
Int. J. Space-Based and Situated Computing, Vol. X, No. Y, 200x 1

Copyright © 20XX Inderscience Enterprises Ltd.

An effective attack detection approach in wireless
mesh networks

Felipe Barbosa Abreu, Anderson Morais and
Ana Cavalli
Télécom SudParis,
9 Rue Charles Fourier,
91000 Evry, France
Email: felipe_barbosah@hotmail.com
Email: anderson.morais@telecom-sudparis.eu
Email: ana.cavalli@telecom-sudparis.eu

Bachar Wehbi, Edgardo Montes de Oca and
Wissam Mallouli*
Montimage,
39 rue Bobillot,
75013 Paris, France
Email: bachar.wehbi@montimage.com
Email: edgardo.montesdeoca@montimage.com
Email: wissam.mallouli@montimage.com
*Corresponding author

Abstract: Wireless mesh network (WMN) is a recent technology that is gaining significant
importance among traditional wireless networks. It is considered a suitable solution for providing
internet access in an inexpensive, convenient, and rapid manner. Nonetheless, WMNs are
exposed to various types of security threats due to their intrinsic characteristics such as open
broadcast medium and decentralised architecture. For instance, a compromised node can generate
malicious traffic in order to disrupt the network routing service, putting the entire mesh network
at risk. In this paper, we provide an efficient method for detecting active attacks against the
routing functionality of a mesh network. The approach relies on the analysis of the protocol
routing behaviour by processing the traces produced by each node using the Montimage
Monitoring Tool (MMT), which outputs routing events that are correlated between nodes to
detect potential intrusions. We demonstrate the approach feasibility by using a virtualised mesh
network platform that consists of virtual nodes executing ‘better approach to mobile ad hoc
network’ (BATMAN) routing protocol. The experimental results show that the proposed method
accurately identifies malicious routing traffic diffused by an attacker through the network.

Keywords: wireless mesh network; WMN; routing attack; attack detection; network trace.

Reference to this paper should be made as follows: Abreu, F.B., Morais, A., Cavalli, A.,
Wehbi, B., Montes de Oca, E. and Mallouli, W. (xxxx) ‘An effective attack detection approach in
wireless mesh networks’, Int. J. Space-Based and Situated Computing, Vol. X, No. Y,
pp.xxx–xxx.

Biographical notes: Felipe Barbosa Abreu received his Master’s degree from the University of
Ceara, Brazil in 2013. He spent a training period of one year at Telecom SudParis in 2012 in the
framework of the Brafitec programme. His research interest are intrusion detection, mesh
network, protocol testing and fault injection.

Anderson Morais received his Master’s in Computer Science from the Institute of Computing
of UNICAMP (University of Campinas) in Sao Paulo, Brazil and his BSc in Computing
Engineering at UNICAMP. He worked as a Software Engineer specialising in development of
mobile embedded software, mobile protocols and hardware simulation for mobile devices. His
main research interests are intrusion detection, mesh networks, security testing, protocol testing,
fault injection and mobile services. He received his PhD in Computer Science from Telecom
SudParis in 2012.

Ana Cavalli obtained her Doctorat d’Etat es Mathematics Science and Informatics from the
University of Paris VII, in 1984. She is currently a Full Professor at Telecom Sudparis
(ex Institut National des Telecommunications) since 1990. She is the Director of the Software for

2 F.B. Abreu et al.

Networks Department and also a member of the CNRS research laboratory SAMOVAR. Her
research interests are on specification and verification, testing methodologies for conformance
and interoperability testing, active testing and monitoring techniques, the validation of security
properties and their application to services and protocols.

Bachar Wehbi is a Senior R&D Engineer at Montimage. He received his Master’s degree from
Paris VI University in 2005 and his PhD in Computer Science from Telecom and Management
SudParis (France) in 2008. His topics of interest cover telecommunication protocols and wireless
networks. He has a strong background in monitoring and testing network security based on
formal methods.

Edgardo Montes de Oca graduated as an Engineer in 1985 from Paris XI University, Orsay. He
has worked as a Research Engineer in the Alcatel Corporate Research centre in Marcoussis,
France and in Ericsson’s Research centre in Massy, France. In 2004, he founded Montimage, and
is currently its CEO. He is the originator and main Architect of Montimage Monitoring Tool
(MMT). His main interests are: network and application monitoring and security; detection and
mitigation of cyber-attacks; and building critical systems that require the use of state-of-the-art
fault-tolerance, testing and security techniques.

Wissam Mallouli is a Senior R&D Engineer at Montimage and has graduated from the National
Institute of Telecommunication (INT) Engineering School in 2005. He received his Master’s
degree from Evry Val d’Essonne University also in 2005 and his PhD in Computer Science from
Telecom and Management SudParis (France) in 2008. His topics of interest cover formal security
testing of embedded systems and distributed networks. He is an expert in testing methodologies.
He has a strong background in monitoring and testing network security (protocols and
equipment).

This paper is a revised and expanded version of a paper entitled ‘An effective attack detection
approach in wireless mesh networks’ presented at the AINA Conference, Barcelona, Spain,
25–28 March 2013.

1 Introduction

Wireless mesh network (WMN) is an alternative
architecture to IEEE 802.11 standard for data traffic, voice,
and video transmission to end-users beyond cable and
traditional wireless infrastructure. WMNs advantages
include low cost, easy deployment, having fault tolerance
capabilities, and can provide access to remote users, which
would be more difficult to reach using conventional wired
networks.

WMNs resemble much mobile ad hoc networks
(MANETs) since both are self-organised networks and use
multi-hop routing strategy for transmitting traffic from a
source node to a destination node. The main difference
between these two technologies lies in the fact that, in
WMNs, the architecture is composed of static mesh routers,
which form a fixed wireless mesh backbone where the mesh
clients, e.g., mobile devices, connect to access the internet.

