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Abstract: Wireless mesh network (WMN) is a recent technology that is gaining significant 
importance among traditional wireless networks. It is considered a suitable solution for providing 
internet access in an inexpensive, convenient, and rapid manner. Nonetheless, WMNs are 
exposed to various types of security threats due to their intrinsic characteristics such as open 
broadcast medium and decentralised architecture. For instance, a compromised node can generate 
malicious traffic in order to disrupt the network routing service, putting the entire mesh network 
at risk. In this paper, we provide an efficient method for detecting active attacks against the 
routing functionality of a mesh network. The approach relies on the analysis of the protocol 
routing behaviour by processing the traces produced by each node using the Montimage 
Monitoring Tool (MMT), which outputs routing events that are correlated between nodes to 
detect potential intrusions. We demonstrate the approach feasibility by using a virtualised mesh 
network platform that consists of virtual nodes executing ‘better approach to mobile ad hoc 
network’ (BATMAN) routing protocol. The experimental results show that the proposed method 
accurately identifies malicious routing traffic diffused by an attacker through the network. 
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1 Introduction 

Wireless mesh network (WMN) is an alternative 
architecture to IEEE 802.11 standard for data traffic, voice, 
and video transmission to end-users beyond cable and 
traditional wireless infrastructure. WMNs advantages 
include low cost, easy deployment, having fault tolerance 
capabilities, and can provide access to remote users, which 
would be more difficult to reach using conventional wired 
networks. 

WMNs resemble much mobile ad hoc networks 
(MANETs) since both are self-organised networks and use 
multi-hop routing strategy for transmitting traffic from a 
source node to a destination node. The main difference 
between these two technologies lies in the fact that, in 
WMNs, the architecture is composed of static mesh routers, 
which form a fixed wireless mesh backbone where the mesh 
clients, e.g., mobile devices, connect to access the internet. 

The concept of mesh networking brings a series of 
advantages (Akyildiz et al., 2005), which make it 
increasingly interesting to implement, such as: 

1 low cost network: since sharing bandwidth resources 
significantly reduces the total cost of the network, then 
enabling the creation of community networks 

2 easy deployment: WMNs have the characteristic of 
being self-configurable, as a result they are easy to 
deploy since they do not require complex configuration, 
and there is no need to reconfigure the nodes if new 
nodes join the network 

3 fault tolerant: the ability of dynamic routing combined 
with the existence of multiple access routes to a node 
enables the network to easily recover from failures, 
such as disconnection of communication links 

4 reliable: one of the most prominent features of WMNs 
is that the reliability and connectivity increase as more 
nodes are added to the network, therefore, the increase 
of network size, unlike traditional networks, is not an 
issue for this type of network. 

However, WMNs have some limitations (Zhang et al., 
2008). Most of the problems faced by mesh networks can be 
attributed to the recent attention given to this kind of 
network, such as: 

1 the absence of standardisation: the lack of a common 
standard supported by industry and academic 
community makes it impossible to adopt this 
technology on a large-scale 

2 the absence of efficient security schemes: security is 
still an open research field in WMNs, in addition to 
regular security threats from traditional wireless 
networks, there is still the problem of ensuring integrity 
and authenticity of routing and data packets travelling 
between nodes in the network. 

With respect to security, WMNs are similar to WLANs, in 
that an attacker can passively intercept radio transmissions 
and exploit them. Thus, messages transmitted between 
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nodes can be captured and altered, e.g., the network can be 
inappropriately accessed by malicious nodes and be a target 
of, for instance, denial of service (DoS) attacks. Because of 
the decentralised nature and multi-hop architecture of 
WMN, it may take a longer time to detect and mitigate such 
attacks, giving unwanted intruders a considerable advantage 
over the network administration. Consequently, attacks in 
WMNs should be precisely identified for each individual 
node. 

In WMNs, it is important to ensure confidentiality, 
integrity, authentication, access control, and availability for 
the routing operations, data services, and for the nodes of 
the mesh infrastructure. The network traffic can be 
protected at different layers, including physical, MAC, 
network, transport, and application layers, by using different 
schemes for encapsulating frames, authentication protocols, 
and encryption algorithms. However, an adversarial node 
owning a legitimate key, or even a non-authenticated mobile 
node that has access to the network, can broadcast malicious 
traffic, intercept and modify packets, or refuse to forward 
traffic by discarding packets received from other nodes. 

Possible attacks in the WMN can be characterised into 
two types: 

1 external attacks, in which attackers outside of the mesh 
network can impersonate nodes (e.g., carry out 
spoofing attacks or inject invalid information) 

2 insider attacks, which enable attackers to execute more 
severe threats from compromised nodes participating in 
the network. 

These are more difficult to prevent since the node has a 
valid key. 

