralized repository that allowssteeage and sharing security
models in order to reduce known security vulnerabilitiesriusoftware development



— A model-based dynamic analysis td@stinv-Codethat automatically detects vul-
nerabilities in C programs based on VDCs;

— An end-to-end methodology that allows to detect vulneitisl and provides for
each detection information about the vulnerability, thifedént ways to avoid it
and the C code line where the vulnerability occurs (if theecisdchvailable).

— Application of the approach and the obtained results on @m gpurce application
XINE that contains a known vulnerability.

The approach proposed in this paper is original since it oak the steps of vul-
nerability detection, from the modelling phase relying obG5, to their automatic
detection on the executable traces usingTiggtinv-Codéool.

The rest of the paper is organized as follows. The sectiore2qmts different ap-
proaches used in literature for dynamic detection of vidb#ities. Section 3 introduces
the VDC model, its basics and use. Section 4 introduces thardic code analysis
technique based on these models and its tool Testinv-Caaio8 5 introduces the
experimentation and results and Section 6 summarizes otk aval describes future
work.

2 Related work

Different techniques have been proposed to perform dyndstiection of vulnerabil-
ities [3]. Fuzz testings an approach that has been proposed to improve the security
and reliability of system implementations [14]. Fuzz tegtconsists in stimulating the
system under test, using random inputs or mutated onesjar tr detect unwanted be-
havior as crashing or confidentiality violatidPenetration testings another technique
that consists in executing a predefined test scenario wétloliective to detect design
vulnerabilities or implementation vulnerabilities [2Fault injectionis a similar tech-
nique that injects different types of faults in order to thgtbehavior of the system [10].
Following a fault injection the system behavior is observidte failure to tolerate faults
is an indicator of a potential security flaw in the system. Sehtechniques have been
applied in industry and shown to be useful. However, most@turrent detection tech-
niques based on these approaches are ad hoc and requirecupiawwledge of the
target systems or existing exploits.

Model checking techniqudsave also been revisited for vulnerability detection.
Hadjidj et al.[13] present a security verification framelwdinat uses a conventional
push down system model checker for reachability propettieserify software secu-
rity properties. Wang et al. [23] have developed a congtraialysis combined with
model checking in order to detect buffer overflow vulneriéibd. The memory size
of buffer-related variables is traced and the code is insénted with constraints as-
sertions before the potential vulnerable points. The walbiéity is then detected with
the reachability of the assertion using model checking.mddidel checking works are

5 Testlnv-Code testing tool is one of Montimage tools (hitpyw.montimage.com). It is a dy-
namic code analysis tool that aims at detecting vulneta&slby analyzing the traces of the
code while it is executing.



based on the design of a model of the system, which can be esraptl subject to the
combinatorial explosion of the number of states.

In the dynamic taint approaciproposed by Chess and West [8], tainted data are
monitored during the execution of the program to determiag@ioper validation be-
fore entering sensitive functions. It enables the disopeémpossible input validation
problems which are reported as vulnerabilities. The saatitin technique to detect vul-
nerabilities due to the use of user supplied data is basekeoimiplementation of new
functions or custom routines. The main idea is to validateaoitize any input from
the users before using it inside a function. Balzarotti ef2jlpresent an approach us-
ing static and dynamic analysis to detect the correctnesarifization process in web
applications that could be bypassed by an attacker.

3 \Wulnerability Modelling

In order to describe the presence of a vulnerability in a g we rely in this paper
on Vulnerability Detection Conditions (VDCs) formalismDZs basically indicate that
the execution of an action under certain conditions couldldéegerous or risky for
the program. They permit to express in a logical predicagedifferent causes that
lead to the considered vulnerability. The main idea behireddefinition of the VDC
formalismis to point out the use of a dangerous action urataegarticular conditions,
for instance “it is dangerous to use unallocated memoryusTif we evaluate a piece
of code where we find such VDC we know that it is vulnerable.

