
WebMov: A dedicated framework for the modelling and testing of Web Services
composition

Ana Cavalli1, Tien-Dung Cao2, Wissam Mallouli3, Eliane Martins4,
Andrey Sadovykh5, Sebastien Salva6, Fatiha Zaidi,7,8

1 TELECOM SudParis - CNRS SAMOVAR, F-91011 Evry, France.
2 LaBRI - CNRS - UMR 5800, Univ. of Bordeaux 1

3 Montimage, 39 rue bobillot, 75013 Paris
4 Unicamp, Institute of Computing (IC), Brasil

5 SOFTEAM, 21avenue Victor Hugo, 75016 Paris
6 LIMOS,Univ. of Auvergne, Aubìere, France

7 Univ. Paris-Sud, LRI, UMR 8623, Orsay F-91405;8 CNRS, Orsay, F-91405.

Abstract—This paper presents a methodology and a set
of tools for the modelling, validation and testing of Web
service composition, conceived and developed within the French
national project WebMov. This methodology includes several
modelling techniques, based mainly on some variations of
Timed Extended Finite State Machines (TEFSM) formalism,
which provide a formal model of the BPEL description of Web
services composition. These models are used as a reference for
the application of different test generation and passive testing
techniques for conformance and robustness checking. The
whole WebMov methodology is integrated within a dedicated
framework, composed by a set of tools that implement the
model representation, the test generation and passive testing
algorithms. This framework also permits the interaction of
these tools to achieve specific modelling and testing activities
in a complementary way. A case study based on a real service,
a Travel Reservation Web Service, is presented as well as the
results of the application of the proposed WebMov methodology
and tools.

I. INTRODUCTION

SOA (Service Oriented Architecture) and Web services
are gaining industry wide-acceptance and usage. They are
very popular because they offer complete interoperability
between systems. This popularity implies that Web service
implementations grow in size and complexity, the necessity
for testing their reliability is becoming more and more
crucial. Besides knowing whether a Web service satisfies
its functional requirements, it is also important for a user
to know whether each service behaves appropriately when
interoperating with other services. New services can be
constructed by composition of services. This composition
mechanism is called orchestration. To achieve compositions
a language, the WS-BPEL (BPEL for short), has emerged
as a standard. In this paper, we present the framework that
has been developed within the national project WebMov1

1Research supported by the French National Agency of Research, http:
//webmov.lri.fr

to contribute to the modeling and testing of Web services
orchestration. The objectives of this platform are manifold.
We define a methodology based on a high level abstraction
view and a SOA based logical architecture for the design
and composition of Web services. Based on the BPEL model
derived from this architecture, we derive formal models from
which test cases are generated. The latter allow us to apply
model-based testing techniques and to reason with a non
ambiguous model to automate the test cases generation.
These latter have to take into account the specific features of
BPEL, all its constructs, and its data part described by XML
schemas. We also propose in this framework a monitoring
approach based on passive testing technique which permits
to test the deployed Web services without interacting with
it. To complement the conformance testing, we also first
test the Web services robustness. We address this issue by a
black box stateless Web services testing method that sends
to the implementation unexpected events and then a fault
injection method. This one, by aiming to provoke errors and
failures, permits to assess error recovery and fault tolerant
mechanisms. We have developed a tools chain covering the
different steps previously mentioned and hence the different
steps of services life cycle (modelling, orchestration, test
generation and execution) as well as service operation by
monitoring the services.

The paper is structured as follows. Next Section discusses
related work. Section III describes the tools chain devel-
opped inside the WebMov project. In Section IV we present
the logical architecture and sketch one formal model used by
the testing generation method. Section V lay out our model-
based testing approach for conformance and robustness
testing. Section VI describes the passive testing technique
and also fault injection technique. Finally, Section VII
presents the experimentals results and Section VIII ends with
conclusions and perspectives.

II. RELATED WORK

It exists several tools that permit to perform unit testing
of Web services composition. We can cite SOAPUI or
BPELUNIT [1]. However, test cases are mainly generated
using empirical approaches, and without automation. The
tests are handcrafted. By surveying the literature, we found
approaches that only address the test of services by focusing
on the services signatures, i.e. their WSDL descriptions [2].
A Web service, especially composite service, described
in BPEL, provides also a behavioural description. To test
the behaviour, several works have been proposed that are
based on classical code coverage criteria and different tech-
niques have been used, white-box testing [3]–[5], model-
checking [6], [7]. Within the WebMov project, we propose
efficient algorithms to perform model-based testing that
take into account both level of Web services description,
i.e. the signature level and behaviour level. By the use of
formal approach, we can generate automatically test cases
to establish the conformance of the implementation. We
also support robustness testing and provide an integrated
framework that cover the life cycle of composite Web
services. To our knowledge, it do not exist such an initiative
in this domain.