In this work, we focus on detecting message alteration 
attacks and, more specifically, routing manipulation attacks 
(Morais and Cavalli, 2011b). These attacks are internal 
intrusions where a malicious node sends fakes routing 
messages on behalf of another node in order to violate the 
integrity of the network routes. We show how to diagnose 
this routing attack by making use of the traces generated by 
nodes executing better approach to mobile ad hoc network 
(BATMAN) routing protocol (Neumann et al., 2008). We 
then apply the Montimage Monitoring Tool (MMT) tool 
(Wehbi et al., 2012) to analyse the traces and generate 
routing events in a sorted manner. These events represent 
the protocol routing behaviour at each node. Then, we 
employ attack detection algorithms using the tool output to 
identify malicious traffic for the nodes. 

The innovative aspect of this work is mainly that the 
approach for detecting active attacks against the routing 
functionality of a mesh network is based on a formal  
tool-supported specification approach. This approach 
enables the detection of normal or abnormal routing 
behaviour and allows automating the generation and 
analysis of routing events. In this way, it is possible to 
efficiently identify compromised nodes that generate 
malicious traffic with the intention of disrupting the 
network routing service. 

The remainder of this paper is structured as follows. 
Section 2 discusses the related work. In Section 3, we 
describe the attack detection approach. Section 4 introduces 
the MMT tool we implemented to detect the attacks.  
Section 5 presents the evaluation procedure and results of 
the approach. Finally, Section 6 concludes this paper. 

2 Related work 

Many studies have been conducted to conceive security 
mechanisms for the existing routing protocols in WMNs. 
For that purpose, various secure routing protocols have been 
designed such as ARAN (Sanzgiri et al., 2002), Ariadne 
(Hu et al., 2005), and SAODV (Zapata, 2002). Most of the 
approaches rely on key management or cryptographic 
technologies to authenticate and protect the messages 
exchanged among nodes, and to guarantee that unauthorised 
nodes will not be able to join the network. However, these 
schemes alone cannot prevent a compromised (which has a 
valid key) or a non-authenticated mobile node from 
launching attacks against the mesh nodes to disrupt the 
routing communication and data delivery services, as we try 
to address in the present article. 

Various security methods have been proposed for 
WMNs, but not all are fully applicable in realistic WMN 
scenarios. In Wu and Li (2006), the authors propose a 
private routing algorithm to address the problem of privacy 
in WMNs. The approach is based on layered encryption to 
hide the routing information at the mesh routers. However, 
the authors do not show how the mesh nodes implement 
authentication, key distribution, and key agreement. In 
addition, the approach performance is not demonstrated as 
cryptographic schemes usually incur high computational 
overhead to the devices. 

Santhanam et al. (2007) introduced an active  
cache-based defence scheme at the mesh routers for 
detecting flooding attacks in the network. The approach 
applies a ‘most frequently used’ cache mechanism to detect 
malicious flows. But the authors do not specify which type 
of malicious flow the approach aims at identifying, whether 
routing traffic or data traffic. Islam et al. (2009) proposed a 
secure layer-2 path selection (SLPS) mechanism for WMNs 
based on IEEE 802.11s. The scheme uses cryptographic 
extensions to provide authenticity and integrity for the 
routing messages in order to prevent unauthorised 
manipulation of mutable fields in routing messages. 
Nevertheless, the proposed SLPS protocol is still 
susceptible to message fabrication attacks. 

Routing manipulation attacks (or link spoofing attacks), 
which is a type of routing disruption attack, has not been 
sufficiently studied in WMNs. Kannhavong et al. (2006) 
presented a collusion attack against optimised link state 
routing (OLSR) protocol in which a pair of colluding 
attackers prevent routes to a specific node from being 
established. The attacker advertises fake two-hop neighbour 
links to the target node in order to take control over the 
target node’s routes. The authors implemented the attack in 
a network simulator, and presented a method for detecting 
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this routing disruption attack by adding information of  
two-hop neighbours in the routing messages broadcasted by 
the nodes. The drawback of this detection scheme is that the 
target node cannot detect the routing attack if the attacker 
modifies the content of the routing messages transmitted by 
all the neighbouring nodes to this target node. 

Raffo et al. (2005) proposed a location-based detection 
scheme to identify link-spoofing attacks against OLSR. The 
method utilises signatures together with timestamps and a 
GPS device. The technique adds the geographical position 
and the timestamp of the sending node in the control 
messages so that every node knows the correct position of 
every other node in the network. This method detects link 
spoofing by comparing the geographical data to the routing 
data received by the node. If contradictory link information 
is found, the node discards the false routing message. The 
principal inconvenience with this approach is that it will not 
function in a scenario where mobile nodes are allowed to 
join the network without having a GPS device installed. 

3 The attack detection approach 

In this section, we present the attack detection approach. 
First, we introduce BATMAN routing algorithm. Then, we 
describe the steps for detecting routing attacks in a mesh 
topology by making use of the nodes’ traces. 