The concept of mesh networking brings a series of
advantages (Akyildiz et al., 2005), which make it
increasingly interesting to implement, such as:

1 low cost network: since sharing bandwidth resources
significantly reduces the total cost of the network, then
enabling the creation of community networks

2 easy deployment: WMNs have the characteristic of
being self-configurable, as a result they are easy to
deploy since they do not require complex configuration,
and there is no need to reconfigure the nodes if new
nodes join the network

3 fault tolerant: the ability of dynamic routing combined
with the existence of multiple access routes to a node
enables the network to easily recover from failures,
such as disconnection of communication links

4 reliable: one of the most prominent features of WMNs
is that the reliability and connectivity increase as more
nodes are added to the network, therefore, the increase
of network size, unlike traditional networks, is not an
issue for this type of network.

However, WMNs have some limitations (Zhang et al.,
2008). Most of the problems faced by mesh networks can be
attributed to the recent attention given to this kind of
network, such as:

1 the absence of standardisation: the lack of a common
standard supported by industry and academic
community makes it impossible to adopt this
technology on a large-scale

2 the absence of efficient security schemes: security is
still an open research field in WMNs, in addition to
regular security threats from traditional wireless
networks, there is still the problem of ensuring integrity
and authenticity of routing and data packets travelling
between nodes in the network.

With respect to security, WMNs are similar to WLANs, in
that an attacker can passively intercept radio transmissions
and exploit them. Thus, messages transmitted between

 An effective attack detection approach in wireless mesh networks 3

nodes can be captured and altered, e.g., the network can be
inappropriately accessed by malicious nodes and be a target
of, for instance, denial of service (DoS) attacks. Because of
the decentralised nature and multi-hop architecture of
WMN, it may take a longer time to detect and mitigate such
attacks, giving unwanted intruders a considerable advantage
over the network administration. Consequently, attacks in
WMNs should be precisely identified for each individual
node.

In WMNs, it is important to ensure confidentiality,
integrity, authentication, access control, and availability for
the routing operations, data services, and for the nodes of
the mesh infrastructure. The network traffic can be
protected at different layers, including physical, MAC,
network, transport, and application layers, by using different
schemes for encapsulating frames, authentication protocols,
and encryption algorithms. However, an adversarial node
owning a legitimate key, or even a non-authenticated mobile
node that has access to the network, can broadcast malicious
traffic, intercept and modify packets, or refuse to forward
traffic by discarding packets received from other nodes.

Possible attacks in the WMN can be characterised into
two types:

1 external attacks, in which attackers outside of the mesh
network can impersonate nodes (e.g., carry out
spoofing attacks or inject invalid information)

2 insider attacks, which enable attackers to execute more
severe threats from compromised nodes participating in
the network.

These are more difficult to prevent since the node has a
valid key.

In this work, we focus on detecting message alteration
attacks and, more specifically, routing manipulation attacks
(Morais and Cavalli, 2011b). These attacks are internal
intrusions where a malicious node sends fakes routing
messages on behalf of another node in order to violate the
integrity of the network routes. We show how to diagnose
this routing attack by making use of the traces generated by
nodes executing better approach to mobile ad hoc network
(BATMAN) routing protocol (Neumann et al., 2008). We
then apply the Montimage Monitoring Tool (MMT) tool
(Wehbi et al., 2012) to analyse the traces and generate
routing events in a sorted manner. These events represent
the protocol routing behaviour at each node. Then, we
employ attack detection algorithms using the tool output to
identify malicious traffic for the nodes.

The innovative aspect of this work is mainly that the
approach for detecting active attacks against the routing
functionality of a mesh network is based on a formal
tool-supported specification approach. This approach
enables the detection of normal or abnormal routing
behaviour and allows automating the generation and
analysis of routing events. In this way, it is possible to
efficiently identify compromised nodes that generate
malicious traffic with the intention of disrupting the
network routing service.

The remainder of this paper is structured as follows.
Section 2 discusses the related work. In Section 3, we
describe the attack detection approach. Section 4 introduces
the MMT tool we implemented to detect the attacks.
Section 5 presents the evaluation procedure and results of
the approach. Finally, Section 6 concludes this paper.

2 Related work

Many studies have been conducted to conceive security
mechanisms for the existing routing protocols in WMNs.
For that purpose, various secure routing protocols have been
designed such as ARAN (Sanzgiri et al., 2002), Ariadne
(Hu et al., 2005), and SAODV (Zapata, 2002). Most of the
approaches rely on key management or cryptographic
technologies to authenticate and protect the messages
exchanged among nodes, and to guarantee that unauthorised
nodes will not be able to join the network. However, these
schemes alone cannot prevent a compromised (which has a
valid key) or a non-authenticated mobile node from
launching attacks against the mesh nodes to disrupt the
routing communication and data delivery services, as we try
to address in the present article.

Various security methods have been proposed for
WMNs, but not all are fully applicable in realistic WMN
scenarios. In Wu and Li (2006), the authors propose a
private routing algorithm to address the problem of privacy
in WMNs. The approach is based on layered encryption to
hide the routing information at the mesh routers. However,
the authors do not show how the mesh nodes implement
authentication, key distribution, and key agreement. In
addition, the approach performance is not demonstrated as
cryptographic schemes usually incur high computational
overhead to the devices.

Santhanam et al. (2007) introduced an active
cache-based defence scheme at the mesh routers for
detecting flooding attacks in the network. The approach
applies a ‘most frequently used’ cache mechanism to detect
malicious flows. But the authors do not specify which type
of malicious flow the approach aims at identifying, whether
routing traffic or data traffic. Islam et al. (2009) proposed a
secure layer-2 path selection (SLPS) mechanism for WMNs
based on IEEE 802.11s. The scheme uses cryptographic
extensions to provide authenticity and integrity for the
routing messages in order to prevent unauthorised
manipulation of mutable fields in routing messages.
Nevertheless, the proposed SLPS protocol is still
susceptible to message fabrication attacks.

