
Timed Extended Invariants for the Passive Testing of Web Services∗

Gerardo Morales, Stephane Maag, Ana Cavalli
Télécom Sud-Paris, CNRS/IMR5157

9, rue Charles Fourier 91000, Evry, France
{gerardo.morales, stephane.maag, ana.cavalli}@it-sudparis.eu

Wissam Mallouli, Edgardo Montes de Oca, Bachar Wehbi
Montimage EURL

39, rue Bobillot 75013, Paris, France
{wissam.mallouli, edgardo.montesdeoca,bachar.wehbi}@montimage.com

Abstract

The service-oriented approach is becoming more and
more popular to integrate highly heterogeneous systems.
Web services are the natural evolution of conventional mid-
dleware technologies to support Web-based and enterprise-
level integration. Formal testing of such Web-based tech-
nology is a key point to guarantee its reliability. In this
paper, we choose a non-intrusive approach based on mon-
itoring to propose a conformance passive testing method-
ology to check that a composed Web service respects its
functional requirements. This methodology is based on a
set of formal invariants representing properties to be tested
including data and time constraints. Passive testing of an
industrial system (that uses a composition of Web services)
is briefly presented to demonstrate the effectiveness of the
proposed approach.

1 Introduction

A Web Service is defined by the World Wide Web Con-
sortium W3C as “a software system designed to support in-
teroperable machine-to-machine interaction over a network.
It has an interface described in a machine-processable for-
mat (specifically WSDL [8]). Other systems interact with
the Web service in a manner prescribed by its descrip-
tion using SOAP-messages, typically conveyed using HTTP
with an XML serialization in conjunction with other Web-
related standards."

∗The research leading to these results has received funding in part from
the French ANR Webmov Project (http://webmov.lri.fr/) andthe European
Community’s Seventh Framework Program (FP 7/2007-203) under grant
agreementn0 215995 (http://www.shields-project.eu/)

The composition of Web services consists of combining
existing Web services to define higher-level functionalities.
The Business Process Execution Language (BPEL) [4] is
emerging as the standard composition language for speci-
fying business process behavior based on Web services. A
BPEL process implements one Web service by specifying
its interactions with other Web services (called partners).

As the Web service implementations grow in size and
complexity, the necessity for testing their reliability and
level of security is becoming more and more crucial. The
Web Services technology, which is based on the SOA (Ser-
vice Oriented Architecture), is hard to test because it relies
on distributed systems that complicate the runtime behavior.

In this distributed context, formal active testing [9] can
be rather difficult to achieve since it requires to control re-
mote deployed Web systems. Indeed, active testing usually
relies on the comparison between the behavior of an imple-
mentation and its formal specification by checking whether
they are equivalent. Test sequences are commonly automat-
ically or semi-automatically generated from formal models
that represent test criteria, hypothesis and test objectives.
These sequences (with an executable format) are performed
by designing a testing architecture and establishing Points
of Control and Observation (PCO, execution interfaces) that
may disturb the natural behavior of already deployed Web
services.

To avoid this problem, there is an interest in applying
the passive testing approach for the conformance checking
of Web services. Passive testing consists in observing the
exchange of messages (inputs and outputs) of a Web service
implementation under test (IUT). The termpassivemeans
that the tests do not disturb the natural operation of the IUT.
Instead, the exchanged messages will be recorded in a trace
that will be inspected later on against the properties derived
from the Web service by system experts.

In the work we present here, we extend the concept of
invariants already defined in [1] to take data and time con-
straints into consideration. Then we define a methodology
with a new algorithm for formal passive testing based on
these extended invariants. The main contributions of this
paper are the following:

• The definition of timed extended invariants that allow
to formally specify functional properties that the Web
service has to respect. These properties are related to
the exchanged packets between Web services and may
deal with the data portion of these packets and/or with
time constraints.

• The proposition of conformance testing approach for
Web services using passive testing approach. This ap-
proach is particularly well adapted when it is difficult
to control remote partners and permits to avoid dis-
turbing the natural running of already deployed Web
services.

• Evaluation of the proposed methodology and tool TIPS
(Testing Invariants for Protocols and Services) on the
Travel Reservation System composed Web service.
This tool performs a dynamic packet inspection to ana-
lyze the execution traces to check the formal extended
invariants.