3.1 BATMAN protocol 

We opted for BATMAN as routing protocol since we 
applied it in previous work (Morais and Cavalli, 2011a) for 
security analysis related to routing attacks in WMN. 
However, our attack detection approach can be applied to 
other routing protocols as well. 

BATMAN routing algorithm is detailed as follows: 

1 Each node, also referred as originator (Orig), 
periodically broadcasts hello messages, known as 
originator messages (OGMs), to inform its neigbors 
about its existence. An OGM contains at least: the Orig 
address, the source node address (Src), the previous 
sender address (PSrc), a unique sequence number 
(Seq), a time to live (TTL), and a transmission quality 
(TQ) value. 

2 As a neighbouring node (Nb) receives an OGM, it 
modifies the Src address to its own address and 
rebroadcasts the OGM according to BATMAN 
forwarding rules to inform its neighbouring nodes 
about the existence of the node that originated the 
OGM, and so on and so forth. 

3 Hence, the mesh network is flooded with OGMs until 
every node has received it at least once, or until they 
are discarded because of packet loss in the wireless 
link, or until their TTL value has expired. 

4 The Seq of OGM is used to verify the message 
freshness, i.e., to distinguish between new OGMs and 
duplicated ones in order to guarantee that each OGM is 

only counted once. The amount of OGMs, i.e., the total 
number of Seq, received from an Orig via each Nb is 
used as a metric to calculate the route quality. Thus, 
BATMAN will choose the Nb from which it has 
received the highest amount of Seq (OGMs) recorded in 
a sliding window (i.e., the packet count metric) as the 
best next-hop to the Orig. 

3.2 Method of attack detection 

Figure 1 illustrates the methodology we apply for detecting 
routing attacks, which comprises four steps. 

Figure 1 Steps of the attack detection process (see online 
version for colours) 
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The first step of the approach is trace collecting, where 
output files generated by each node are collected separately 
for further analysis. For obtaining such traces, we employ 
the logging mechanism of the node, for instance, a 
monitoring tool sniffing the traffic travelling over the node 
network interface. A trace file contains communication 
information for a given node, i.e., all the routing messages 
exchanged between the node and its neighbouring nodes. 
For convenience, we assume that the file format of traces is 
libpcap (http://www.tcpdump.org/) since it is the main 
capture file format used in most of networking tools. The 
libpcap file format is a basic format to save captured 
network data. The typical file extension of libpcap-based 
files is: .pcap. Therefore, in this work, we refer to the traces 
as ‘PCAP files’. 

In the second step, we perform parameter extraction. 
First, the collected traces are examined in detail individually 
and relevant message parameters are extracted according to 
the routing protocol described in Section 3.1, and also 
taking into account the protocol specification. A trace file is 
composed of a PCAP file. Each PCAP file is composed of a 
set of captured BATMAN packets, i.e., OGMs received or 
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broadcasted by the node that are ordered with respect to the 
reception and transmission time respectively. 

Then, we use the routing protocol plug-in, i.e., the 
BATMAN plug-in, which was integrated to MMT-extract 
library of MMT tool, for extracting the protocol parameters. 
MMT-extract provides a plug-in architecture, which allows 
adding new protocols and packet structures for these 
protocols for checking attributes for the protocol packets. 
BATMAN plug-in performs the following steps: 

1 analyses the PCAP file 

2 identify relevant BATMAN packets 

3 extracts specific message parameters from each 
BATMAN packet. 

After the extraction is terminated, we will have access to the 
following parameters from the OGMs that were received or 
broadcasted by the node: P = {Seq, Orig, Src, PSrc}. 
Moreover, we could extract additional parameters from the 
OGM packet, e.g., BATMAN version and TTL, in order to 
verify if such parameters are modified by an attacker  
during the message transmission in the context of  
man-in-the-middle attacks, or corrupted due to 
communication failures. 

The next step of the attack detection approach is event 
detection. In the first place, we have to define the routing 
events we aim identifying in the routing messages based on 
the parameters P extracted from each routing packet. Thus, 
we establish the following routing events, which represent 
BATMAN protocol behaviour at the node. 

• OGM_rcv: means that an OGM is received by the node 
from a neighbouring node Nb. 

• OGM_brd: means that the node broadcasts an OGM to 
its neighbour Nb. 

• OGM_rebr: means that the node rebroadcasts an OGM 
received from a neighbouring node Nb. 

To detect these routing events, we implement routing rules 
for MMT-security module of MMT tool. A routing rule is a 
matching condition expressed in the XML format defined 
by MMT-security to specify security properties as temporal 
logic rules. MMT-security essentially formulates security 
properties and rules in the form of IF-THEN conditions, 
which makes use of parameters obtained from the protocol 
packets. Therefore, we implement routing rules for each 
routing event defined for BATMAN protocol. 