Routing manipulation attacks (or link spoofing attacks),
which is a type of routing disruption attack, has not been
sufficiently studied in WMNs. Kannhavong et al. (2006)
presented a collusion attack against optimised link state
routing (OLSR) protocol in which a pair of colluding
attackers prevent routes to a specific node from being
established. The attacker advertises fake two-hop neighbour
links to the target node in order to take control over the
target node’s routes. The authors implemented the attack in
a network simulator, and presented a method for detecting

4 F.B. Abreu et al.

this routing disruption attack by adding information of
two-hop neighbours in the routing messages broadcasted by
the nodes. The drawback of this detection scheme is that the
target node cannot detect the routing attack if the attacker
modifies the content of the routing messages transmitted by
all the neighbouring nodes to this target node.

Raffo et al. (2005) proposed a location-based detection
scheme to identify link-spoofing attacks against OLSR. The
method utilises signatures together with timestamps and a
GPS device. The technique adds the geographical position
and the timestamp of the sending node in the control
messages so that every node knows the correct position of
every other node in the network. This method detects link
spoofing by comparing the geographical data to the routing
data received by the node. If contradictory link information
is found, the node discards the false routing message. The
principal inconvenience with this approach is that it will not
function in a scenario where mobile nodes are allowed to
join the network without having a GPS device installed.

3 The attack detection approach

In this section, we present the attack detection approach.
First, we introduce BATMAN routing algorithm. Then, we
describe the steps for detecting routing attacks in a mesh
topology by making use of the nodes’ traces.

3.1 BATMAN protocol

We opted for BATMAN as routing protocol since we
applied it in previous work (Morais and Cavalli, 2011a) for
security analysis related to routing attacks in WMN.
However, our attack detection approach can be applied to
other routing protocols as well.

BATMAN routing algorithm is detailed as follows:

1 Each node, also referred as originator (Orig),
periodically broadcasts hello messages, known as
originator messages (OGMs), to inform its neigbors
about its existence. An OGM contains at least: the Orig
address, the source node address (Src), the previous
sender address (PSrc), a unique sequence number
(Seq), a time to live (TTL), and a transmission quality
(TQ) value.

2 As a neighbouring node (Nb) receives an OGM, it
modifies the Src address to its own address and
rebroadcasts the OGM according to BATMAN
forwarding rules to inform its neighbouring nodes
about the existence of the node that originated the
OGM, and so on and so forth.

3 Hence, the mesh network is flooded with OGMs until
every node has received it at least once, or until they
are discarded because of packet loss in the wireless
link, or until their TTL value has expired.

4 The Seq of OGM is used to verify the message
freshness, i.e., to distinguish between new OGMs and
duplicated ones in order to guarantee that each OGM is

only counted once. The amount of OGMs, i.e., the total
number of Seq, received from an Orig via each Nb is
used as a metric to calculate the route quality. Thus,
BATMAN will choose the Nb from which it has
received the highest amount of Seq (OGMs) recorded in
a sliding window (i.e., the packet count metric) as the
best next-hop to the Orig.

3.2 Method of attack detection

Figure 1 illustrates the methodology we apply for detecting
routing attacks, which comprises four steps.

Figure 1 Steps of the attack detection process (see online
version for colours)

1: Trace Collecting

2: Parameter Extraction

libpcap files

Message parameters

3: Event Detection

Routing Events

4: Attack Detection

Detection Results

Routing Traces Gathering

Routing Event Generation

Routing Intrusion Diagnosis

Routing Protocol
Plugin

(MMT‐Extract)

Routing Rules
(MMT‐Security)

Routing Constraints
(Attack Detection

Algorithm)

Node logging
mechanism

The first step of the approach is trace collecting, where
output files generated by each node are collected separately
for further analysis. For obtaining such traces, we employ
the logging mechanism of the node, for instance, a
monitoring tool sniffing the traffic travelling over the node
network interface. A trace file contains communication
information for a given node, i.e., all the routing messages
exchanged between the node and its neighbouring nodes.
For convenience, we assume that the file format of traces is
libpcap (http://www.tcpdump.org/) since it is the main
capture file format used in most of networking tools. The
libpcap file format is a basic format to save captured
network data. The typical file extension of libpcap-based
files is: .pcap. Therefore, in this work, we refer to the traces
as ‘PCAP files’.

In the second step, we perform parameter extraction.
First, the collected traces are examined in detail individually
and relevant message parameters are extracted according to
the routing protocol described in Section 3.1, and also
taking into account the protocol specification. A trace file is
composed of a PCAP file. Each PCAP file is composed of a
set of captured BATMAN packets, i.e., OGMs received or

 An effective attack detection approach in wireless mesh networks 5

broadcasted by the node that are ordered with respect to the
reception and transmission time respectively.

Then, we use the routing protocol plug-in, i.e., the
BATMAN plug-in, which was integrated to MMT-extract
library of MMT tool, for extracting the protocol parameters.
MMT-extract provides a plug-in architecture, which allows
adding new protocols and packet structures for these
protocols for checking attributes for the protocol packets.
BATMAN plug-in performs the following steps:

1 analyses the PCAP file

2 identify relevant BATMAN packets

3 extracts specific message parameters from each
BATMAN packet.

After the extraction is terminated, we will have access to the
following parameters from the OGMs that were received or
broadcasted by the node: P = {Seq, Orig, Src, PSrc}.
Moreover, we could extract additional parameters from the
OGM packet, e.g., BATMAN version and TTL, in order to
verify if such parameters are modified by an attacker
during the message transmission in the context of
man-in-the-middle attacks, or corrupted due to
communication failures.