The rest of the paper is organized as follows. Section
3 presents the formal concept of timed extended invariants.
In section 4, we present our passive testing methodology as
well as its related tool and algorithm. Section 5 presents our
experiment on a Travel Reservation System that uses a Web
service composition orchestrated by a BPEL engine. We
apply on it our passive testing tool and analyze the obtained
results. Section 6 concludes this paper and presents some
future perspectives.

2 Related work

Many recent research work are devoted to model and
test machine-to-machine communications through Web ser-
vices. Besides, big efforts are currently dedicated to pro-
vide standards for Web services interoperability testing [7],
while very few research tackle their passive conformance
testing applying formal methods. We mention some of them
in the following.

[2] proposes to extend the architecture used to deploy
Web services (SOA) with an "observer element". The au-
thors use the model FSM+ (FSM that can take into account
some timed constraints) that are applied as the reference be-
havior to set verdicts over the tests. While timing aspects
are studied in this work, data portions and SOA architecture
used to deploy the Web services are not processed.

[5] presents the TGSE tool, based on the methodology
presented in [12]. TGSE allows the runtime coverage of
transitions based on guard conditions (by examining vari-
able values). In this approach, the authors model an execu-
tion trace as a test purpose (i.e. also referred as a TEFSM)
by giving real values to each input message. After model-
ing the composed Web service specification and the trace
as TEFSMs and declaring their synchronization rules, they
use TGSE to verify this system. If the TGSE output is a se-
quence, it means that this trace is a valid trace of the interac-
tions among the systems. However, this method requires a
formal specification of the Web service composition which
is often unavailable (or hard to provide) in such Web sys-
tems.

The methodologies and tools that are presented in our
work to perform passive testing are based on a formal in-
variant approach [1] applied to the SOA architecture of Web
service deployment.

3 Timed extended invariants

3.1 Preliminaries

Invariants are properties that the implementation under
test is expected to satisfy. They are used to express con-
straints over exchanged messages between the system enti-
ties (in this case, distributed Web services). Basically, they
allow expressing that the occurrence of an event must be
necessarily preceded or followed by a sequence of events.
In [1], a first introduction to the invariants was provided.
These invariants are described according to a finite state ma-
chine (FSM) based specification of the system under test.

This model is not well adapted to express complex func-
tional behavior of Web services that may involve data ex-
change with time constraints. To solve this problem, we
propose to extend the formalization of invariants by adding
these two aspects (data and time), and rely thus on a specifi-
cation of the IUT described using a Timed Extended Finite
State Machine (TEFSM) model ([3]).

Notice that only the system inputs and outputs can be ob-
servable in the collected system traces. These actions rep-
resent the events that we take into account in the timed ex-
tended invariants. Based on the definition of a TEFSM, we
enhance the formalization of the messages collected within
a trace and the events described within the invariants.

In the following definitions a captured packet is a net-
work packet exchanged between the BPEL engine (the com-
posed Web service orchestrator) and its Web partners. This
packet is captured by a sniffer that adds some extra data (for
example the timestamp of when it was captured), i.e. cap-
tured packet = network packet + extra data.

Definition 1 (Collected trace) A collected trace is a set of
ordered captured packets.

2

• A traceT =
⋃n

i=1
pi where n is the number of captured

packets,p1 is the first captured packet in the trace and
pn the last one.

• Each packetpi has a rankri that corresponds to its
position in the traceT .

• ∀pi ∈ T , pi=
⋃mi

j=1
fi,j wherefi,j is a field of the

packetpi andmi is the number of fields of the packet
pi. Each fieldfi,j of the packetpi has a valuevi,j .

• ∀pi ∈ T , ∃fi,j ∈ pi / fi,j= ti whereti is the timestamp
whenpi was captured.

• ∀ri, rj whereri is rank ofpi andrj is rank ofpj , if ri

> rj thenti > tj

Definition 2 (Value functionφ) Let T be a collected trace
of n packets,F the set of fields of all the packetspi of the
traceT , V the domain of values andP the set of packets.
V = R ∪ S ∪ NULL whereS is a finite set of strings.
We define the function:φ: P × F → V as the function
allowing to provide the value of a field in a specific packet
of the traceT :

• φ(pi, fm,n) = vi,n if fm,n ∈ pi and

• φ(pi, fm,n) = NULL if fm,n /∈ pi

3.2 Definition of timed extended invari-
ants

An invariant is an If-Then property. It allows expressing
the desired behavior of a communicating system and de-
scribes the correct order of messages collected in the trace
with potential time constraints. If specific conditions on the
exchanged messages hold, then the occurrence of a set of
events must happen. An event is a set of conditions on some
field values of exchanged packets.