• R1 for OGM_rcv: 

   ,  for 1 ;i src iSrc N Rcv P i n≠ ← ≤ ≤if then  

where n is the number of OGMs analysed by 
BATMAN plug-in; Nsrc is the node address, i.e., the 
MAC address; and Rcv is the set of OGMs received by 
the node, i.e., the set of routing events OGM_rcv, that 
contains a set of parameters P for each OGM received 
by the node. 

• R2 for OGM_brd: 

( ) ( )  
,  for 1 ;

i src i i

i

Src N Src Orig
Brd P i n

= ∧ =

← ≤ ≤

if then
 

where Brd is the set of OGMs broadcasted by the node, 
i.e., the set of routing events OGM_brd, that contains 
sets of parameters P for all the OGMs broadcasted by 
the node. 

• R3 for OGM_rebr: 

( ) ( )  
,  for 1 ;

i src i i

i

Src N Src Orig
Rebr P i n

= ∧ ≠

← ≤ ≤

if then
 

where Rebr is the set of OGMs rebroadcasted by the 
node, i.e., the set of routing events OGM_rebr, that 
contains sets of parameters P for all the OGMs 
rebroadcasted by the node. 

The sets Rcv, Brd, and Rebr, which stand for the routing 
events detected for BATMAN routing protocol, are the 
outcome of this event detection step. The results are 
provided to the attack detection algorithm for identification 
of routing intrusions in the network traffic. 

With the use of MMT tool, we have some advantages, 
for example, easy extraction of message attributes since 
once the routing protocol plug-in is integrated to  
MMT-extract, we can readily identify the suitable routing 
parameters from the PCAP trace files collected for each 
node. In addition, the employment of routing rules allows 
sorting the routing traffic in a practical manner, so we can 
analyse particular aspects of the routing behaviour of the 
protocol, not to mention that the entire process of generating 
routing events is automated. 

3.3 Attack detection algorithm 

The last step of the approach is attack detection. As 
mentioned earlier in this work, we aim at detecting message 
fabrication attacks. For this, we define routing constraints 
relying on the routing protocol specification in order to 
identify message fabrication misbehaviour that disrupts the 
correct behaviour of the routing protocol. The routing 
constraints make use of the routing event sets produced in 
the preceding step of event detection. In the case that a 
routing constraint is violated, we count the number of 
inconsistencies F diagnosed for each violated routing 
constraint separately. RcvNb and RebNb are the routing events 
detected for neighbouring node Nb. 

• C1: ∀Seqi ∈ Rebr, if Seqi ∉ Rcv then F1++ 

Checks if Seqi rebroadcasted by the node for Origi was 
received before by the node from neighbour Srci, where 
F1 is the number of fake OGMs, i.e., Seq, fabricated 
and rebroadcasted by the node for Orig. 

• C2: ∀Seqi ∈ Rcv, if Seqi ∉ RcvNb then F2++ 

Checks if Seqi received by the node for Origi was firstly 
received by its neighbour Srci which should be received 
before from PSrci, where F2 is the number of fake 
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OGMs, i.e., Seq, received by the node that are 
fabricated and rebroadcasted by Nb. 

• C3: ∀Seqi ∈ Rcv, if Seqi ∉ RebrNb then F3++ 

Checks if Seqi received by the node for Origi was 
previously rebroadcasted by its neighbouring node Srci, 
where F3 is the number of fake OGMs, i.e., Seq, 
received by the node that are fabricated and 
rebroadcasted by a malicious node. 

We then apply routing constraints C1, C2, and C3 for 
detecting message fabrication attacks in a neighbourhood 
according to the attack detection algorithm. The algorithm 
analyses the routing behaviour of the neighbourhood by 
simultaneously examining the routing behaviour of every 
node and its respective neighbours. In that case, we have a 
global view of the network activity for the vicinity that 
enables us to accurately track down the source of intrusion, 
i.e., the malicious node, in a collaborative manner. 

For a better understanding of the algorithm, we consider 
that Rcv and Rebr are the routing event sets generated for 
node O1, and iNbRcv  and iNbRebr  are the corresponding 
routing event sets generated for the neighbours N = {Nb1, 
…, Nbk}, 1 ≤ i ≤ k, where k is the number of neighbouring 
nodes of node O1. This algorithm should be executed for 
each node Oj in the mesh network, 1 ≤ j ≤ l, where l is the 
number of nodes. We assume each node Oj has at least one 
neighbour Nbi. 