The next step of the attack detection approach is event
detection. In the first place, we have to define the routing
events we aim identifying in the routing messages based on
the parameters P extracted from each routing packet. Thus,
we establish the following routing events, which represent
BATMAN protocol behaviour at the node.

• OGM_rcv: means that an OGM is received by the node
from a neighbouring node Nb.

• OGM_brd: means that the node broadcasts an OGM to
its neighbour Nb.

• OGM_rebr: means that the node rebroadcasts an OGM
received from a neighbouring node Nb.

To detect these routing events, we implement routing rules
for MMT-security module of MMT tool. A routing rule is a
matching condition expressed in the XML format defined
by MMT-security to specify security properties as temporal
logic rules. MMT-security essentially formulates security
properties and rules in the form of IF-THEN conditions,
which makes use of parameters obtained from the protocol
packets. Therefore, we implement routing rules for each
routing event defined for BATMAN protocol.

• R1 for OGM_rcv:

 , for 1 ;i src iSrc N Rcv P i n≠ ← ≤ ≤if then

where n is the number of OGMs analysed by
BATMAN plug-in; Nsrc is the node address, i.e., the
MAC address; and Rcv is the set of OGMs received by
the node, i.e., the set of routing events OGM_rcv, that
contains a set of parameters P for each OGM received
by the node.

• R2 for OGM_brd:

() ()
, for 1 ;

i src i i

i

Src N Src Orig
Brd P i n

= ∧ =

← ≤ ≤

if then

where Brd is the set of OGMs broadcasted by the node,
i.e., the set of routing events OGM_brd, that contains
sets of parameters P for all the OGMs broadcasted by
the node.

• R3 for OGM_rebr:

() ()
, for 1 ;

i src i i

i

Src N Src Orig
Rebr P i n

= ∧ ≠

← ≤ ≤

if then

where Rebr is the set of OGMs rebroadcasted by the
node, i.e., the set of routing events OGM_rebr, that
contains sets of parameters P for all the OGMs
rebroadcasted by the node.

The sets Rcv, Brd, and Rebr, which stand for the routing
events detected for BATMAN routing protocol, are the
outcome of this event detection step. The results are
provided to the attack detection algorithm for identification
of routing intrusions in the network traffic.

With the use of MMT tool, we have some advantages,
for example, easy extraction of message attributes since
once the routing protocol plug-in is integrated to
MMT-extract, we can readily identify the suitable routing
parameters from the PCAP trace files collected for each
node. In addition, the employment of routing rules allows
sorting the routing traffic in a practical manner, so we can
analyse particular aspects of the routing behaviour of the
protocol, not to mention that the entire process of generating
routing events is automated.

3.3 Attack detection algorithm

The last step of the approach is attack detection. As
mentioned earlier in this work, we aim at detecting message
fabrication attacks. For this, we define routing constraints
relying on the routing protocol specification in order to
identify message fabrication misbehaviour that disrupts the
correct behaviour of the routing protocol. The routing
constraints make use of the routing event sets produced in
the preceding step of event detection. In the case that a
routing constraint is violated, we count the number of
inconsistencies F diagnosed for each violated routing
constraint separately. RcvNb and RebNb are the routing events
detected for neighbouring node Nb.

• C1: ∀Seqi ∈ Rebr, if Seqi ∉ Rcv then F1++

Checks if Seqi rebroadcasted by the node for Origi was
received before by the node from neighbour Srci, where
F1 is the number of fake OGMs, i.e., Seq, fabricated
and rebroadcasted by the node for Orig.

• C2: ∀Seqi ∈ Rcv, if Seqi ∉ RcvNb then F2++

Checks if Seqi received by the node for Origi was firstly
received by its neighbour Srci which should be received
before from PSrci, where F2 is the number of fake

6 F.B. Abreu et al.

OGMs, i.e., Seq, received by the node that are
fabricated and rebroadcasted by Nb.

• C3: ∀Seqi ∈ Rcv, if Seqi ∉ RebrNb then F3++

Checks if Seqi received by the node for Origi was
previously rebroadcasted by its neighbouring node Srci,
where F3 is the number of fake OGMs, i.e., Seq,
received by the node that are fabricated and
rebroadcasted by a malicious node.

We then apply routing constraints C1, C2, and C3 for
detecting message fabrication attacks in a neighbourhood
according to the attack detection algorithm. The algorithm
analyses the routing behaviour of the neighbourhood by
simultaneously examining the routing behaviour of every
node and its respective neighbours. In that case, we have a
global view of the network activity for the vicinity that
enables us to accurately track down the source of intrusion,
i.e., the malicious node, in a collaborative manner.

For a better understanding of the algorithm, we consider
that Rcv and Rebr are the routing event sets generated for
node O1, and iNbRcv and iNbRebr are the corresponding
routing event sets generated for the neighbours N = {Nb1,
…, Nbk}, 1 ≤ i ≤ k, where k is the number of neighbouring
nodes of node O1. This algorithm should be executed for
each node Oj in the mesh network, 1 ≤ j ≤ l, where l is the
number of nodes. We assume each node Oj has at least one
neighbour Nbi.

Attack detection algorithm

Input: Rcv, Rebr, ,i iNb NbRcv Rebr

Output: Frebr, FRbN, FRcv
1. for all Seq ∈ Rcv then
2. if Seq ∉ Rcv then
3. F1++;
4. end if
5. end for
6. for all Seq ∈ Rcv do
7. for all Nbi ∈ N do

8. if iNbSeq Rcv∉ do

9. F2++

10. else if iNbSeq Rebr∉ then

11. F3++
12. end if
13. end for
14. end for

As a result, this step provides the detection results
F = {F1, F2, F3}, which reflect potential malicious routing
behaviour observed on the network traffic captured at node
O1, or in the traffic collected from one or more of its
neighbouring nodes Nbi.