Definition 3 (Conditions) Conditions are predicates on
packets’ fields values. Letpi andpi′ be two captured pack-
ets,V be the domain of values,fi,j be a field of the packet
pi, fi′,j′ be a field ofpi′ andx ∈ V . Two types of condi-
tions can be defined:cs (simple condition) andcc (complex
condition)

cs ::= φ(pi, fi,j) opx
We say that the packetpi satisfiescs iff vi,j opx is true.

cc ::= φ(pi, fi,j) opφ(pi′, fi′,j′)
We say that packetpi satisfiescc iff

vi,j opvi′,j′ is true.

op is an element ofOT = OR ∪OS whereOR={≤ , ≥, =,
6=, ∈} and OS={contain, contain not}. The operator must
respect these rules:

• If vi,j ∈ R then op∈ OR.

• If vi,j ∈ S then op∈ OT and:

– the operators that are inOS are used when a
field’s value has a string type.

Notice thatvi,j , vi′,j′ andx must be part of the same do-
main.

Definition 4 (Basic event) A timed extended eventej is a
set of conditions on relevant fields of captured packets.ej

=
⋃mj

k=1
cj,k, mj being the number of conditions.

Definition 5 (Event satisfaction) Letpi be a packet andej

an event withmj conditions andcj,k thekth condition ofej

A packetpi satisfies an eventej iff
∀ k ∈ [1, mj], cj,k is true

Definition 6 (Abstention of having an event)
If e is an event, then¬e is also an event.¬e is satisfied if
no packet that satisfies the evente occurs in the collected
trace.

Definition 7 (Successive Events) Letn ∈ N ∪ {−1}, t ∈
R

+∗ ∪ {−1} ande1 ande2 be two basic events.(e1; e2)n,t

is a complex event denoted also by Follows((e1, e2),n,t). It
is composed of two basic events.
[p1, p2] satisfies(e1; e2)n,t ⇔

• p1 satisfiese1 and

• p2 satisfiese2 and

• time(p1) < time(p2) < time(p1)+t if (t 6= −1) and

• rank(p1) < rank(p2) < rank(p1)+n if (n 6= −1).

In other words,[p1, p2] satisfies(e1; e2)n,t iff p2 follows
p1 and they are separated by at mostn packets andt units
of time.

Definition 8 (complex events: AND) Letn ∈ N ∪ {−1},
t ∈ R

+∗ ∪ {−1} and e1 and e2 two basic events.(e1 ∧
e2)n,t is a complex event denoted also AND((e1,e2),n,t). It
is composed of two basic events.
[p1, p2] satisfies(e1 ∧ e2)n,t ⇔
[p1, p2] satisfies(e1; e2)n,t or (p1, p2) satisfies(e2; e1)n,t

Intuitively, p1 andp2 satisfy(e1∧e2)n,t iff p2 andp1 are
separated by at mostn packets andt units of time.

Notice that in this definition the value ofn or t can be
-1, this is to “disable” the constraint on this variable (n or
t). This is highlighted later in the definition 10

3

Definition 9 (complex events: OR) Letn ∈ N ∪ {−1}, t ∈
R

+∗∪{−1} ande1 ande2 two basic events.(e1∨e2)n,t is a
complex event denoted also OR((e1,e2),n,t), It is composed
of two basic events.
p1 satisfies(e1 ∨ e2)n,t ⇔ p1 satisfiese1 or p1 satisfiese2

Definition 10 (Timed Extended Invariant) Let′′When′′ ∈
{BEFORE, AFTER}, n ∈ N ∪ {−1}, t ∈ R

+∗ ∪ {−1}
ande1 ande2 two events (basic or not). A timed extended
invariant is an IF-THEN expression that allows expressing
a property regarding the messages exchanged in a captured
traceP = {p1, ..., pm′}. It has the following syntax:

e1

When,n,t
−−−−−−→ e2

This property expresses that if the evente1 is satisfied (by
one or several packetspi, i ∈ {1, ..., m}), then event
e2 must be satisfied (by another set of packetspj, j ∈
{1, ..., m}) before or after (depending on theWhen value)
at mostn packets (ifn 6= −1) andt units of time (ift 6= −1).