Attack detection algorithm 

Input: Rcv, Rebr, ,i iNb NbRcv Rebr  

Output: Frebr, FRbN, FRcv 
1. for all Seq ∈ Rcv then 
2.  if Seq ∉ Rcv then 
3.   F1++; 
4.  end if 
5. end for 
6. for all Seq ∈ Rcv do 
7.  for all Nbi ∈ N do 

8.   if iNbSeq Rcv∉  do 

9.    F2++ 

10.   else if iNbSeq Rebr∉  then 

11.    F3++ 
12.   end if 
13.  end for 
14. end for 

As a result, this step provides the detection results  
F = {F1, F2, F3}, which reflect potential malicious routing 
behaviour observed on the network traffic captured at node 
O1, or in the traffic collected from one or more of its 
neighbouring nodes Nbi. 

4 The MMT tool architecture and features 

In this section, we present the MMT tool and how we used 
it to analyse the protocol traces. First, we describe the 
security properties formalism used to specify the security 
requirements of the system/network under observation. 
Then, we present the MMT tool architecture and security 
features, and show how they can answer the security 
monitoring challenges described above. Finally, we present 
the application of MMT to the BATMAN protocol case 
study. A more detailed description of MMT can be found in 
Mallouli et al. (2012). 

The MMT tool is an online monitoring solution that 
provides real-time visibility of network traffic, application 
communication, flow and usage levels. It facilitates  
network security, performance monitoring and operation 
troubleshooting. MMT’s rules engine can correlate network 
and application events in order to detect operational, 
security and performance incidents. 

4.1 MMT tool and its security properties formalism 

The main objective of the MMT security properties is to 
formally specify security goals and attack behaviour related 
to the application or protocol being observed. The  
‘MMT-Security property’ model is inspired from LTL logic 
(Wehbi et al., 2012) and can refer to two types of properties: 
‘security rules’ and ‘attacks’ described as follows: 

• A security rule describes the expected functional or 
security behaviour of the application or protocol. If it is 
violated then it indicates an abnormal behaviour. 

• An attack describes a malicious behaviour whether it is 
an attack model, a vulnerability or a misbehaviour. If 
detected then it indicates abnormal behaviour that could 
be due to an attack. 

It must be noted that the events that we take into account 
within the MMT-security properties are related to 
observable system/network communications. In the case of 
a telecommunication network, they refer to traffic packets 
and flows. In other contexts, they can relate to any action 
that can be stored in a server/database/software log. The 
main definition of an MMT-security property is provided by 
the definition that follows. Other definitions that allow 
understanding the basics of the model used can be found in 
Mallouli et al. (2012). 

An MMT-security property is an IF-THEN property. It 
allows expressing specific constraints on network events. 
Each event is a set of conditions on some of the meta values 
or field values of the exchanged packets. 

4.1.1 Definition of MMT-security property 

Let W ∈ {BEFORE, AFTER}, n ∈ N*, t ∈ R+* and e1 and e2 
two events. An MMT-security property is an IF-THEN 
expression that describes constraints on network events 
captured in a trace T = {p1, …, pm′}. It has the following 
syntax: 
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, ,
1 2

W n te e⎯⎯⎯→  

This property expresses that if the event e1 is satisfied (by 
one or several packets pi, i ∈ {1, …, m}), then event e2 must 
be satisfied (by a set of packets pj, j ∈ {1, …, m}) before or 
after (depending on the W value) at most in n packets and/or 
in t units of time. e1 is called triggering context and e2 is 
called clause verdict. 

4.1.2 Formalism implementation 

The MMT-security property model allows expressing 
complex security properties derived from security best 
practices and from domain-specific security requirements. 
These MMT-security properties are described using an 
XML format to make their interpretation easier for both 
humans and software. The main structure of a property is 
given in Figure 2. 

Figure 2 MMT property structure (see online version  
for colours) 

 

 

Each property begins with a <property> tag and ends with 
</property>. A property is a ‘general ordered tree’ as shown 
in Figure 2. The nodes of the property tree are: the property 
node (required) operator nodes (optional) and event nodes 
(required). The property node is forcibly the root node and 
the event nodes are forcibly leaf nodes. The left branch 
represents the context and the right branch represents the 
trigger. This means that the property is found valid when the 
trigger is found valid; and the trigger is checked only if the 
context is valid. 

4.1.3 Multi data sources management for security 
analysis 

In the context of MMT, deep packet inspection (DPI) and 
deep flow inspection (DFI) are used to help detect and 
tackle harmful traffic and security threats; and, to throttle or 
block undesired behaviour. We define a set of security 
properties for network traffic, at both control and data 
levels, to detect interesting events. Indeed, based on the 
defined security properties, we register the attributes to be 

extracted from the inspected packets and flows. These 
attributes are of three types: 

• Real attributes: They can be directly extracted from the 
inspected packet. They correspond to a protocol field 
value. 

• Calculated attributes: They are calculated within a 
flow. Packets from the same flow are grouped and 
security/performance indicators are calculated (e.g., 
delays, jitter, packet loss rate) and made available for 
the security analysis engine. 

• Meta attributes: These attributes are linked to each 
packet to describe capture information. The time of 
capture of each packet (timestamp attribute) is the main 
meta-attribute. 