3.1 Definitions

Definition 1. (Vulnerability Detection Condition). Let Act be a set ofiantnames, Var
be a set of variables, and P be a set of predicates on\Mset). We say that Vdc is a
vulnerability detection condition if Vdc is of the form (fphrackets denote an optional
element):

Vdc::= a/P(Var,Act)|a]/P(Var,Act)]; P'(Var, Act)

where a denotes an action(¥ar, Act) and P(Var, Act) represent any predicates on
variables Var and actions Act. A vulnerability detectiomdaion a/P(Var, Act) means
that action a occurs when specific conditions denoted byipagel A Var, Act) hold.

Similarly, a vulnerability detection condition] £ (Var, Act)]; P’ (Var, Act)) means
that action a used under the optional condition®/&r, Act) is followed by a statement
whose execution satisfie§War, Act). Naturally, if action a is not followed by an action,
the predicate RVar, Act) is assumed to be true.

More complex vulnerability detection conditions can bethdanductively using the
different logical operators according to the following défon.

Definition 2. (General Vulnerability Detection Conditions). If Vidand Vdg are vul-
nerability detection conditions, théWdc, vV Vdg) and (Vdg A Vde) are also vulner-
ability detection conditions.



3.2 Some examples

Let us define a vulnerability detection conditiddcg, that can be used to detect possible
accesses to a free or an unallocated memory. If we dendtedigrix,y) the assignment
of valuey to the memory variableandisNot Allocateda condition to check if memory

x is unallocated then the VDC is given by the expression:

Vdg = Assigrix,y)/IsNot Allocatedx)

In programming languages like C/C++, there are some funsttbat might lead
to a vulnerability if they are applied on out-of-bounds argunts. The use of a tainted
variable as an argument to a memory allocation function fetl oc) is a well-known
example of such a vulnerability, which is expressed by tHeenability detection condi-
tion Vdo below. A variable is tainted if its value is obtained from aargecure source,
or in other words, produced by reading from a file, gettinguinfpom a user or the
network, etc.

Vdg, = memoryAllocatiofS) /tainted S)

3.3 Describing vulnerabilities with formal Vulnerability Detection Conditions

An informal description of a vulnerability states the cdiatis under which the execu-
tion of a dangerous action leads to a possible security br&ag; it should include the
following elements:

1. A master actionan action denotes a particular point in a program wherekadas
an instruction that modifies the value of a given object iscaied. Some examples
of actions are variable assignments, copying memory oriogemfile. A master
actionAct_Masteris a particular action that produces the related vulneitgbil

2. A set of conditions: a condition denotes a particularestdta program defined by
the value and the status of each variable. For a buffer, &airce, we can find out
if it has been allocated or not. Once the master action idtifilsth for a scenario,
all the other facts are condition€{, ... C,} under which the master action is exe-
cuted. Among these conditions, a particular condi@gmay exist, calleanissing
condition which must be satisfied by an action followiAgt Master.

Let{Pi,...,R,...,Pn} be the predicates describing conditiof@;, ...,Cx,...,Cn}.
The formal vulnerability detection condition expressihgtdangerous scenario is de-
fined by:

Act/(PLA ... ABC1 AP APy B

Finally, the vulnerability detection condition repredagtthe entire vulnerability
is defined as the disjunction of the all sub-vulnerabilityedtion conditions for each
scenarioYdg denotes the VDC associated with each scenigirio

Vdag V...vVdg



For example, consider the vulnerability CVE-2009-1274,fidy overflow inXINE
media player. According to the description, the vulneigbi$ the result of computing
a buffer size by multiplying two user-supplied integershaitit previously checking the
operands or without checking the result of the allocatiomafacker may cause the ex-
ecution of arbitrary code by providing a specially craftegldia file to the user running
the XINE application. A scenario associated to this vulnerabilég be expressed as:

1. An allocation function is used to allocate a buffer

2. The allocated buffer is not adaptive

3. The size used for that allocation is calculated usingédidata (data read from the
media file)

4. The result returned by the allocation function is not &leelc

To define the VDC associated with this scenario, we have toesgppeach of these
conditions with a predicate:

Use of malloc/calloc/reallodhe program uses C-style memory management functions,
such asnalloc, calloc or realloc to allocate memory. For each memory function
allocationf, applied on valu® to allocate a buffeB, the following predicate holds:

memoryAllocatiofif,B,V)

Use of nonadaptive bufferthe program uses buffers whose sizes are fixed when they
are allocated (allocation may take place at run-time,magloc, or at compile-time).
Non-adaptive buffers can only hold a specific amount of datt@mpting to write be-
yond their capacity results in a buffer overflow. Adaptivdfers, in contrast, can adapt
themselves to the amount of data written to them. For eadametnonadaptive buffer

B, the following predicate holds:

nonAdaptiveBuff¢B)

User supplied data influences buffer sittee size of a dynamically allocated buffer is
computed, at least in part, from user-supplied data. Thisvalexternal manipulation
of the buffer size. If a buffer is made too large, this may lesua denial of service
condition; if itis too small, then it may later result in a Berfoverflow. For each variable
V whose value is produced from an insecure source, the failppiedicate holds:

taintedV)
Note that a tainted variable will be untainted if it is bourtetcked by the program.

Failed to check return value from callothe program does not contain mechanisms to
deal with low memory conditions in a safe manner (i.e. deghWULL return values
from calloc). Running out of memory in programs that are not written todia such

a situation may result in unpredictable behavior that cassidy be exploited. This
cause is detected when the return vaiuef an allocation function is not followed by
a check statement. For each vaRieeturned from an allocation memory function, the
following formula is defined:



notChecke(B, null)

The vulnerability detection condition expressing thisrar is then defined by:

nonAdaptiveBuffeiB)
memoryAllocatioff,B,V)/ A ;notChecke@B, null)
taintedV)

This last vulnerability detection condition expresses teptial vulnerability when a
given allocation functiorf is used with a non-adaptive buffBrwhose size/ is pro-
duced from aninsecure source and its return value is nokeklegith respect to NULL.

3.4 VDC editor

The VDC editor is a GOAF plug-in, which offers security experts the possibility to
create vulnerability detection conditions (VDCs). ThedeGs will be used to detect
the presence of vulnerabilities by checking software etientraces using Montimage
Testlnv-Code testing tool. The VDC editor user interfacgudes some features that
allow simplifying the construction and composition of VDQ%e VDC editor has the
following functionalities:

— The creation of new VDCs corresponding to vulnerabilitysesifrom scratch and
their storage in an XML format.

— The visualization of already conceived VDCs.

— The editing (modification) of existing VDCs in order to creaew ones.

Delete Last Parameter

[Unchecked
buffer

varisble.

Post_Condtion

S |

Fig. 1. Vulnerability detection condition for “Use of tainted valto malloc" in GOAT.

The VDCs are stored in an XML file that constitutes one of thmits for the Mon-
timage Testlnv-Code tool. A vulnerability is discovereai¥/DC signature is detected
on the execution trace. A VDC is composed within the editaatahost 3 parts:

1. Master condition:The triggering condition called also master action (dedi@e
When analysing the execution trace, if this condition iedttd, we should verify
if the state and post conditions of the VDC hold as well. I5tls the case, then a
vulnerability has been detected. The master condition isdairy in a VDC.

6 http://www.ida.liu.se/divisions/adit/security/goat/



2. State conditionA set of conditions related to the system state (denotedrfA%g).
The state condition describes the states of the specifiéables at the occurrence
of the master action. The state condition is mandatory in £vD

3. Post condition:A set of conditions related to the system future state (dehot
P'(Var,Act)). If a master action is detected in the state ctimdicontext, then we
should verify if the post condition holds in the executioattfollows. If this is the
case, a vulnerability has been detected. This post cond&ioot mandatory in a
VDC.