It is important to highlight that in the invariant it is pos-
sible to disablen and/ort by setting their values to -1.

If (When = AFTER), we say that the invariant is a
simple invariant. If (When = BEFORE), we have an
obligation invariant.
Example:

According to this last definition, invariants can express
complex properties including data and time constraints. For
instance in a HttpPost restful web service, we can express
that if an OK message (the code 200) is received, then a
POST request must have been sent before. This is described
by the following obligation invariant:

e1 = {φ(p1, http.response.code) = 200 }
BEFORE,−1,6
−−−−−−−−−−→

e2 = {φ(p2), http.request.method) = POST,
φ(p2, tcp.srcport) = φ(p1, tcp.dtsport),

φ(p2, tcp.dtsport) = φ(p1, srcport)}

Notice that in this invariant, we do not take into account
the number of packets that are between the OK and the
POST messages, on the other hand, we specify that the de-
lay of time between the messages must be at most 6 seconds
which is the timeout value for this service.

4 Conformance passive testing approach for
Web services

4.1 Methodology overview

Conformance testing in the passive testing approach
aims to test the correctness of a Web service implementation
through a set of properties (invariants) and monitored traces

(extracted from the running Web service through probes
called also Points of Observation (PO)). The conformance
passive testing procedure follows these four steps:

• Step 1: Properties formulation. The relevant Web ser-
vice properties to be tested are provided by the stan-
dards or by the Web service experts. These properties
express the main requirements related to the communi-
cation between the Web partners in the context of Web
services.

• Step 2: Properties as invariants. Properties have to be
formulated by means of invariants that express local
properties; i.e. related to a local entity. Moreover,
the properties could be formally verified on the for-
mal system specification (as a timed automata) if it is
available, ensuring that they are correct vis-à-vis the
requirements.

• Step 3: Extraction of execution traces. In order to ob-
tain such traces, different PO are to be set up by means
of a network sniffer. The captured traces can be stored
in an XML format.

• Step 4: Test of the invariants on the traces. The
traces are processed in order to obtain information con-
cerning particular events as well as relevant data (e.g.
source and destination address, origin of data to ini-
tialize a variable, etc.). During this process, the test of
the expected properties is performed and a verdict is
emitted (Pass, Fail or Inconclusive). An inconclusive
verdict may be obtained if the trace does not contain
enough information to allow a Pass or Fail verdict.

4.2 Passive testing tool

Based on the methodology of our work, we developed
the TIPS tool [6] that performs automated analysis of the
captured traces to determine if the given timed extended in-
variants are satisfied or not. The TIPS tool aims to passively
test a deployed communicating system under test to verify if
it respects a set of properties. In the case of TIPS, invariants
describe the correct order of exchanged messages among
system entities with conditions on communicated data and
time. Passive testing consists of observing input and output
events of the system implementation in run-time and detect-
ing potential misbehavior or errors.

Figure 1 illustrates the modules of the TIPS tool. It has
three different inputs:

1) SUT Information on the Web service under test that
is being observed. This information represents data of in-
terest (for example protocol packets field names) that are
relevant to the automated analysis of the captured traces. 2)
The invariants defined in XML format. The non-respect of
an invariant may imply an error in the Web services.3) The

4

Figure 1. TIPS architecture for Web service
checking

collected traces represented in XML format (captured using
Wireshark1 for instance).

In order to use the TIPS tool, the first step consists in
defining the invariants and the data of interest. This can be
done by an expert of the Web service under test. The invari-
ants are then verified with respect to their XML schema.

The next step consists in capturing the communication
traces using a sniffer (we usedWireshark) and analyzing
them using the TIPS tool.

In the case of Web services, what we analyze are the
SOAP messages. A SOAP request is an XML-based Re-
mote Procedure Call (RPC) sent using the HTTP transport
protocol. The payload of the SOAP message is an XML
document that specifies the call being made and the param-
eters being passed.

Within the body of a SOAP message, XML namespaces
are used to qualify element and attribute names within the
parts of the document. Element names can be global (ref-
erenced throughout the SOAP message) or local. The local
element names are provided by namespaces and are used in
the particular part of the message where they are located.
Thus, SOAP messages use namespaces to qualify element
names in the separate parts of a message. Namespaces also
identify the SOAP envelope version and encoding style.