4 The MMT tool architecture and features

In this section, we present the MMT tool and how we used
it to analyse the protocol traces. First, we describe the
security properties formalism used to specify the security
requirements of the system/network under observation.
Then, we present the MMT tool architecture and security
features, and show how they can answer the security
monitoring challenges described above. Finally, we present
the application of MMT to the BATMAN protocol case
study. A more detailed description of MMT can be found in
Mallouli et al. (2012).

The MMT tool is an online monitoring solution that
provides real-time visibility of network traffic, application
communication, flow and usage levels. It facilitates
network security, performance monitoring and operation
troubleshooting. MMT’s rules engine can correlate network
and application events in order to detect operational,
security and performance incidents.

4.1 MMT tool and its security properties formalism

The main objective of the MMT security properties is to
formally specify security goals and attack behaviour related
to the application or protocol being observed. The
‘MMT-Security property’ model is inspired from LTL logic
(Wehbi et al., 2012) and can refer to two types of properties:
‘security rules’ and ‘attacks’ described as follows:

• A security rule describes the expected functional or
security behaviour of the application or protocol. If it is
violated then it indicates an abnormal behaviour.

• An attack describes a malicious behaviour whether it is
an attack model, a vulnerability or a misbehaviour. If
detected then it indicates abnormal behaviour that could
be due to an attack.

It must be noted that the events that we take into account
within the MMT-security properties are related to
observable system/network communications. In the case of
a telecommunication network, they refer to traffic packets
and flows. In other contexts, they can relate to any action
that can be stored in a server/database/software log. The
main definition of an MMT-security property is provided by
the definition that follows. Other definitions that allow
understanding the basics of the model used can be found in
Mallouli et al. (2012).

An MMT-security property is an IF-THEN property. It
allows expressing specific constraints on network events.
Each event is a set of conditions on some of the meta values
or field values of the exchanged packets.

4.1.1 Definition of MMT-security property

Let W ∈ {BEFORE, AFTER}, n ∈ N*, t ∈ R+* and e1 and e2
two events. An MMT-security property is an IF-THEN
expression that describes constraints on network events
captured in a trace T = {p1, …, pm′}. It has the following
syntax:

 An effective attack detection approach in wireless mesh networks 7

, ,
1 2

W n te e⎯⎯⎯→

This property expresses that if the event e1 is satisfied (by
one or several packets pi, i ∈ {1, …, m}), then event e2 must
be satisfied (by a set of packets pj, j ∈ {1, …, m}) before or
after (depending on the W value) at most in n packets and/or
in t units of time. e1 is called triggering context and e2 is
called clause verdict.

4.1.2 Formalism implementation

The MMT-security property model allows expressing
complex security properties derived from security best
practices and from domain-specific security requirements.
These MMT-security properties are described using an
XML format to make their interpretation easier for both
humans and software. The main structure of a property is
given in Figure 2.

Figure 2 MMT property structure (see online version
for colours)

Each property begins with a <property> tag and ends with
</property>. A property is a ‘general ordered tree’ as shown
in Figure 2. The nodes of the property tree are: the property
node (required) operator nodes (optional) and event nodes
(required). The property node is forcibly the root node and
the event nodes are forcibly leaf nodes. The left branch
represents the context and the right branch represents the
trigger. This means that the property is found valid when the
trigger is found valid; and the trigger is checked only if the
context is valid.

4.1.3 Multi data sources management for security
analysis

In the context of MMT, deep packet inspection (DPI) and
deep flow inspection (DFI) are used to help detect and
tackle harmful traffic and security threats; and, to throttle or
block undesired behaviour. We define a set of security
properties for network traffic, at both control and data
levels, to detect interesting events. Indeed, based on the
defined security properties, we register the attributes to be

extracted from the inspected packets and flows. These
attributes are of three types:

• Real attributes: They can be directly extracted from the
inspected packet. They correspond to a protocol field
value.

• Calculated attributes: They are calculated within a
flow. Packets from the same flow are grouped and
security/performance indicators are calculated (e.g.,
delays, jitter, packet loss rate) and made available for
the security analysis engine.

• Meta attributes: These attributes are linked to each
packet to describe capture information. The time of
capture of each packet (timestamp attribute) is the main
meta-attribute.

The extracted attributes needed for security analysis can
emanate from different data sources (probes and/or
interfaces). This is managed in the MMT monitoring
solution during the specification phase of the security
properties. Indeed, the data sources identifiers are part of the
meta-attributes that can be used in the specification of the
relevant events for security analysis. Three architectures are
taken into account in MMT:

• Local analysis: the collected traffic is analysed for
security purposes in one probe that captures network
traffic from one or several interfaces.

• Centralised analysis: the traffic capture is distributed
but the security analysis is centralised. All data sources
send their collected traffic (filtered or not) to the same
master server that correlates the traces (i.e., need to
synchronise probes to be able to perform this task).

• Distributed analysis: the traffic capture is distributed
and the analysis is performed by all the probes that
communicate together to share information. This
analysis can be very interesting particularly for ad hoc
network case studies. The communication between
probes is an ongoing work for the MMT tool.

Figure 3 shows how the MMT monitoring tool works. Input
can be provided from different raw data sources (e.g.,
network, system, application). It can also be provided by
remote MMT probes in the context of a distributed
architecture. The extraction engine allows to retrieve
relevant attributes for the further analysis and the
correlation engine allows the correlation of extracted events
in time in order to check the validity of MMT properties.
These properties specify the functional, security or
performance behaviour that needs to be validated. The
correlation engine will then produce the verdicts for each
property (fail, ok or inconclusive).