4 Dynamic code analysis for vulnerability detection

4.1 Basics: Passive testing

Our approch for dynamic code analysis is inspired from tlassital passive testing
technique [1,19,17] designed for telecommunication wafialysis. Passive testing al-
lows to detect faults and security flaws by examining capttnafic packets (live trafic
or log files) according to a set of events-based propertasinote either:

— a set of functional or security rules that the trafic has télfdl,5,18], or
— a set behavioral attacks like those used in classical ioimend detection systems.

In the case of executable code analysis, events are adsithitathe disassembled in-
structions that are being executed in the processor. Tlegraduced by executing the
program under the control of thestinv-Codeool, similar to what a debugger does.

For dynamic program analysis to be effective, the targegmm must be executed
with sufficient test inputs to cover different program beabavs. Use of classical testing
techniques for code coverage helps to ensure that an agqoprabf the program’s set
of possible behaviours has been observed. Also, care muskba to minimize the
effect that instrumentation has on the execution (inclgdemporal properties) of the
target program.

While static analysis collects information based on sowage, dynamic analy-
sis is based on the system execution (binary code), oftergusstrumentation. The
advantages that can be expected from using dynamic anahgsis

— Has the ability to detect dependencies that are not detedtastatic analysis. EX.:
dynamic dependencies using reflection, dependency iojeett.

— Allows the collection of temporal information.

— Allows the possibility of dealing with runtime values.

— Allows the identification of vulnerabilities in a runtime@gronment.

— Allows the use of automated tools to provide flexibility onatto scan for.

— Allows the analysis of applications for which you do not haeeess to the actual
code.

— Allows identifying vulnerabilities that might be false redtyes in the static code
analysis.

— Permits validating static code analysis findings.

— It can be conducted on any application.



4.2 Using VDCs inTestlnv-Code

In order to use th@estinv-Codé¢ool, the main step consists in defining the vulnerabili-
ties causes that are of interest. Starting from informatdetons of the vulnerabilities
and VDCs models, a set of conditions that lead to a vulnetalsite derived. These
conditions are formally specified as regular expressioas ¢hnstitute the first input
for Testlnv-Cod¢ool.

Thus, end-to-end code analysis usifestinv-Coderoceeds along the following
steps:

1. Informal definition of vulnerable scenario&.security expert describes the differ-
ent scenarios under which a vulnerability may appear. Aaterenotes a set of
causes that produces the vulnerability.

2. Definition of VDC.A VDC, expressing formally the occurrence of the related vul
nerability, is created for each possible situation thad$eta the vulnerability using
the VDC editor.

3. Vulnerability checkingFinally, Testinv-Codechecks for evidence of the vulnera-
bilities during the execution of the program. Using the VDEswill analyze the
execution traces to produce messages identifying the rabilggies found, if any,
indicating where they are located in the code.

{ExecutebIeJ

s
Code —_|

VDC
Input ‘,XML input
L)
checker
storage

Execution and test engine

States of State of
wvariables VDCs

|
4

Werdics

Fig. 2. Passive testing for vulnerability detection.

Figure 2 depicts the passive testing architecture for \ralniéity detection. As shown,
the Testinv-Codéool takes as input:

1. The vulnerability causeslhe file containing the vulnerabilities causes formally
specified using VDCs.



10

2. The executablelhe Executable Linked Format (ELF) file for the applicatibatt
is to be tested. This file contains the binary code of the apfitin and it should
include debug information if we want the tool to be able toedeiine the line
of code where the vulnerability occurs and provide this iinfation in the final
verdicts.

In order to detect the presence of a VDC in an execution tiaoegds to be pro-
cessed in such a way that it is detected when and if it occuisglthe execution of the
program. In the case dfestinv-Codgpredicates and actions in the VDCs correspond
to functions that allow analysing the executed instructiand determining it they are
satisfied. The tool keeps information on the state of all #ugables used by the pro-
gram, heap or stack memory addresses and registers. Tésg sta for instance, tainted
or not, bound checked or not, allocated or not etc. It alsotaais information on the
potential VDCs. The tool is able to detect when a system safiade, the controls that
are made on variables or return values from function callembuffer allocations are
made, etc. Thus it can verify all the conditions that are use¢de VDCs and generate
messages if the VDCs are satisfied. The symbolic tables axssary to be able to
determine the line of code that provokes the vulnerabitigt {s detected.