4.3 Invariants storage

Within an invariant, the<if> tag identifies the triggering
events. We call this part of the invariant theTrigger Context.
The events that need to be verified on the trace are found in
the<then> tag. We call this part of the invariant theVerdict
Clause.

1http://www.wireshark.org/

The invariants are written in XML format and are repre-
sented in anIf-Thenstructure. Basically, if in the trace we
find the events of theTrigger Context, then we need to ver-
ify that the events of theVerdict Clauseare part of the trace
as well.

The invariant in Figure 2 expresses that if a system re-
ceives a reply message, then this means that it wa sent a re-
quest message 10 seconds before. In this invariant we have
theTrigger Contextfrom lines 5 to 15, this means that if in
the collected trace, we find a message respecting the event
described in the<if> context (lines 6 to 14), the process of
verifying the invariant over the trace is triggered. TheVer-
dict Clause(lines 18 to 33) contains the events that must be
satisfied in the tracee once the verification process is trig-
gered.

1. ...
2.
3. <invariant name="INVARIANT 1">
4. <!- Trigger Context start here ->
5. <if>
6. <event reference= “true” id= “001”>
7. <condition>
8. <variable>Type</variable>
9. <operation>=</operation>
10. <value>REPLY</value>
11. </condition>
12.
13. ...
14. </event>
15. </if>
16. <!- Trigger Context end here ->
17. <!- Verdict Clause start here ->
18. <then type="BEFORE" max_skip="-1"

max_time="10">
19. <event id= “032”>
20. <condition>
21. <variable>Type</variable>
22. <operation>=</operation>
23. <variable>REQ</value>
24. </condition>
25. <condition>
26. <variable>Source</variable>
27. <operation>=</operation>
28. <variable type=="e001">Destination</value>
29. </condition>
30.
31. ...
32. </event>
33. </then>
34. <!- Verdict Clause end here ->
35. </invariant>
36.
37. ...

Figure 2. XML format for defining an invariant

4.4 Passive testing algorithm

This section presents the algorithm that allows the de-
duction of a verdict by analyzing the system trace with re-
spect to a set of predefined obligation invariants. The ob-
tained verdict for an invariant can be either: Pass, Fail or
Inconclusive meaning respectively that all events were sat-
isfied, that at least one event was not satisfied or that it is

5

not possible to give a verdict due to the lack of information
in the trace.

The algorithm used by TIPS analyzes the traces in, at
most, time complexity ofO(N2). This implies that the the
time required to analyze a trace is in the order ofN2 x I
x T whereN = the number of packets in the trace,I =
the number of invariants andT = the average time spent in
analyzing an invariant on a packet. This can be reduced to
Nlog(N) x I x T if we store information of each condition
for each packet in a hash table. This will be done for the
future version of the tool that will thus be able to efficiently
perform on-line invariant analysis.

The behavior of the obligation algorithm is illustrated (as
an abstraction) in the flowchart of Figure 3 where we con-
sider the traceT ={p1...pk}. The pointers Current packet
(CrPkt) and Reference packet (RefPkt) are used to traverse
T using the functionstepback(see Def 11). Note that since
the obligation invariant uses the logic “ifa happens thenb
should have happened beforea”, the trace is covered back-
wards starting frompk and finishing inp1.

Definition 11 (Stepback function) Using the elements of
Definition 1, letri and rh be the ranks of the packetspi

andph respectively in the traceT . We define the stepback
function:σ(pi) = ph whererh = ri - 1

Figure 3. Obligation algorithm flowchart

The algorithm traverses the trace backwards until the
triggering context events of the invariant are satisfied by a
packet. In this case, TIPS continues traversing (backwards)
the trace to verify the satisfaction of the verdict clause of
the invariant. If this is the case, TIPS issues a Pass verdict
for this invariant otherwise, a Fail or Inconclusive verdict is
issued.

The algorithm that allows checking simple invariants on
a captured trace is a variant of this algorithm. For simple

invariants, we begin the parsing process from the beginning
of the trace and move forward until the end of the trace.