III. D ESCRIPTION OF THE TOOLS CHAIN

A. Tools chain Overview

The main objective of the WebMov project is to study
and develop different methodologies and conceive associated
software tools that allow formally designing, testing and val-
idating Web Services composition. These tools are integrated
in a dedicated framework (see Figure 1) that implements
these methods and algorithms and allows the interactions
between different tools in order to achieve specific tasks.

In the tools chain,Modelio can be considered as the
starting block of WebMov methodology. This tool allows to
automatically generate a composed Web service based on its
logical architecture and on UML profile. Three types of files
are generated: (1) the WSDL interfaces of the main service
and its Web partners, (2) the BPEL process file describing
the composition of the Web services (3) and the data part
described in XSD format.

These generated files can be used for two different pur-
poses. The first purpose is the classical one and corre-
sponds to the model driven engineering (MDE) that aims
at supporting a quick implementation and deployment of
designed Web services. In this case, the deployed Web
service is considered as the system under test and the other
WebMov tools will rely on other inputs (e.g. the Web service
requirements document) to be able to generate tests and
check the correctness of the implemented Web service.

The second usage of the output files ofModelio are
destined to testing purposes. Indeed, based on the WSDL
description of each Web service, we can use theWS-AT

tool to perform a unit test of individual Web services.WS-
AT gives a testing verdict on the conformance of the Web
service to its description provided in the WSDL and also
checks its robustness. It checks the operations existence,the
exceptions management, the type of returned values and also
checks the Web service robustness by observing whether
each operation does not crash or hang by calling it with the
hazard “using unusual values”.

The WSDL files combined with the BPEL file can be
considered as inputs for theBPEL2IF tool. This tool con-
siders the BPEL as the specification model and generates a
formal model of the composed Web service as an IF timed
automaton [8]. IF formalism is well adapted to describe
communicating systems like Web services and is composed
of active processes instances running in parallel and inter-
acting asynchronously through shared variables and signals
via channels or by direct addressing. Based on the formal
specification of the Web service under test (e.g. the IF formal
specification), a set of test generation tools is conceived
and implemented during the WebMov project. These tools
relie on different models (IF forTestGen-IF, EIOTA for
TGSEand STS forSTG) and allow to automatically generate
abstract test cases. These tests are translated to concrete
XML tests that can be interpreted by the activeBPEL tool.

The execution of the generated test cases can be per-
formed by usingactiveBPEL tool that allows to emulate
the composed Web service and its partners.ActiveBPELis a
BPEL engine that allows the managing of the emission and
reception of SOAP messages and the addressing of Web
services functionalities as described in the orchestration of
the BPEL process.ActiveBPELcan be easily combined with
the BPELUnit framework that allows unit testing of Web
services. In the BPELUnit framework, the composed Web
service under test is isolated from its real environment. Itis
deployed in an application server (e.g. Tomcat) while the
client and the service partners are emulated respectively
by BPELUnit as a customer track and partners tracks.
When running tests, all tracks are run simultaneously as
independent services.

Some fault injection strategies can be applied on the Web
service to test its robustness. TheWSInjecttool permits to
inject both communication and interface faults and can be
used to perturb communication between a client application
and a single Web service or between services from a global
composition.

ActiveBPELandWS-Injecttools interact with Web service
under test and stimulate it to analyze its reaction.TIPS
allows to passively testing the deployed composed Web ser-
vice under test (SUT) without disturbing its natural run-time
(non intrusive testing technique). It allows to check if a set of
properties called invariants are respected on a collected trace
of the Web service (the capture of the trace can be performed
by a classical sniffer e.g. Wireshark). The invariants are aset
of behavioral constraints with time constraints that need to

Figure 1. WebMov tools chain.

be respected by the system under test. This may include the
sequence order of exchanged messages, the communicated
data, etc. This passive technique can be combined with the
active testing and fault injection techniques in order to emit
a verdict about the correctness of the deployed Web services.