The extracted attributes needed for security analysis can 
emanate from different data sources (probes and/or 
interfaces). This is managed in the MMT monitoring 
solution during the specification phase of the security 
properties. Indeed, the data sources identifiers are part of the 
meta-attributes that can be used in the specification of the 
relevant events for security analysis. Three architectures are 
taken into account in MMT: 

• Local analysis: the collected traffic is analysed for 
security purposes in one probe that captures network 
traffic from one or several interfaces. 

• Centralised analysis: the traffic capture is distributed 
but the security analysis is centralised. All data sources 
send their collected traffic (filtered or not) to the same 
master server that correlates the traces (i.e., need to 
synchronise probes to be able to perform this task). 

• Distributed analysis: the traffic capture is distributed 
and the analysis is performed by all the probes that 
communicate together to share information. This 
analysis can be very interesting particularly for ad hoc 
network case studies. The communication between 
probes is an ongoing work for the MMT tool. 

Figure 3 shows how the MMT monitoring tool works. Input 
can be provided from different raw data sources (e.g., 
network, system, application). It can also be provided by 
remote MMT probes in the context of a distributed 
architecture. The extraction engine allows to retrieve 
relevant attributes for the further analysis and the 
correlation engine allows the correlation of extracted events 
in time in order to check the validity of MMT properties. 
These properties specify the functional, security or 
performance behaviour that needs to be validated. The 
correlation engine will then produce the verdicts for each 
property (fail, ok or inconclusive). 

The originality of the MMT security properties with 
respect to existing intrusion detection techniques lies in that 
they are not based on just pattern matching (i.e., signatures) 
as in SNORT (Hu et al., 2005) nor requiring writing 
executable scripts as in BRO (Sanzgiri et al., 2002). They 
allow a more abstract description of a sequence of events 
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that can represent normal/abnormal behaviour. They can 
also integrate pattern matching, statistics and machine 
learning techniques; but describing this here is out of scope 
for this paper. 

Figure 3 MMT distributed correlation (see online version  
for colours) 

 

 

4.1.4 MMT-security architecture 

MMT-security is composed of three complementary, but 
independent, modules as shown in Figure 4: 

• MMT-extract is the core packet processing module. It is 
a C library that analyses network traffic using deep 
packet/flow inspection (DPI/DFI) techniques in order to 
identify network and application-based events by 
analysing: protocols’ field values; network and 
application quality of service (QoS) parameters; and, 
key performance indicators (KPI). MMT-extract 
incorporates a plug-in architecture for the addition of 
new protocols or message types, and a public API for 
integration into third party probes. 

• MMT-security is a security analysis engine based on 
MMT-security properties. MMT-security analyses and 
correlates network and application events to detect 
operational and security incidents. For each occurrence 
of a security property, MMT-security allows detecting 
whether it was respected or violated. Other analysis 
modules exist (e.g., for video quality analysis and 
traffic analysis) or new ones can be added. 

• MMT-operator is a visualisation application for  
MMT-Security currently under development. It allows 
collecting and aggregating security incidents to present 
them via a graphical user interface. MMT-operator is 
conceived to be customisable, i.e., the user will be able 
to define new views or customise one from a large list 
of predefined views. At the time of writing this paper, a 
web-based representation of the analysis results is 
provided. 

 

 

 

Figure 4 MMT global architecture (see online version  
for colours) 

 

4.1.5 Application of MMT to the BATMAN protocol 
case study 

To be able to apply the tool to the BATMAN protocol case 
study we first created the BATMAN plug-in for the  
MMT-extract library and then specified the properties that 
we wished to detect for the MMT-security module. 

An MMT-extract plug-in will serve to initialise a 
protocol structure that contains the required information 
regarding the protocol attributes, as well as the functions 
allowing extracting the data corresponding to these 
attributes. For creating a MMT-extract plug-in (written in 
the C language), a set of utility structures, utility functions 
and generic extraction functions are available as a C 
language API to simplify the task. 

To create the BATMAN plug-in we defined a C header 
file that specifies the different protocol attributes that make 
up a BATMAN communication packet, and a C source file 
that implements the functions needed to extract the attribute 
values from this packet. This task is relatively easy when 
using an existing plug-in as a template. Implementing and 
testing it can be done in one day. 

To be able to detect the security-related events needed 
for identifying malicious nodes, we specified the security 
properties that are used by the MMT-security module. 
These properties were done to identify badly formed 
packets and identify routing events: Rcv, Brd, and Rebr for 
each node. The properties were written in XML and are 
described in Section 3.2. 

The time needed for analysing the PCAP traces is very 
small (a few ms) due to the fact that the trace files are small 
(less that 100 Mb). The efficiency of the MMT-security 
module for the type of properties used was in the order of 
the number of properties pr times the number of packets to 
analyse pa (O(n2)). 
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5 Experimental evaluation 

In this section, we use a virtualised network environment to 
demonstrate the viability of our trace-based attack detection 
solution and assess the efficiency of the approach. 