5 Case Study

5.1 Travel Reservation Service descrip-
tion

The Travel Reservation Service(TRS) is an example of
real-life service for travel organization provided withinthe
Netbeans IDE platform [10]. It acts as a logical aggrega-
tor of three other Web services: Airline Reservation Ser-
vice (ARS), Hotel Reservation Service (HRS) and Vehicle
Reservation Service (VRS).

Figure 4. Behavior of the TRS described in
BPMN

The process assumes that an External Partner initiates
the process by sending a message that contains a partial
travel itinerary document. The client’s travel itinerary may
have: no pre-existing reservations, or a combination of pre-
existing airline, vehicle and/or hotel reservations.

The TRS examines the incoming client itinerary and pro-
cesses it for completion. If the client itinerary does not con-
tain a pre-existing airline reservation, the TRS passes the
itinerary to the ARS in order to make an airline reservation.
The ARS passes back the modified itinerary to the TRS. The
TRS conducts similar logic for both vehicle and hotel reser-
vations. In each case it will delegate the actual provisioning
of the reservation to the VRS and HRS. Finally, the TRS
passes the completed itinerary back to the original client,
completing the process.

A function of TRS calledBuild Itinerary allows the Ex-
ternal Partner to an itinerary for his traveling needs. This

6

partner initiates the process by sending a message that con-
tains a partial travel itinerary document. The Travel system
receives the itinerary request and contacts its service part-
ners (ARS, VRS and HRS) if needed. After the reservations
are done, the system sends back the completed itinerary to
the External Partner.

The behavior of the TRS and the communications with
the partner Web services are described using the Business
Process Modeling Notation (BPMN) [11] in Figure 4.

5.2 Test Objectives

Starting from the TRS requirements, a set of 12 test ob-
jectives (TO) has been defined. These objectives are related
to the order of the Web partners’ interactions or to data or
time constraints. Here we present a selection of 2 test ob-
jectives:

• TO1. A partial itinerary is sent to the TRS. It does not
contain any previous reservation (no airline, no vehi-
cle and no hotel). The TRS system contacts the ARS
partner, then the VRS partner, then the HRS partner,
before sending back the complete itinerary.

• TO11. The TRS does not receive any response from
the HRS within 20 seconds, a request for canceling the
reservation is sent to this partner. No hotel item is in-
cluded in the completed reservation.

Taking as an example the TO11, it can be represented as
a timed extended invariant format presented in the Section
3 as follows:

((e0;¬e1)−1,20)
After,−1,1
−−−−−−−→ e2

• e0: the TRS sends a reservation request to the HRS.
For the sake of simplicity we will write TRS-IP and
HRS-IP instead of the real ip of the machine where
the TRS and HRS are running. Thereforee0= {φ(p0,
ip.src)= TRS-IP,φ(p0, ip.dst)= HRS-IP,φ(p0, data)
contain “<itinerary>” }

• e1: the answer to the request is described bye0. There-
fore e1= {φ(p1, ip.src)= HRS-IP,φ(p1, ip.dst)= TRS-
IP, φ(p1, data)contain “<hotel>”}.

• e2:TRS sends the cancelation of the reservation to
the HRS. Thereforee2= {φ(p2, ip.src)= TRS-IP,φ(p2,
ip.dst)= HRS-IP,φ(p2, data)contain “<cancel>”}

5.3 Trace capture

The traces of the composed Web service have been cap-
tured through the PO installed on the TRS server to capture
the communications between the BPEL engine considered

as a black box and its external Web service partners (HRS,
VRS and ARS). Wireshark was used to capture and save the
traces in XML format. The main advantage of installing the
PO on the server runnin the orchestration (TRS) is that it
allows observing all exchanges between the BPEL engine
and its Web service partners.

5.4 Results and analysis

Applying TIPS to the traces was fast (less than 1 sec for
a trace of 1000 packets). The obtained verdicts were Pass
for some invariants and Inconclusive for the others. Some
of the invariants were never tested since they were not found
in the collected traces. Indeed, the collection of a trace from
a running system should be long enough to cover all the ex-
pected Web service scenarios. Otherwise, a simulation of
these scenarios must be performed. For example, to be able
to test the 11th test objective, the hotel reservation service
must not answer the itinerary request (or answer it 20 sec-
onds after it receives the request). This kind of situation is
not very frequent in a real system deployment and to test it
(i.e test the invariant describing this test), we would need
to wait for a sufficiently long time or we can simulate the
non answer by shutting down the hotel Web service. The
complexity of TIPS (O(N2)) is illustrated in Figure 5 as a
function depending on the length of the trace.