IV. L OGICAL ARCHITECTURE AND FORMAL MODEL

A. The logical Architecture

The Logical Architecture is the starting point of our
approach. This one was developed by SOFTEAM [9] in
the frame of Enterprise Architecture modeling approach
instrumenting architecture frameworks such as TOGAF [10]
and PRAXEME [11]. The Logical Architecture is dedicated
to fill the gap between the business models and the technical
design models by providing a simple and flexible language
for describing the service oriented architectures. Indeed,
following the architecture frameworks, on the business
model level, the goals, requirements, business semantics and
organization are described. On the technical design model
level, UML models [12] for specific platforms are elabo-
rated. In order to ensure the alignment between business
and IT systems, the service layer models are elaborated,
which allows business domain specialist and IT specialiststo
efficiently collaborate. The Logical Architecture defines the
service layer of the IT system: service components, services,
exchanged messages, components assembly and finally the
components behavior with extended BPMN [13] models.
Service components represent the main functional building
blocks of the system. They are linked to each other through

required and provided interfaces services. The services
provide operations parameterized with message types. The
message types define the exchanged data. The behavior of
the service components is expressed in BPMN, which is
close both to the business and IT specialists. In the context
of the project, the Logical Architecture was extended with
specific model transformations targeting the Web Service
platform. With these transformations, the message descrip-
tions are translated into XML Schemas and WSDL, while
the behavioral descriptions in BPMN are translated into
BPEL. In addition, specific modeling language extensions
were implemented in order to introduce the test purposes at
the SOA modeling stage. This is achieved by specific anno-
tations, which are attached to model elements. This allows
generation of skeletons for test purposes specifications.

B. Formal Model

Several formal models are proposed in this paper and
are associated to a testing method. As said in section III,
test generation tools have been developed in our project.
Each one relies on a different test approach and also uses
different formal models such asIF for TestGenIF , EIOTA
for TGSE andWSOTF, and STSfor SetGen. One formal
model, the TEFSM [14] (i.e., Timed Extended Finite State
Machine) can cover two timed models (IF and EIOTA),
of our formal model based approaches. This formalism
is closely related to Timed Automata [15] and permits
to carry out timing constraints, clocks, state invariants on
clocks, properties on transitions and data variables. The tool

BPELtoIF is able to generate from the BPEL the formal
model. We have also defined in an process algebraic way
the transformation of BPEL in STS [19]

V. M ODEL-BASED TESTING

Model-based testing of Web service consists in deriving a
suite of test cases from a model representing its behaviour.
Such a model can be generated from an informal specifi-
cation of the service and designed by software engineers
through the use of diagram manipulation tools. Moreover,
Web services can express time constraints; consequently,
engineers developing these services are confronted with
functional requirements with time constraints. One of the
main objectives of the WebMov project is the definition of
model-based testing methods to test web services composi-
tion.

A. Conformance Testing

For Web services composition, we can distinguish two
types of testing: unit and integration testing [2, 3]. Unit
testing is used to find bugs on an isolated (separated
from partners) composite Web service. Integration testing
is used to test this composite service in combination with
its partners. In addition, conformance testing establishes
that the implementation respects its specification. We know
that testing conceptually consists of three activities: test
case generation, test case execution and verdict assignment.
Depending the test approach, these activities can be applied
in parallel or in sequential. We present here two test ap-
proaches:o f f line testing andonline testing.

1) Offline testing:The first approach is based on the unit
testing of an implementation of a Web service composition,
based on a black box approach [16]. This last means that a
composite Web service is tested without any information on
its internal structure. In this approach, system requirements
are specified as test purposes, which will be transformed
on tests to be executed against the service implementation.
The specification of the Web service composition is done
using BPEL, which permits to describe the service taking
into account the data and flow requirements, and the WSDL
descriptions. To facilitate the test generation a formal model
of BPEL is proposed. With this aim, it is proposed a BPEL
transformation into an Intermediate Format (IF) language
which is associated to an efficient open-source simulator.
Using this simulator, we can explore, through exhaustive
simulation, the state space of the model and generate test
cases. Moreover, this language is based on communicating
timed automata extended with variables, which can handle
the BPEL constructs. As we pointed out before, the proposed
black box approach is based on test purposes and a confor-
mance relation. To guide the test generation, we developed
a test generation algorithm with (timed) test purposes. The
conformance relation is defined as a timed-traces-inclusion
relation. We introduced, in the IF simulator, a Hit-or-Jump

exploration strategy [17] to generate the test cases in a timely
fashion. The proposed methods are implemented by a set of
tools, one is devoted to the BPEL transformation approach,
and the other one to implement the test generation algorithm
by extending the IF toolset [8].