5.1 Experimental platform 

The mesh topology is emulated by virtual machines  
(VMs), which consists of QEMU (Claffy et al., 2012) 
instances, with Linux OS installed, running BATMAN 
routing protocol. Batman-adv v.2011.1.0 (QEMU, 
http://wiki.qemu.org) is compiled from source code and 
loaded into the Linux OS of each QEMU instance as kernel 
module. 

The hardware configuration of a QEMU instance 
consists of standard IBM PC 32Bit computer architecture 
with one CPU, that is the default QEMU 32Bit CPU type, 
and 256 MB of main memory, and compatible with Linux 
OS. We assume that each node in the network has an 
equivalent hardware configuration to that one of the QEMU 
VM that corresponds to common wireless mesh devices 
such as Wi-Fi routers or mobile devices with sufficient 
hardware resources. 

The virtual nodes, i.e., the VMs, are interconnected  
by a virtual switch (Open-Mesh.net, http://www.open-
mesh.net/), which emulates bi-directional link 
communication between the nodes and corresponding 
degradations in the quality of the links due to the packet loss 
rate. For the experiments, we assume a fixed mesh 
topology. 

During the experiment execution, we use the logging 
mechanism of QEMU to dump the network traffic of each 
node into separate PCAP logging files. The PCAP files are 
synchronised with a global clock, i.e., the time of the main 
machine that executes the VMs. This procedure of saving 
PCAP files for each mesh node apart concerns the trace 
collecting step of the approach described in Section 3.2. 

5.2 Attack emulation scenario 

Our next step is to define a mesh network scenario where 
routing communication is carried out among the nodes, so 
we can analyse the types of routing events that may occur. 
The emulated network scenario is composed of four nodes: 
O1, O2, O3, and O4, where each node only communicates 
with its neighbours, as seen in Figure 5. 

Since the link between nodes O1 and O2 has a packet 
loss rate (15%) higher than the one between nodes O2 and 
O4 (0%), nodes O3 and O4 normally prefer a route toward 
gateway node O2 via node O4. For instance, in the routing 
table of node O3, the route entry of node O2 has as best  
next-hop node O4. In this scenario, node O1 is compromised, 
and creates and sends spoofed OGMs on behalf of node O2, 
i.e., node O1 fabricates Seq for Orig = O2, which in fact it 
did not received from node O2. In this manner, node O1 can 
divert the routes of target nodes O3 and O4 toward gateway 
node O2 to the own malicious node O1, thus characterising a 
routing manipulation attack. 

Figure 5 Mesh topology emulated for the experiment (see online 
version for colours) 
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As routing decisions rely on statistical analysis of the 
amount of OGMs, i.e., Seq, received rather than information 
contained in the routing messages, malicious node O1 has to 
fabricate a number of fake OGMs that are numerous enough 
to surpass the legitimate OGMs broadcasted by node O2 in 
order to redirect the routes of nodes O3 and O4 to node O1. 
In other words, the malicious node O1 has to continuously 
win the neighbour ranking of target nodes O3 and O4 
towards gateway node O2. For instance, node O3 has to 
constantly choose Nb O1 as best next-hop to O2. As a result, 
the routing table of target nodes O3 and O4 will update their 
route entry of node O2 for best next-hop to node O1. 

The routing manipulation attack is implemented  
using the Ethernet packet generator packETH (VDE  
Switch, http://wiki.virtualsquare.org/wiki/index.php/VDE) 
which permits node O1 to create and broadcast bogus OGMs 
with continuous valid Seq on the network interface of own 
node O1. 

5.3 Attack detection results 

After collecting the PCAP files generated by the nodes, we 
will examine the trace files for nodes O1, O2, and O3 since 
these nodes are directly involved in the malicious routing 
behaviour performed by node O1. Thus, we employ the 
MMT-Extract tool to extract the OGM parameters defined 
in the second step of Parameter Extraction. We obtain 
three parameter sets: 1 2, ,O OP P  and 3 ,OP  which comprise 
the parameters P extracted from all the OGMs in each 
collected PCAP file. For instance, for node O1 we have 

1 1{ , ..., },O
nP P P=  where n is the number of OGMs found 

by BATMAN plug-in when analysing the PCAP file of 
node O1. 

By using the parameter sets 1 2, ,O OP P  and 3OP  
obtained from the traces along with the routing rules 
implemented in third step of event detection, we can 
precisely identify the routing events for each node. Then, 
we apply the MMT-Security tool to these parameter sets to 
generate the routing event sets: Rcv, Brd, and Rebr for 
nodes O1, O2, and O3. 