The originality of the MMT security properties with
respect to existing intrusion detection techniques lies in that
they are not based on just pattern matching (i.e., signatures)
as in SNORT (Hu et al., 2005) nor requiring writing
executable scripts as in BRO (Sanzgiri et al., 2002). They
allow a more abstract description of a sequence of events

8 F.B. Abreu et al.

that can represent normal/abnormal behaviour. They can
also integrate pattern matching, statistics and machine
learning techniques; but describing this here is out of scope
for this paper.

Figure 3 MMT distributed correlation (see online version
for colours)

4.1.4 MMT-security architecture

MMT-security is composed of three complementary, but
independent, modules as shown in Figure 4:

• MMT-extract is the core packet processing module. It is
a C library that analyses network traffic using deep
packet/flow inspection (DPI/DFI) techniques in order to
identify network and application-based events by
analysing: protocols’ field values; network and
application quality of service (QoS) parameters; and,
key performance indicators (KPI). MMT-extract
incorporates a plug-in architecture for the addition of
new protocols or message types, and a public API for
integration into third party probes.

• MMT-security is a security analysis engine based on
MMT-security properties. MMT-security analyses and
correlates network and application events to detect
operational and security incidents. For each occurrence
of a security property, MMT-security allows detecting
whether it was respected or violated. Other analysis
modules exist (e.g., for video quality analysis and
traffic analysis) or new ones can be added.

• MMT-operator is a visualisation application for
MMT-Security currently under development. It allows
collecting and aggregating security incidents to present
them via a graphical user interface. MMT-operator is
conceived to be customisable, i.e., the user will be able
to define new views or customise one from a large list
of predefined views. At the time of writing this paper, a
web-based representation of the analysis results is
provided.

Figure 4 MMT global architecture (see online version
for colours)

4.1.5 Application of MMT to the BATMAN protocol
case study

To be able to apply the tool to the BATMAN protocol case
study we first created the BATMAN plug-in for the
MMT-extract library and then specified the properties that
we wished to detect for the MMT-security module.

An MMT-extract plug-in will serve to initialise a
protocol structure that contains the required information
regarding the protocol attributes, as well as the functions
allowing extracting the data corresponding to these
attributes. For creating a MMT-extract plug-in (written in
the C language), a set of utility structures, utility functions
and generic extraction functions are available as a C
language API to simplify the task.

To create the BATMAN plug-in we defined a C header
file that specifies the different protocol attributes that make
up a BATMAN communication packet, and a C source file
that implements the functions needed to extract the attribute
values from this packet. This task is relatively easy when
using an existing plug-in as a template. Implementing and
testing it can be done in one day.

To be able to detect the security-related events needed
for identifying malicious nodes, we specified the security
properties that are used by the MMT-security module.
These properties were done to identify badly formed
packets and identify routing events: Rcv, Brd, and Rebr for
each node. The properties were written in XML and are
described in Section 3.2.

The time needed for analysing the PCAP traces is very
small (a few ms) due to the fact that the trace files are small
(less that 100 Mb). The efficiency of the MMT-security
module for the type of properties used was in the order of
the number of properties pr times the number of packets to
analyse pa (O(n2)).

 An effective attack detection approach in wireless mesh networks 9

5 Experimental evaluation

In this section, we use a virtualised network environment to
demonstrate the viability of our trace-based attack detection
solution and assess the efficiency of the approach.

5.1 Experimental platform

The mesh topology is emulated by virtual machines
(VMs), which consists of QEMU (Claffy et al., 2012)
instances, with Linux OS installed, running BATMAN
routing protocol. Batman-adv v.2011.1.0 (QEMU,
http://wiki.qemu.org) is compiled from source code and
loaded into the Linux OS of each QEMU instance as kernel
module.

The hardware configuration of a QEMU instance
consists of standard IBM PC 32Bit computer architecture
with one CPU, that is the default QEMU 32Bit CPU type,
and 256 MB of main memory, and compatible with Linux
OS. We assume that each node in the network has an
equivalent hardware configuration to that one of the QEMU
VM that corresponds to common wireless mesh devices
such as Wi-Fi routers or mobile devices with sufficient
hardware resources.

The virtual nodes, i.e., the VMs, are interconnected
by a virtual switch (Open-Mesh.net, http://www.open-
mesh.net/), which emulates bi-directional link
communication between the nodes and corresponding
degradations in the quality of the links due to the packet loss
rate. For the experiments, we assume a fixed mesh
topology.

During the experiment execution, we use the logging
mechanism of QEMU to dump the network traffic of each
node into separate PCAP logging files. The PCAP files are
synchronised with a global clock, i.e., the time of the main
machine that executes the VMs. This procedure of saving
PCAP files for each mesh node apart concerns the trace
collecting step of the approach described in Section 3.2.

5.2 Attack emulation scenario

Our next step is to define a mesh network scenario where
routing communication is carried out among the nodes, so
we can analyse the types of routing events that may occur.
The emulated network scenario is composed of four nodes:
O1, O2, O3, and O4, where each node only communicates
with its neighbours, as seen in Figure 5.

Since the link between nodes O1 and O2 has a packet
loss rate (15%) higher than the one between nodes O2 and
O4 (0%), nodes O3 and O4 normally prefer a route toward
gateway node O2 via node O4. For instance, in the routing
table of node O3, the route entry of node O2 has as best
next-hop node O4. In this scenario, node O1 is compromised,
and creates and sends spoofed OGMs on behalf of node O2,
i.e., node O1 fabricates Seq for Orig = O2, which in fact it
did not received from node O2. In this manner, node O1 can
divert the routes of target nodes O3 and O4 toward gateway
node O2 to the own malicious node O1, thus characterising a
routing manipulation attack.