The second approach is based on an existent tool (i.e.,
TGSE). As previously, we focus on unit testing of web
service composition, based on black-box approach and sys-
tem requirements are also specified as test purposes [18].
But in this approach, both the specification (i.e. BPEL and
WSDL) and the test purpose are translated into an EIOTA.
Secondly, these EIOTAs are modeled as a communicating
system (CS) by declaring a set of rules to synchronize the
actions of test purpose and the actions of its specification.
Afterwards, using TGSE to simulate this CS, we have an
output XML file if a trace that satisfies the test purpose
is found. Finally, this trace is run by BPELUnit against
the orchestration implementation to give the verdict. This
approach complements the work on timing constraints of
the first approach by solving constraints related to time and
giving intervals for such constraints. Such intervals can be
used by the first approach to assign values to clocks.

Finally an approach based on Symbolic Transition Sys-
tems, which support data computations and exchanges,
while avoiding the state explosion problem, has been de-
veloped [19]. The proposed methodology is as follows: the
orchestration specification is first translated into a formal
model, namely a Symbolic Transition System (STS). In a
second step, a Symbolic Execution Tree (SET) is computed
from this STS. It supports the retrieval of the STS execu-
tion semantics, without producing a state explosion in the
presence of unbounded data types, as used in full-fledged
BPEL. Given a coverage criterion, from the SET a set of
execution paths is generated, and are finally run by a test
oracle against the orchestration implementation. Compared
to the previous approaches, this approach is more efficient
to handle the XML data part and can circumvent the state
space explosion.

2) Online testing: Online testing is an approach that
combines test generation and execution: only a single test
primitive (input event or time delay) is generated from the
model at a time which is then immediately executed on the
service under test (SUT). Then the output produced by the
SUT as well as its time of occurrence is checked against
the specification [20]. At a time, a new test primitive is
produced based on values of previous events or random
selection if there is some acceptable options and so forth
until we arrive a final state. It means that the complete
test scenario (test case suite and data) is built during test
execution. This approach does not use test purposes. In
WebMov, this latter is also applied for unit testing of web
service composition [21].

B. Robustness Testing

Web services are distributed in nature, and can be used
by different and heterogeneous client applications. So, Web
service trustability is ensured in condition that they also
behave correctly despite the receipt of unspecified events,
calledhazards. In other words, Web services must be robust.
The Webmov project tackles to Web service robustness by
proposing two testing techniques, a black box stateless Web
service testing method and a fault injection method.

Web services dip into a peculiar environment, spawned
by SOAP. This one modifies and reduces the message
observability on account of message serialization and of
SOAP processors (first Web server component which filters
out the SOAP requests and may produce responses instead
of Web services). So, in a preliminary study, we analyzed
the Web service observability in the presence of hazards to
determine those which can really reveal robustness issues.In
[22], we concluded that only the hazards ”Replacing /Adding
operation names” and ”Using unusual values” are relevant to
stateless and statefull Web service testing. Any other hazard
is blocked by SOAP processsors. From this analysis, we
propose the two following approaches:

• black box Web service robustness testing: This method,
implemented in theWSATtool (Web Service Automatic
Testing, see section III), generates and executes test
cases automatically from WSDL descriptions, in order
to test both theExistence of all service operations
and therobustness of all Web service operations. This
method is particularly interesting for testing stateless
Web services or BPEL process partners.
For operation existence, each Operation is called with
random parameter values respecting the WSDL file.
An operation exists if it returns either a response
type as described in the WSDL file or a SOAP fault
whose the cause is different from ”Client” or and ”the
endpoint reference not found”. (This first cause means
the operation is called with bad parameter types. The
second cause means that the operation name does not
exist).
Then, the operation robustness is tested by observing
whether each operation does not crash or hang by
calling it with the hazard ”using unusual values”. This
latter is modeled, for each value type, by an XML set
composed of values used in software testing which are
assumed to have a high bug-revealing rate when used
as inputs [23]. An operation is robust if either it returns
a ”classical” response (as described in WSDL file), or
a SOAP fault whose the cause is equal to ”Remote-
Exception”. We consider that the Web service is not
robust if no response is observed or if another kind
of SOAP fault, constructed by the SOAP processor, is
received. The test case schema is illustrated in figure
2. ”pass” means that the operation exists and is robust,

”inconclusive” means that the operation exists only and
the ”fail” verdict is given when both the operation
existence and robustness are not satisfied.