It must be noted that the functions used to detect the VDCitiond could vary de-
pending on the execution environment, the compiler and dngpdlation options used.
In this work we assume that the execution environment isstiarsion 2.6, the com-
piler is gcc version 4.3.3 and that the compilation was peréd for debugging (in-
cluding symbolic tables) and without any optimisationshé&tvariants could work but
this has not yet been tested on other platforms. Certaimigitions performed by the
compiler could make it necessary to adapt the algorithméeffiinctions to certain
particularities introduced by the compiler.

5 Experiment and Results

5.1 XINE application

We demonstrate the application of our vulnerability detecinethod to an open source
application and free multimedia player that plays back aadid video, XINE written

in C. This application was selected as an example since itéslawvorld application,
open source (so the source files are available free of cdyrnd contains a number
of known vulnerabilities which can be used to demonstraéedffectiveness of our
approach.

The application contains a set of modules and librairiege @he we are concen-
trated on isxine-lib® (xine core). This is a module developed in C language andtwhic
has several vulnerabilities inside its files. We will sel@ctobsolete version of xine-lib
so we can use the vulnerabilities found in them.

7 http://www.xine-project.org
8 Xine-lib source code can be downloaded from: http://sdorge.net/projects/xine.



11

5.2 Xine selected vulnerability

The xine v1.1.15 application has a number of vulnerabditiéhe one that we will deal
with is CVE-2009-1274.

— Summary: Integer overflow in the qt_error parse_trak_atomation in
de-muxers/demux_qgt.c in xine-lib 1.1.16.2 and earlieovedl remote attackers to
execute arbitrary code via a Quicktime movie file with a lacgent value in an
STTS atom, which triggers a heap-based buffer overflow.

— Published: 04/08/2009

— CVSS Severity: 5.0 (MEDIUM)

The exploitation occurs when someone is trying to play withexa Quicktime
encod-ed video that an attacker has modified to make one biilding blocks (the
“time to sample" or STTS atom) have an incorrect value. Théarmaed STTS atom
processing by xine leads to an integer overflow that triggdreap-based buffer over-
flow probably resulting in arbitrary code execution. Thecpab this Vulnerability is in
v1.1.16.1 thatis also included in the v1.1.16.3.

CVE-2009-1274 is a vulnerability instance and can be canmeid as part of the
family or class of vulnerabilities named “Integer Overflomd's the ID CWE 190 in the
Common Weakness Enumeration database. The CWE 190 destiggummarised as
follows “The software performs a calcu-lation that can proglan integer overflow or
wraparound, when the logic assumes that the resulting vélualways be larger than
the original value. This can introduce other weaknessesieecalculation is used for
resource management or execution control” [21].

CVE-2009-1274-VDC1

i
= o i i o i o Post_Condition
|

|

| : . % i
‘\!‘ Calo (o, b s22) : | Uncheched (buffer, HOT_EQUAL, HULL) !
-

Fig. 3. VDC model of CVE-2009-1274 vulnerability.

5.3 Wulnerability modelling

Starting from the informal description of CVE-2009-1274nerability, we have de-
signed the 3 VDCs and the corresponding regular expresgidns used for input to
the Testinv-Codéool.



12

1. Calloc(buffer, buffer_size) / Fixed(buffer) Result(buffer_size, user_inputRe-
sult(buffer_size, addition); Unchecked(buffer, NULL)

2. Calloc(buffer, buffer_size) / Fixed(buffer) Result(buffer_size, user_input)Re-
sult(buffer_size, addition) Unchecked(buffer_size, buffer_bounds)

3. CopyVar(loop_counter, user_input) / Fixed(buffeynchecked(loop_counter,
counter_bounds); CopyData(buffer, user_input, loopnten)

Using the VDC editor, we can build the VDC models for each eaegnario. Figure
3 illustrates the VDC model for the first scenario.