Once we have the routing event sets, we execute the 
attack detection algorithm in the context of the routing 
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behaviour of nodes O1, O2, and O3, which corresponds the 
last step of the approach. For instance, for node O1 we 
consider the set of neighbours N = {O2, O3} and the 
corresponding routing event sets: { , },i iO ORcv Rebr  2 ≤ i ≤ 3, 
in addition to the routing event sets {Rcv, Rebr} generated 
for node O1. 

The output of the algorithm for each node, i.e., the 
detection results F = {F1, F2, F3}, are exhibited in Table 1. 
Based on this, we remark that node O1 is the source of 
intrusion in the neighbourhood since node O1 detects a 
significant number of fake OGMs F1 broadcasted by the 
own node. And its neighbours O2 and O3 also detect a 
considerable number of fake OGMs F2 received from their 
respective neighbour O1 that are fabricated by node O1. 

Table 1 Detection results 

Number of 
inconsistencies Node O1 Node O2 Node O3 

F1 1,630 - - 
F2 - 1,948 1,510 
F3 - - - 

The duration of the experiment was 30 minutes. We used 
the default BATMAN OGM broadcasting rate of 1,000 ms 
for the routing attack, and node O1 starts broadcasting fake 
OGMs at 48 seconds. Therefore, the total number of fake 
OGMs broadcasted by node O1 during the experiment 
execution is T = 1,752. We observe nodes O1 and O3, except 
node O2 that is affected by the link packet loss, detect less 
fake OGMs than expected, i.e., F1 < T > F2. The reason is 
that the detection algorithm does not consider the arrival 
time of OGMs when checking Seq in the routing event sets 
of the nodes, so if a fake OGM broadcasted in the past has 
the same Seq value as a legitimate OGM transmitted at the 
present time, the algorithm considers this fabricated OGM 
as valid. Since OGM broadcasting rate is 1 sec, the 
algorithm should verify Seq between the routing event sets 
of nodes considering a time difference of 2 seconds. 

The ratio of attack detection with regard to the malicious 
routing behaviour identified in the traces is defined as: 

| | .T F
TR −=  Then, we calculate R using the number of 

detected intrusions F in Table 1, and we obtain: 1 6%,OR =  

2 12%,OR =  and 3 14%.OR =  We notice that the smallest 
difference concerns the attack detection in the perspective 
of node O1 since the number of detected fake OGMs F1 
relies exclusively on the routing events Rebr and Rcv 
identified in the local trace of node O1, which is not affected 
by external transmission factors, such as packet drop. 

However, from the point of view of nodes O2 and O3 we 
note a higher deviation in the attack detection compared to 
node O1. In fact, the trace file collected at node O2 is 
particularly impacted by the high packet loss rate between 
nodes O1 and O2, which results in loss of OGMs exchanged 
between these nodes. Thus, the number of intrusions F2 that 
is calculated taking into consideration the routing event sets 

Rcv of both nodes O1 and O2 is surely influenced by the 
packet loss rate present in the link. 

Moreover, the divergence R in terms of F2 for nodes O2 
and O3 is caused by the lack of synchronisation between the 
logging mechanism of nodes, at the beginning and at the 
end of the experiment, when the logging mechanism starts 
and stops saving routing messages to the respective trace 
files. For example, at the time node O3 stops recording 
traffic data to the trace file, its PCAP log file contains more 
routing information from nodes O1 and O2 than the 
respective PCAP files of node O1 and node O2 which 
stopped capturing the routing packets earlier. Therefore, 
metric F2 that is basically calculated correlating routing 
message parameters between neighbouring nodes will 
produce incorrect results since it is missing routing 
information in the routing event sets. 

The additional fake OGMs detected by node O2 with 
respect to T, since F2 > T for O2, do not properly correspond 
to attack attempts and can be considered as false positives, 
i.e., false alarms. They are mainly caused by degradations in 
the link quality, i.e., the packet loss rate of the link. 
Therefore, a threshold based on transmission impairments 
should be defined in order to distinguish between false 
positives and malicious routing behaviour when analysing 
the attack detection results F of each node. 

6 Conclusions 

In this work, we have implemented the BATMAN plug-in 
for MMT-extract. Then, we applied MMT-extract to the 
BATMAN traces supplied by each node in order to obtain 
relevant BATMAN properties regarding the routing 
protocol semantics. We define routing events that 
correspond to the routing behaviour of the protocol in 
execution at the node. With the help of MMT-security, we 
are able to properly generate such routing events in a 
suitable output format, which are then used as input for the 
attack detection algorithm. We managed to successfully 
detect intrusion attempts performed by a malicious node 
participating in the mesh network and broadcasting phoney 
routing messages in its neighbourhood. 

As a future work, we envisage evaluating the approach 
in malicious scenarios where two or more nodes collude to 
carry out routing misbehaviours, i.e., coordinated attacks. 
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