 0

 50

 100

 150

 200

 250

 300

 0 10000 20000 30000 40000 50000 60000

T
im

e
(s

)

Trace Length (number of packets)

Figure 5. Processing time as a function of the
length of the trace

During this experiment we finally tested the invariants at
least once. The obtained verdicts were all PASSED which
demonstrate the correctness of the Web service.

To prove the efficiency of our TIPS passive testing tool,
we manually edited the file containing traces of Travel
Reservation Service. We have, for instance, deleted a packet
that violates the invariant number 1. The verdict given then
by the tester was FAIL: the violation of the invariant has

7

been detected and the tool provided the packet that violates
it which indicates the correctness of TIPS.

6 Conclusion

This paper proposed a new passive conformance test ap-
proach for Web services. Besides, it illustrates that passive
testing is relevant when Web services are already deployed
or provided as back box implementations.

We have also provided a new approach for testing the
collaboration between different systems, focusing in partic-
ular on the communication between SOA partners. We have
proposed and evaluated an extensible and more flexible ap-
proach were properties called timed extended invariants are
checked on a collected trace.

Our approach is flexible enough to detect new errors,
such as functional errors and security flaws. The invari-
ants can be updated to include new elements, for instance,
feedback resulting from experimentations, and can also be
combined with active testing to deduce a verdict after a Web
service stimulation.

Finally the methodologies and tools were applied to a
real world case study to demonstrate the effectiveness of
this approach.

Currently, TIPS uses a collected trace to perform the test-
ing, however, we are working towards improving this tool
to be able to analyze packets in real time in order to detect
functional/security violations on the fly.

References

[1] E. Bayse, A. Cavalli, M. Nunez, and F. Zaïdi. A
passive Testing Approach Based on Invariants: Ap-
plication to the WAP. Comput. Netw. ISDN Syst.,
48(2):247–266, 2005.

[2] A. Benharref, R. Dssouli, M. A. Serhani, and
R. Glitho. Efficient traces’ collection mechanisms for
passive testing of web services.Inf. Softw. Technol.,
51(2):362–374, 2009.

[3] M. Bozga, S. Graf, I. Ober, I. Ober, and J. Sifakis. The
IF Toolset. In M. Bernardo and F. Corradini, editors,
SFM, volume 3185 ofLecture Notes in Computer Sci-
ence, pages 237–267. Springer, 2004.

[4] Business Process Execution Language V2.0,
2007. http://docs.oasis-open.org/wsbpel/2.0/wsbpel-
v2.0.pdf.

[5] T.-D. Cao, P. Félix, R. Castanet, and I. Berrada. Test-
ing web services composition using the tgse tool.
IEEE Congress on Services, 0:187–194, 2009.

[6] A. R. Cavalli, E. Montes De Oca, W. Mallouli, and
M. Lallali. Two Complementary Tools for the For-
mal Testing of Distributed Systems with Time Con-
straints. InDS-RT ’08: Proceedings of the 2008 12th
IEEE/ACM International Symposium on Distributed
Simulation and Real-Time Applications, pages 315–
318, Washington, DC, USA, 2008. IEEE Computer
Society.

[7] W.-I. Consortium. http://www.ws-i.org/. 2009.

[8] G. M. E. Christensen, F. Curbera and S. Weerawarana,
15 March, 2001. Web Services Description Language
(WSDL) 1.1.http://www.w3.org/TR/wsdl.

[9] M. Lallali, F. Zaidi, A. Cavalli, and I. Hwang. Au-
tomatic Timed Test Case Generation for Web Ser-
vices Composition. InECOWS ’08: Proceedings of
the 2008 Sixth European Conference on Web Services,
pages 53–62, Washington, DC, USA, 2008. IEEE
Computer Society.

[10] NetBeans Framework. http://www.netbeans.org/.
2009.

[11] OASIS. http://www.bpmn.org/. 2009.

[12] Y. Yan and P. Drague. Monitoring and Diagnosing Or-
chestrated Web Service Processes. InProceedings of
the 2007 IEEE International Conference on Web Ser-
vices, Salt Lake City, Utah, USA, 2007.

8