• fault injection: This method is based on the injection
of faults in SOAP messages to test the stateless Web
service and BPEL process robustness. This method has
been implemented in theWSInjecttool. In summary,
fault injection is modeled by dedicated rules allowing
to delete messages, to augment the response delay, to
duplicate messages or to corrupt them. A Web service
is robust if despite fault injections, it is still available.
The test case execution is founded on a passing testing
architecture which is described below.

fa i l

o p _ c a l l (v)

o p _ r e t u r n (r)
r= (resp , t)

o p _ r e t u r n (r)
r = S O A P f a u l t
c a u s e = " c l i e n t "
o r
c a u s e = " t h e e n d p o i n t
r e f e r e n c e . . . n o t f o u n d "

p a s s fa i lp a s s

n o
r e s p o n s e

o p _ r e t u r n (r)
r = S O A P
fau l t
c a u s e =
" R e m o t e
E x c e p t i o n "

i n c o n c l u s i v e

o p _ r e t u r n (r)
r = S O A P f a u l t

c a u s e < > " c l i e n t " o r
c a u s e < > " t h e e n d p o i n t

r e f e r e n c e . . .
n o t f o u n d " o r

c a u s e < >
" R e m o t e

E x c e p t i o n "

Figure 2. Test case schema for testing the operation existence

VI. PASSIVE TESTING AND FAULT INJECTION TESTING

A. Passive testing

Passive testing [24] consists in observing during run
time the exchange of messages (input and output events)
between distributed Web services that collaborate to achieve
a meaningful business goal. The term passive means that the
tests do not disturb the natural operation of Web services
(partners) under test. The record of the observed events
is called a trace. This trace will be compared to a set
of properties derived from the Web services composition
specification. The passive testing techniques are applied,in
particular, because they are non-intrusive whereas the active
testing techniques need to stimulate the system under test
and may cause its crush. In addition, passive testing can be
applied on a system in its real context (with real users).

In the context of WebMov, TIPS tool [25] (Test of
Invariants for Protocols and Services) is conceived and
adapted to fit the Web services requirements. This tool aims
at passively testing a deployed communicating Web sevice to
verify if it respects a set of properties called invariants [24].
These invariants describe the correct order of exchanged
messages among Web system entities with conditions on
communicated data and time.

In order to use the TIPS, the first step consists in defining
the invariants. This can be done by an expert of service under
test that understands in details the studied service composi-
tion. The next step consists in capturing the communication
traces using Wireshark and analysing them using the TIPS

tool. In the case of violated invariants, involved packets are
provided to help developers to make a diagnosis of the error
causes. Can be removed.

B. Fault injection testing technique

Fault injection is a powerful testing technique which
consists to introduce deliberate errors in a system and
observe its behavior. This technique is usually used to assess
error recovery and fault tolerant mechanisms, to perform
some dependability measures such as availability, integrity
and performance or simply to understand the effects of real
faults.

In the case of Web services, faults can be injected at both
interface and communication levels. Interface faults affect
operations input/output parameters and other SOAP message
fields by corrupting data or assigning invalid parameter
values. On the other hand, communication faults consider
SOAP messages as black boxes. Besides corrupting carried
data, SOAP messages are replicated, deleted or delayed.

WSInject[26] is a Web service fault injector able to inject
both interface and communication faults. In the context of
WebMov, this tool is used to study Web services robustness.

WSInject is a script driven tool. Users can specify the
type of faults and the injection conditions using a sim-
ple and powerful script grammar. During the experiments,
the injector intercepts all the SOAP messages exchanged
between service partners. Then, according to the injection
script, it will inject errors only on messages fitting the
injection conditions. Faults can be injected between a client
application and its Web service or between service partners
within the same composition.