5.4 Application of Testinv-Code

The created VDCs are one of the inputs needed by the Testlestidg tool. In or-
der to analyse the xine-lib it is necessary to use it. To be tbfeach the plug-in that
contains the error (the quicktime file demuxer), the muxippliaation was run on a
quicktime file. The Testlnv-Code tool allows performing tealysis on all the appli-
cation’s functions (including those of the library and tHegins). The user can also
identify a given function or set of functions that he wantatalyse. Using this feature
is necessary to avoid performance issues, particularlppli@tions that perform in-
tensive data manipulations (like video players). The catadlist of available functions
can be obtained automatically. Another feature that helggaove the performance of
the tool is the possibility of limiting the number of times ege of code in a loop is
analysed. The followinINE code is executed:

Code fragment from demux_qt.c

1907 trak->time_to_sample_table = calloc(
1908 trak->time_to_sample_count+1,
sizeof (time_to_sample_table_t));
1909 if (!trak->time_to_sample_table) {
1910 last_error = QT_NO_MEMORY;
1911  goto free_trak;
1912 }
1913
1914 /* load the time to sample table */
1915 for(j=0;j<trak->time_to_sample_count;j++)

wheretrak->time_to_sample_table is tainted since it is set from information
taken from the external QuickTime file.

The tool will detect the particular vulnerability used hé@/E-2009-1274) when
it is launched on the muxine application using a quicktintewi file. This needs to be
done using the option to analyse all the functions (of thdiegton, the library and the
plug-ins) or just the function parse_trak_atom in the gtk plug-in. The result of
the vulnerability cause presence testing activity prodibg Testinv-Code is shown in
figure 4.



MyProjects—>Xine Demo Testing Project —>TestLabs—>Xine Test Lab 1

Testlab Execution Results Report

Project Name:
Project Description:

Testlab Name:

Testlab Description:

Execution start time:

Xine Demo Testing Project

13

This is a Testlinv-C Demo testing project for Xine application.

Xine Test Lab 1

This is a test lab that includes the WDCs for vulnerability

CVE-2009-1274,

2010-05-17 20:31:52

Testlab coverage

VDC Model
CVE-2008-12740DC1
CVE-2009-1274VDC2
CVE-2009-1274/DC3

VDCs coverage: 60%(3/5)

Test results summary

TestLab ¥ine Test Lab 1

@ Passed VDCs
@ Failed VDCs

w
w

Test results

WDC

CVE-2009-1274VDCL

CWVE-2009-1274/DC2

CVE-2009-1274VDC3

Defect

Defect: CVE-2009-1274DCL

Defect: CWE-2008-1274-DC2

Defect: CVE-2008-1274-VDC3

Priority Verdict

Essential @
Essential @
Essential @

Fig. 4. Screenshot of Testlnv-Code result for xine vulnerability.

5.5 Analysis

If we apply the same VDCs to other code under the same progitagreanvironment, we
will be able to detect the same types of vulnerabilities.ifstance, we applied the same



14

VDCs on ppmunbox, a program developed by Linkdpings uniiets remove borders
from portable pixmap image files (ppm) and we detected theesarimerabilities.
This vulnerability is located in the ppmunbox.c file speeifig in the following:

Code fragment from ppmunbox.c

76:/* Read the dimensions */

77:if (fscanf (fp_in, "%d%d%d" ,&cols,&rows &maxval)<3){
78: printf("unable to read dimensions from PPM file");
79: exit(1);

80 }

81:

82:/% Calculate some sizes */

83:pixBytes = (maxval > 255) 7 6 : 3;
84:rowBytes = pixBytes * cols;
85:rasterBytes=rows;rasterBytes=rowBytes*rows;
86:

87:/* Allocate the image */

88:img = malloc(sizeof (*img)) ;

89:img->rows = rows;

90:img->cols = cols;

91:img->depth = (maxval > 255)72:1;

92:p = (void*)malloc(rasterBytes);
93:img->raster = p;

94:

95:/* Read pixels into the buffer */

96:while (rows--) {

To illustrate the applicability and scalability of Testh®@ode, it has been applied to six dif-
ferent open source programs to determine if known vulnétiaisican be detected using a single
model. The following paragraphs describe the vulnerégsliand give a short explanation of the
results obtained. The results are summarized in table 1.