Figure 5 Mesh topology emulated for the experiment (see online
version for colours)

15% packet loss

Malicious node

Target node

Target node
Gateway

node

OGM

Fabricated OGM

O4

O1

O2 O3

As routing decisions rely on statistical analysis of the
amount of OGMs, i.e., Seq, received rather than information
contained in the routing messages, malicious node O1 has to
fabricate a number of fake OGMs that are numerous enough
to surpass the legitimate OGMs broadcasted by node O2 in
order to redirect the routes of nodes O3 and O4 to node O1.
In other words, the malicious node O1 has to continuously
win the neighbour ranking of target nodes O3 and O4
towards gateway node O2. For instance, node O3 has to
constantly choose Nb O1 as best next-hop to O2. As a result,
the routing table of target nodes O3 and O4 will update their
route entry of node O2 for best next-hop to node O1.

The routing manipulation attack is implemented
using the Ethernet packet generator packETH (VDE
Switch, http://wiki.virtualsquare.org/wiki/index.php/VDE)
which permits node O1 to create and broadcast bogus OGMs
with continuous valid Seq on the network interface of own
node O1.

5.3 Attack detection results

After collecting the PCAP files generated by the nodes, we
will examine the trace files for nodes O1, O2, and O3 since
these nodes are directly involved in the malicious routing
behaviour performed by node O1. Thus, we employ the
MMT-Extract tool to extract the OGM parameters defined
in the second step of Parameter Extraction. We obtain
three parameter sets: 1 2, ,O OP P and 3 ,OP which comprise
the parameters P extracted from all the OGMs in each
collected PCAP file. For instance, for node O1 we have

1 1{ , ..., },O
nP P P= where n is the number of OGMs found

by BATMAN plug-in when analysing the PCAP file of
node O1.

By using the parameter sets 1 2, ,O OP P and 3OP
obtained from the traces along with the routing rules
implemented in third step of event detection, we can
precisely identify the routing events for each node. Then,
we apply the MMT-Security tool to these parameter sets to
generate the routing event sets: Rcv, Brd, and Rebr for
nodes O1, O2, and O3.

Once we have the routing event sets, we execute the
attack detection algorithm in the context of the routing

10 F.B. Abreu et al.

behaviour of nodes O1, O2, and O3, which corresponds the
last step of the approach. For instance, for node O1 we
consider the set of neighbours N = {O2, O3} and the
corresponding routing event sets: { , },i iO ORcv Rebr 2 ≤ i ≤ 3,
in addition to the routing event sets {Rcv, Rebr} generated
for node O1.

The output of the algorithm for each node, i.e., the
detection results F = {F1, F2, F3}, are exhibited in Table 1.
Based on this, we remark that node O1 is the source of
intrusion in the neighbourhood since node O1 detects a
significant number of fake OGMs F1 broadcasted by the
own node. And its neighbours O2 and O3 also detect a
considerable number of fake OGMs F2 received from their
respective neighbour O1 that are fabricated by node O1.

Table 1 Detection results

Number of
inconsistencies Node O1 Node O2 Node O3

F1 1,630 - -
F2 - 1,948 1,510
F3 - - -

The duration of the experiment was 30 minutes. We used
the default BATMAN OGM broadcasting rate of 1,000 ms
for the routing attack, and node O1 starts broadcasting fake
OGMs at 48 seconds. Therefore, the total number of fake
OGMs broadcasted by node O1 during the experiment
execution is T = 1,752. We observe nodes O1 and O3, except
node O2 that is affected by the link packet loss, detect less
fake OGMs than expected, i.e., F1 < T > F2. The reason is
that the detection algorithm does not consider the arrival
time of OGMs when checking Seq in the routing event sets
of the nodes, so if a fake OGM broadcasted in the past has
the same Seq value as a legitimate OGM transmitted at the
present time, the algorithm considers this fabricated OGM
as valid. Since OGM broadcasting rate is 1 sec, the
algorithm should verify Seq between the routing event sets
of nodes considering a time difference of 2 seconds.

The ratio of attack detection with regard to the malicious
routing behaviour identified in the traces is defined as:

| | .T F
TR −= Then, we calculate R using the number of

detected intrusions F in Table 1, and we obtain: 1 6%,OR =

2 12%,OR = and 3 14%.OR = We notice that the smallest
difference concerns the attack detection in the perspective
of node O1 since the number of detected fake OGMs F1
relies exclusively on the routing events Rebr and Rcv
identified in the local trace of node O1, which is not affected
by external transmission factors, such as packet drop.

However, from the point of view of nodes O2 and O3 we
note a higher deviation in the attack detection compared to
node O1. In fact, the trace file collected at node O2 is
particularly impacted by the high packet loss rate between
nodes O1 and O2, which results in loss of OGMs exchanged
between these nodes. Thus, the number of intrusions F2 that
is calculated taking into consideration the routing event sets

Rcv of both nodes O1 and O2 is surely influenced by the
packet loss rate present in the link.

Moreover, the divergence R in terms of F2 for nodes O2
and O3 is caused by the lack of synchronisation between the
logging mechanism of nodes, at the beginning and at the
end of the experiment, when the logging mechanism starts
and stops saving routing messages to the respective trace
files. For example, at the time node O3 stops recording
traffic data to the trace file, its PCAP log file contains more
routing information from nodes O1 and O2 than the
respective PCAP files of node O1 and node O2 which
stopped capturing the routing packets earlier. Therefore,
metric F2 that is basically calculated correlating routing
message parameters between neighbouring nodes will
produce incorrect results since it is missing routing
information in the routing event sets.

The additional fake OGMs detected by node O2 with
respect to T, since F2 > T for O2, do not properly correspond
to attack attempts and can be considered as false positives,
i.e., false alarms. They are mainly caused by degradations in
the link quality, i.e., the packet loss rate of the link.
Therefore, a threshold based on transmission impairments
should be defined in order to distinguish between false
positives and malicious routing behaviour when analysing
the attack detection results F of each node.