VII. E XPERIMENTATIONS AND RESULTS

In this section, we present the experimentations performed
within the WebMov project on a real-life case study: a travel
reservation service Web service (TRS). Other experimenta-
tions have been processed on other case studies but for sake
of space, we will only present those that dealt with TRS. The
main objectives of these experimentations are to evaluate
the methods and tools developped within the WebMov tool
chain in order to demonstrate their effectiveness and their
scalability. For this reason, the choice of the case study
was very important since we wanted to apply our solution
to a complete Web services context that is able to identify
realistic requirement and test purposes.

A. Case study: a Travel Reservation Service

The Travel Reservation Service (TRS) is an example
of real-life service for travel organization provided within
the Netbeans IDE 6.5.1 platform [27]. It acts as a logical
aggregator of three other Web services: Airline Reservation
Service (ARS), Hotel Reservation Service (HRS) and Vehi-
cle Reservation Service (VRS).

Figure 3. Behavior of the TRS described in BPMN

The process assumes that an External Partner initiates the
process by sending a message that contains a partial travel
itinerary document. The client’s travel itinerary may have:
no pre-existing reservations, or a combination of pre-existing
airline, vehicle and/or hotel reservations.

The TRS examines the incoming client itinerary and
processes it for completion. If the client itinerary does not
contain a pre-existing airline reservation, the TRS passesthe
itinerary to the ARS in order to add the airline reservation.
The ARS passes back the modified itinerary to the TRS. The
TRS conducts similar logic for both vehicle and hotel reser-
vations. In each case it will delegate the actual provisioning
of the reservation to the VRS and HRS. Finally, the TRS
passes the completed itinerary back to the original client,
completing the process.

The behavior of the TRS and the communications with
the partner Web services are described using the Business
Process Modeling Notation (BPMN) [13] notation in Figure
3.

B. Experimentations and results

Several tools have been applied on the TRS in order
to check its conformance and detect potential errors or
misconfigurations in its implementation. A formal specifi-
cation of the TRS Web service has been derived from its
BPEL and WSDL files using BPEL2IF tool. The generated
specification has 31 processes, 109 states and 135 transitions
(almost 3 states per IF process). These metrics demonstrate
that we are dealing with a large system composed of many
processes dealing with small tasks. This IF specification
is used as a first input to TestGen-IF tool in order to
automatically generate a set of test cases.

Similarly, and starting from the TRS requirements [28],
set of 12 test objectives (TO) has been defined. These

objectives are related to the order of the Web partners’
interactions or to data or time constraints. Here we present
a selection of 2 test objectives:

• TO1. A partial itinerary is sent to the TRS. It does not
contain any previous reservation (no airline, no vehicle
and no hotel). The TRS system contacts the airline
reservation service partner, then the VRS partner, then
the hotel reservation service partner, before sending
back the complete itinerary.

• TO11. The TRS does not receive any response from
the HRS within 20 seconds, a request for canceling
the reservation is sent to this partner. No hotel item is
included in the completed reservation.

These test objectives have been formalized and used in
different testing tools in order to automatically generatetest
cases. The following table presents the number of generated
test cases and their execution results. Notice that the number
of test cases changes from a tool to another depending on
the length of each test case (a test case can cover several test
purposes in the same time) and on the data used in each test
case (we can have many test cases for the test scenario using
different values for the same variable). Let us note that the
implementation that has been tested is the BPEL provided
by netbeans and the formal models have been produced from
the BPEL generated from the logical architecture, i.e. by the
Modelio tool.

Table I
ACTIVE TESTING RESULTS OFTRS.

Tool Test Cases Pass Fail
TestGen-IF 11 10 1
WSOTF 20 20 0
WS-AT 200 200 0

Notice that the fail verdict obtained for TestGen-IF tool is
due to the application of the test cases to a mutant of TRS
Web service where the messages correlation were removed.
Indeed, we intentionally introduced an error in the Web
service and the execution (using ActiveBPEL engine) of test
cases generated using TestGen-IF tool was able to detect the
inserted error. As future work, we intend to generate more
mutants of TRS Web service and test them using different
tool in the WebMov integrated framework.

The passive testing technique has been also applied on the
TRS Web service using TIPS tool. Twelve invariants have
been designed based on the TRS test objectives. The traces
of the composed Web service have been captured running
the implementation as a black-box through the PO installed
in the TRS server to capture the communications with the
external systems (HRS, VRS and ARS). Wireshark was used
to save the traces in XML format. The main advantage
of using the selected PO is that it allows observing all
exchanges between the BPEL engine and its Web partners.