Table 1. Summary of results running Testinv-Code with VDC codes

Vulnerability | Software |Detected 7
CVE-2009-1274 Xine Yes
Buffer overflow| ppmunbox  Yes
CVE-2004-0548 aspell | Yes (two)
CVE-2004-0557 SoX Yes
CVE-2004-0559 libpng Yes
CVE-2008-0411Ghostscript ~ Yes

Besides, the application of the tool to the case study gawd gerformances. We did some
experiments in order to check the scalability of the tool by application of a high number
of VDCs (more than 100) to a software data intensive (as incttse of video decoders). The
tool performance remains good. We compared the performaineer tool according to known



15

dynamic code analysis tools in the market like Dmallddyninst19, and Valgrind! and the
results were comparable. Indeed, the detection based awauioes not insert a big overhead
(the execution time is almost equal to the programm exetitoe).

To optimize our analysis, the tool is being modified so thatubker can select specific func-
tions to check in the program. But in this case all the inpuapeeters for this function are marked
as tainted even if they are not. Another solution that is ¢psindied is to only check the first it-
eration of loops in the program, thus avoiding to check timeseode that is executed more than
once.

At present, we have checked applications written in C, wiliglnot have a complex archi-
tecture. We are now starting to experiment more complexiegtns with architectures that
integrate different modules, plugins, pointers to functieariable number of parameters or mix-
ing different programming languages.

6 Conclusions and future work

Security has become a critical part of nearly every softvmogect, and the use of automated
testing tools is recommended by best practices and gueteli@ur interest lies in defining a

formalism, calledvulnerability Detection Conditionso describe vulnerabilities so we can detect
them using automated testing.

In this paper, we have also shown how a model-based dynarde agalysis toolTestlnv-
Code is used to analyze execution traces and determine if thay skiidence of a vulnerability
or not. VDCs can be very precise, we believe making it posdibldetect vulnerabilities with a
low rate of false positives. This is planned to be studiedderdonstrated in future work.

Since the vulnerability models are separate from the tbisl possible for any security expert
to keep them up-to-date and to add new models or variantsdt&@comes possible for the tool
user to add e.g. product-specific vulnerabilities and usiiegtool to detect them. This is very
different from the normal state of affairs, where users lavehoice but to rely on the tool vendor
to provide timely updates. Nevertheless, it should be nttatlif new predicates or actions are
required, the function that will allow to detect them neezlbé added to the tool.

The work presented in this paper is part of the SHIELDS EUgqmioj21], in which we have
developed a shared security repository through which gg@xperts can share their knowledge
with developers by using security models. Models in the SHIE repository are available to a
variety of development toolFestinv-Codés one such tool.

Looking to the future, we plan on applying the methods preskiere to various kinds
of vulnerabilities in order to identify which predicateseaequired, and whether the formalism
needs to be extended.

9 Dmalloc is a library for checking memory allocation and leaRoftware must be recompiled,
and all files must include the special C header file dmalloc.h.

10 pyninst is a runtime code-patching library that is useful@veloping dynamic program anal-
ysis probes and applying them to compiled executables.ri3yioes not require source code
or recompilation in general, however non-stripped exdsatand executables with debugging
symbols present are easier to instrument.

11 valgrind runs programs on a virtual processor and can detectory errors (e.g. misuse of
malloc and free) and race conditions in multithread program



16

References

1. B. Alcalde, A. R. Cavalli, D. Chen, D. Khuu, and D. Lé¢etwork Protocol System Passive
Testing for Fault Management: A Backward Checking Appro&tirORTE, pages 150-166,
2004.