6 Conclusions

In this work, we have implemented the BATMAN plug-in
for MMT-extract. Then, we applied MMT-extract to the
BATMAN traces supplied by each node in order to obtain
relevant BATMAN properties regarding the routing
protocol semantics. We define routing events that
correspond to the routing behaviour of the protocol in
execution at the node. With the help of MMT-security, we
are able to properly generate such routing events in a
suitable output format, which are then used as input for the
attack detection algorithm. We managed to successfully
detect intrusion attempts performed by a malicious node
participating in the mesh network and broadcasting phoney
routing messages in its neighbourhood.

As a future work, we envisage evaluating the approach
in malicious scenarios where two or more nodes collude to
carry out routing misbehaviours, i.e., coordinated attacks.

Acknowledgements

This research work is partially financed by the CelticPlus
project SAN (http://projects.celtic-initiative.org/SAN/).

References
Akyildiz, I.F., Wang, X. and Wang, W. (2005) ‘Wireless mesh

networks: a survey’, Computer Networks, March, Vol. 47,
No. 4, pp.445–487 [online] http://dl.acm.org/citation.cfm?
id=1071646.

 An effective attack detection approach in wireless mesh networks 11

Claffy, K.C., Dainotti, A. and Pescapè, A. (2012) ‘Issues and
future directions in traffic classification’, IEEE Network
(NETWORK), Vol. 26, No. 1, pp.35–40.

Hu, Y-C., Perrig, A. and Johnson, D.B. (2005) ‘Ariadne: a secure
on-demand routing protocol for ad hoc networks’, Wireless
Networks, January, Vol. 11, Nos. 1–2, pp.21–38.

Islam, Md.S., Hamid, Md.A., Choi, B.G. and Hong, C.S. (2009)
‘Securing layer-2 path selection in wireless mesh networks’,
Information Security Applications, Lecture Notes in
Computer Science, Vol. 5379, pp.69–83,
DOI: 10.1007/978-3-642-00306-6_6.

Kannhavong, B., Nakayama, H., Kato, N., Nemoto, Y. and
Jamalipour, A. (2006) ‘A collusion attack against
OLSR-based mobile ad hoc networks’, Proc. Global
Telecommunications Conference (GLOBECOM ‘06),
November, pp.1–5.

libpcap, Portable C/C++ Library for Network Traffic Capture,
[online] http://www.tcpdump.org/ (accessed 1 June 2014).

Mallouli, W., Wehbi, B., Montes de Oca, E. and Bourdelles, M.
(2012) ‘Online network traffic security inspection using
MMT tool’, in the 9th Workshop on System Testing and
Validation (STV), Paris, France, October.

Morais, A. and Cavalli, A. (2011a) ‘Detection of attacks in
wireless mesh networks’, Proc. 5th Latin-American
Symposium on Dependable Computing (LADC 2011), April,
pp.45–54.

Morais, A. and Cavalli, A. (2011b) ‘Route manipulation attack in
wireless mesh networks’, in 2011 IEEE International
Conference on Advanced Information Networking and
Applications (AINA), 22–25 March, pp.501–508,
DOI: 10.1109/AINA.2011.11.

Neumann, A., Aichele, C., Lindner, M. and Wunderlich, S.
(2008) Better Approach to Mobile Ad-Hoc Networking
(B.A.T.M.A.N.), April, IETF Internet-Draft (expired October
2008) [online] http://tools.ietf.org/html/draft-wunderlich-
openmesh-manet-routing-00 (accessed 23 May 2014).

Open-Mesh.net, B.A.T.M.A.N. (Better Approach to Mobile Ad-Hoc
Networking) [online] http://www.open-mesh.net/ (accessed
16 May 2014).

QEMU, Machine Emulator and Virtualizer [online]
http://wiki.qemu.org (accessed 3 April 2014).

Raffo, D., Adjih, C., Clausen, T. and Muhlethaler, P. (2005)
‘Securing OLSR using node locations’, Proc. 11th European
Wireless Conference 2005, April, pp.1–7.

Santhanam, L., Nandiraju, D., Nandiraju, N. and Agrawal, D.
(2007) ‘Active cache based defense against dos attacks in
wireless mesh network’, Proc. 2nd International Symposium
on Wireless Pervasive Computing (ISWPC ‘07), February,
pp.5–7.

Sanzgiri, K., Dahill, B., Levine, B.N., Shields, C. and
Belding-Royer, E.M. (2002) ‘A secure routing protocol for ad
hoc networks’, Proc. IEEE International Conference on
Network Protocols (ICNP 2002), November.

VDE Switch, Virtual Distributed Ethernet Switch [online]
http://wiki.virtualsquare.org/wiki/index.php/VDE (accessed
29 March 2014).

Wehbi, B., Montes de Oca, E. and Bourdelles, M. (2012)
‘Events-based security monitoring using MMT tool’, Proc.
IEEE Fifth International Conference on Software Testing,
Verification and Validation (ICST ‘12), April, pp.860–863,
DOI: 10.1109/ICST.2012.188.

Wu, X. and Li, N. (2006) ‘Achieving privacy in mesh networks’,
Proc. 4th ACM Workshop on Security of Ad Hoc and Sensor
Networks (SASN ‘06), ACM, New York, pp.13–22.

Zapata, M.G. (2002) ‘Secure ad hoc on-demand distance vector
routing’, ACM Mobile Computing and Communications
Review (MC2R), July, Vol. 6, No. 3, pp.106–107.

Zhang, W., Wang, Z., Das, S.K. and Hassan, M. (2008) ‘Security
issues in wireless mesh networks’, in Book Wireless Mesh
Networks: Architectures and Protocols, Springer, New York.