Applying TIPS to the traces was rapid (less than 1 sec. for
a trace of 1000 packets). The obtained verdicts were Pass

for some invariants and Inconclusive for the others. Some of
the invariants were never tested since they were not found in
the collected traces. Indeed, the collection of a trace froma
running system should be long enough to be sure to cover all
the expected Web service scenarios. Otherwise, a simulation
of these scenarios must proceed. For instance, to be able to
test the 11th test objective, the hotel reservation servicemust
not answer the itinerary request (or answer it 20 seconds
after it receives the request). This kind of situation is not
very frequent in a real system deployment and to test it (i.e
test the invariant describing this test), we would need to
wait for a sufficiently long time or we can simulate the non
answer by shutting down the hotel Web service.

During this experiment we finally tested the invariants at
least once. The obtained verdicts were all PASSED which
demonstrate the correctness of the Web service. And to prove
the efficiency of TIPS tool, we manually edited the file
containing traces of Travel Reservation Service. We have, for
instance, deleted a packet that violates the invariant number
1. The verdict given by the tester was FAIL: the violation
of the invariant has been detected (and provides the packet
characteristics that violate the invariant) which indicates the
correctness of TIPS.

We also applied fault injection to the TRS application.
For the moment, the fault model applied was SOAP message
corruption. Faults were injected in integer fields of messages
between the BPEL client and its partner services. In other
words, integer fields, like dates, for example, were substi-
tuted by wrong values. In all cases the BPEL process had
a normal end. This indicates a lack of robustness, since the
application accepts any values as valid. For example, dates
like Null/Maxint/Minint were accepted as valid reservation
dates.

VIII. C ONCLUSIONS ANDFUTURE WORK

In this paper we presented the research work and the
experimental results of the project WebMov, whose main
objective is to study different methodologies and to develop
a set of tools covering all the phases of the development
and validation cycle of Web Services composition. As
presented in the paper, different formal techniques have
been developed for web services modelling, in particular,
those based on different variants of Timed Extended Finite
State Machines. This allowed taking into account timed
features, which are crucial for characterising web servicebe-
haviour. Another contribution is the design and development
of different test generation and passive testing techniques.
These techniques have been combined with fault injection
in order to perform conformance and robustness testing.
The proposed techniques for modelling and test have been
integrated in a dedicated framework, in which the tools
implement these methods and algorithms allowing the inter-
action between different tools to perform specific modelling
or testing activities. All the techniques have being applied

to several case studies. In this paper, we presented one
of the most representatives, the Travel Reservation Service
(TRS), which is a real-life service provided in Netbeans
IDE 6.5.1 platform [27]. The experimentation results show
that these techniques are complementary and contribute to
increase the detection of faults and robustness of web service
compositions. As future work, we plan to continue our work
on service composition and testing, in particular we plan
to work on the design of new composition algorithms in
order to take into account the evolution of services. This
implies enhancing the formal service description to include
user requests, information provided by the context, as well
as the evolution of service composition environments.

ACKNOWLEDGMENT

We would like to thank the members of the project that
have contributed to its success. We thank A. Abherve, L.
Bentakouk, F. Bessayah, M. Lallali, E. Montes de Oca, G.
Morales, I. Rabhi.

REFERENCES

[1] P. Mayer, “Design and implementation of a framework for
testing bpel compositions,” Ph.D. dissertation, Leibnitz Uni-
versity, Germany, 2006.

[2] C. Bartolini, A. Bertolino, E. Marchetti, and A. Polini,
“Towards Automated WSDL-Based Testing of Web Services,”
in Proc. of ICSOC, ser. LNCS, vol. 5364, 2008.

[3] C. Bartolini, A. Bertolino, E. Marchetti, and I. Parissis,Archi-
tecting Dependable Systems, ser. LNCS, 2008, vol. 5135, ch.
Data Flow-Based Validation of Web Services Compositions:
Perspective and Examples.

[4] L. Mei, W. Chan, and T. Tse, “Data Flow Testing of Service-
Oriented Workflow Applications,” inProc. of ICSE, 2008.

[5] Z. Li, W. Sun, B. Jiang, and X. Zhang, “BPEL4WS Unit
Testing: Framework and Implementation,” inProc. of ICWS,
2005.