2. D. Balzarotti, M. Cova, N. Jovanovic, E. Kirda, C. Kruegahd G. VignaSaner: Composing
Static and Dynamic Analysis to Validate Sanitization in \Wgiplications In IEEE Sympo-
sium on Security & Privacy, pages 387—401, 2008.

3. S.Bardin, P. Herrmann, J. Leroux, O. Ly, R. Tabary, A. ¥incThe BINCOA Framework for
Binary Code AnalysisCAV conference. pp 165-170. 2011.

4. E.Bayse, A. Cavalli, M. NUnez, and F. ZaidliPassive Testing Approach Based on Invariants:
Application to the WapComputer Networks and ISDN Systems, 48(2):247—-266, 205.

5. A. R. Cavalli, C. Gervy, and S. Prokopenkdew Approaches for Passive Testing using an
Extended Finite State Machine Specificatitmformation & Software Technology, 45(12),
pages 837-852, 2003.

6. A. R. Cavalli and D. VieiraAn Enhanced Passive Testing Approach for Network Protocols
In ICN,ICONS,MCL,pages 169-169, 2006.

7. CERT Coordination Center. CERT/CC statistics. (acak&seober 2007).

8. B. Chess and J. Wefdynamic Taint Propagation: Finding Vulnerabilities withbAttacking
Information Security Technical Report, 13(1):33-39, 2008

9. Coverity.Prevent (accessed September 2008).

10. W. Du and A. MathurVulnerability Testing of Software System using Fault ligec In
Proceedings of the International Conference on Dependaydtems and Networks (DSN
2000), Workshop on Dependability Versis Malicious Fal2&00.

11. Stefan Fenz, Andreas Ekelharerification, Validation, and Evaluation in Information Se
curity Risk ManagementEEE Security and Privacy (IEEESP) 9(2):58-65. 2011.

12. Fortify SoftwareFortify SCA(accessed September 2008).

13. R. Hadjidj, X. Yang, S. Tlili, and M. Debbatlodel Checking for Software Vulnerabilities
Detection with Multi-Language Suppoth Sixth Annual Conference on Privacy, Security and
Trust, pages 133-142, 2008.

14. M. Howard.Inside the Windows Security Push IEEE Symposium on Security & Privacy,
pages 57-61, 2003.

15. Klocwork.K7. (accessed September 2008).

16. C. Kuang, Q. Miao, and H. Chefnalysis of Software Vulnerabilityn ISP 06: Proceedings
of the 5th WSEAS International Conference on Informatioou8igy and Privacy, pages 218—
223, Stevens Point, Wisconsin, USA, 2006. World Scientifid Engineering Academy and
Society (WSEAS).

17. D. Lee, A. N. Netravali, K. K. Sabnani, B. Sugla, and A.ddPassive Testing and Applica-
tions to Network Managemenh ICNP 97: Proceedings of the 1997 International Confegen
on Network Protocols (ICNP 97), Washington, DC, USA, 19%EE Computer Society.

18. W. Mallouli, F. Bessayah, A. Cavalli, and A. BenameS8ecurity Rules Specification
and Analysis Based on Passive TestihgThe IEEE Global Communications Conference
(GLOBECOM 2008), 2008.

19. R. E. Miller and K. A. ArishaFault Identification in Networks by Passive Testihg Ad-
vanced Simulation Technologies Conference (ASTC), pag@és284. IEEE Computer Soci-
ety, 2001.

20. S. Redwine and N. DaviBrocesses to Produce Secure Softwa@®4. Task Force on Secu-
rity Across the Software Development Lifecycle, Appendix A

21. SHIELDS:Detecting Known Security Vulnerabilities from within Dgsiand Development
Tools “D1.4 Final SHIELDS approach guide".



17

22. H. ThompsonApplication of Penetration Testindgn IEEE Symposium on Security & Pri-
vacy, pages 66—69, 2005.

23. L. Wang, Q. Zhang, and P. Zhadutomated Detection of Code Vulnerabilities Based on
Program Analysis and Model Checkinim Eighth IEEE International Working Conference
on Source Code Analysis and Manipulation, pages 165—-178.20