[6] Y. Zheng, J. Zhou, and P. Krause, “An Automatic Test
Case Generation Framework for Web Services,”Journal of
Software, vol. 2, no. 3, pp. 64–77, 2007.

[7] J. Garćıa-Fanjul, J. Tuya, and C. de la Riva, “Generating Test
Cases Specifications for BPEL Compositions of Web Services
Using SPIN,” inProc. of WS-MaTe, 2006.

[8] M. Bozga, S. Graf, I. Ober, I. Ober, and J. Sifakis, “The IF
Toolset,” in SFM, ser. Lecture Notes in Computer Science,
M. Bernardo and F. Corradini, Eds., vol. 3185. Springer,
2004, pp. 237–267.

[9] SOFTEAM, Pratical Guide to the Logical Architecture.
[Online]. Available: http://www.modeliosoft.com/component/
docman/doc\ download/3-entreprise\-architecture\
-pratical\-guide\-to\-logical\-architecture.html

[10] “The open group architecture framework,”
http://www.togaf.org.

[11] “PRAXEME methodology,” http://www.praxeme.org.

[12] OMG, Unified Modeling Language, http://www.uml.org.

[13] OASIS, “http://www.bpmn.org/,” 2009.

[14] W. Mallouli, M. Lallali, G. Morales, and A. R. Cavalli, “Mod-
eling and Testing Secure Web-Based Systems: Application to
an Industrial Case Study,” inProc. of SITIS, Bali, Indonesia,
November 30 - December 03 2008.

[15] R. Alur and D. L. Dill, “A theory of timed automata,”
Theoretical computer science, vol. 126, no. 2, pp. 183–235,
1994.

[16] M. Lallali, F. Zaidi, A. Cavalli, and I. Hwang, “Automatic
Timed Test Case Generation for Web Services Composition,”
in Proc. of ECOWS. Dublin: IEEE, 2008, pp. 53–62.

[17] A. Cavalli, D. Lee, C. Rinderknecht, and F. Zadi, “Hit-or-
Jump: An Algorithm for Embedded Testing with Applications
to IN Services,” inProc. of FORTE, Beijing, China, october
1999, pp. 41–56.

[18] T.-D. Cao, P. Flix, R. Castanet, and I. Berrada, “Testing web
services composition using the TGSE tool,”Services, IEEE
Congress on, vol. 0, pp. 187–194, 2009.

[19] P. Poizat, L. Bentakouk, and F. Zaı̈di, “A Formal Framework
for Service Orchestration Testing based on Symbolic Transi-
tion Systems,” inProc. of TESTCOM, 2009.

[20] M. Mikucionis, K. G. Larsen, and B. Nielsen, “Online on-the-
fly testing of real-time systems,” Basic Research In Computer
Science, iesd, rs RS-03-49, dec 2003, 14pp.

[21] T.-D. Cao, P. Flix, R. Castanet, and I. Berrada, “Online testing
framework for web services,” inProc. of ICST. IEEE
Computer Society, April 6-9, 2010, to appear.

[22] S. Salva and I. Rabhi, “Statefull web service robustness,” in
Proc. of ICIW. IEEE Computer Society, may 2010.

[23] N. P. Kropp, P. J. Koopman, and D. P. Siewiorek, “Automated
robustness testing of off-the-shelf software components,” in
Proc. of FTCS ’98. Washington, DC, USA: IEEE Computer
Society, 1998, p. 230.

[24] E. Bayse, A. Cavalli, M. Nunez, and F. Zaı̈di, “A passive
Testing Approach Based on Invariants: Application to the
WAP,” Comput. Netw. ISDN Syst., vol. 48, no. 2, pp. 247–266,
2005.

[25] A. R. Cavalli, E. Montes De Oca, W. Mallouli, and M. Lallali,
“Two Complementary Tools for the Formal Testing of Dis-
tributed Systems with Time Constraints,” inProc. of DS-RT.
Washington, DC, USA: IEEE, 2008, pp. 315–318.

[26] A. C. F. Bessayah, “A fault injection tool for testing web
service compositions,”Technical Report ISPN:10005-LOR,
IT/Telecom Sudparis, France., 2010.

[27] NetBeans Framework, “http://www.netbeans.org/,” 2009.

[28] W. P. Consortium, “D5.1 webmov case studies: definition of
functional requirements and test purposes,” WebMov, Tech.
Rep., 2009.

