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Abstract. Digital twins are revolutionizing smart manufacturing by fa-
cilitating real-time monitoring, simulation, and optimization of physi-
cal processes. This paper introduces the SINDIT framework, a compre-
hensive approach tailored for developing knowledge graph-based digi-
tal twins. By seamlessly integrating cognitive capabilities, SINDIT en-
hances decision-making and operational efficiency within manufacturing
systems. Central to its architecture is a robust data pipeline, adept at
organizing and linking vast amounts of heterogeneous data, thereby en-
abling advanced data analytics and reasoning.
Case studies from the pilots of the COGNIMAN project underscore the
practical utility and benefits of the SINDIT framework. These studies
showcase notable enhancements in predictive maintenance, process opti-
mization, and overall productivity. By harnessing the power of knowledge
graphs and cognitive capabilities, SINDIT represents a promising avenue
for driving innovation and efficiency in smart manufacturing. Through
this framework, manufacturers can achieve a higher level of operational
insight and agility, leading to improved performance and competitiveness
in the market.

Keywords: Digital Twins · Industry 4.0 · Smart Manufacturing.

1 Introduction

The advent of Industry 4.0 has marked the beginning of a new era in smart
manufacturing, characterized by the seamless integration of advanced digital
technologies and physical production processes [7]. Among these technologies,
Digital Twins (DTs) have emerged as a pivotal innovation, providing real-time
virtual representation of physical systems [21]. By leveraging DTs, manufactur-
ers can monitor, simulate, and optimize their operations, leading to enhanced
productivity, efficiency, and decision-making capabilities [25].



2 A.N. Lam et al.

Despite the significant potential of DTs, there is a pressing need for tools that
simplify their development and deployment. As defined in [6], a DT software plat-
form includes various components such as IoT connections for communication
with the physical twins, data integration, processing and persistence, develop-
ment of the DT information model, evaluation of DT algorithms (e.g., data-
driven analytics), conducting simulations, and visualization of the DT models
and analytic results. Existing DT solutions in the market, such as Azure Digital
Twins [13], Amazon TwinMaker [1] and ThingWorx [17] are highly customized
and proprietary. While open-source solutions such as Thingsboard [23], Asset
Administration Shell (AAS) [3], or Eclipse Ditto [4] and Vorto [5] exist, they
are tailored to support only specific steps in the development of a DT. An in-
tegrated framework that seamlessly brings these components together to enable
an end-to-end DT system is still lacking.

To address these limitations, we aim to extend our previous work [25] and
present SINDIT (SINTEF DIgital Twin) as an open-source DT framework that
is more flexible and maintainable. SINDIT will support continuous development
to be applicable to various use cases in the smart manufacturing domain. Our
primary objective is to create a modular and scalable framework that simplifies
the development and deployment of DTs. The proposed framework will feature:

– Flexible Data Integration: Support for a wide variety of data sources
and communication protocols, making it easy to connect to different physical
systems.

– Scalable Data Model: A generic information model that can handle het-
erogeneous datasets and diverse types of data, ensuring compatibility and
extensibility.

– Knowledge Graph Integration: The use of knowledge graphs to provide
a comprehensive and interconnected representation of the DT, enhancing
data integration, querying, and reasoning capabilities.

– Modular Architecture: A four-layer architecture (Data, DT Representa-
tion, Service and User Interface) that ensures seamless integration of com-
ponents, enabling end-to-end development of DTs.

The practical application and validation of the SINDIT framework are demon-
strated through its implementation in various use cases. For instance, the DT
of the Fischertechnik factory showcases real-time monitoring and anomaly de-
tection, while the COGNIMAN project6 involves pilots in precision machining
and additive manufacturing, highlighting significant potential for improvements
in decision-making and operational efficiency.

This paper is organized as follows: Section 2 provides background information
on the COGNIMAN project and the state-of-the-art development of DT frame-
works. Section 3 details the SINDIT framework, including its architecture and
implementation. Section 4 discusses the use cases and pilot applications of the
framework in smart manufacturing environments. Finally, Section 5 concludes
the paper and outlines future work.
6 https://cogniman.eu/

https://cogniman.eu/
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2 Background

2.1 COGNIMAN - COGNitive Industries for smart MANufacturing

The COGNIMAN project aims to revolutionize manufacturing through the de-
velopment and deployment of AI-enhanced robotic systems designed for flexi-
bility, modularity, reasoning, and decision-making. The primary objective is to
create a scalable, modular solution that enables quick early adoption in various
manufacturing processes that have traditionally been difficult to automate. This
involves defining a virtual/simulation platform architecture with highly flexible,
reconfigurable, and controllable production for digital cognitive manufacturing.

New technologies play a crucial role in COGNIMAN, particularly DTs, AI,
and human-in-the-loop systems. DTs are used for parameter optimization prior
to deployment, significantly reducing the validation effort. AI technologies are in-
tegrated to provide real-time decision-making capabilities and self-adaptiveness
to changing conditions. The human-in-the-loop approach ensures that the de-
veloped systems are user-friendly and ergonomic, enhancing safety and collabo-
ration between human operators and robots. This combination aims to foster a
seamless integration of advanced technologies in manufacturing environments.

Fig. 1. The COGNIMAN Big picture

COGNIMAN includes four pilot projects to demonstrate the applicability
of its technologies. These pilots involve validation in real manufacturing envi-
ronments to ensure the integrated system works effectively. The pilots cover
various manufacturing scenarios: defect detection in fiberglass production, pre-
cision machining for deburring large metal parts, additive manufacturing for
medical implants, and creating a digital library for batch management in flexi-
ble manufacturing. As will be described in the following sections, SINDIT will be
specifically used for two of these pilots. The ultimate goal is to create a compre-
hensive toolbox for smart manufacturing, integrating simulation, models, DTs,
AI, sensors, and robotics into a modular solution to automate processes, improve
decision-making, and enhance operational efficiency.
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2.2 Digital Twin Frameworks

Digital Twins (DTs) are digital representations of physical systems, where phys-
ical assets, processes and their relationships are modelled to not only replicate
the conditions and status of the physical twin system, but to extend and en-
hance the system with predictive analysis for future events and simulations of
what-if scenarios [25]. There are several actors on the market providing frame-
works for building, hosting and managing DT systems. In Table 1, we have listed
several proprietary and opensource software systems. The table shows whether
the software provides capabilities of remote procedure calls, what data source
protocols are supported, and what programming language interface is provided
by the software to perform data analytics. On the other hand, in some cases
data can be exported to other services that perform the analytics and store
the results, that in turn the DT software can consume. A major difference be-
tween the proprietary solutions and the opensource solutions are vendor lock-in
-effects. To make use of the DT service, other services from the same software
provider might be required for example to obtain IoT data, perform analytics or
to build machine learning models. Opensource frameworks are, in this regard,
more customizable, but on the flip side these typically require more of the user
to build a fully functioning DT.

Table 1. Overview of various digital twin software solutions. : Hosting on-
premise, cloud or possibility to upload models to cloud based hosting, respectively.

Software Pricing
model

Open
source Hosting Remote

control
Data
sources

Analytics
language

Azure Digital Twins [13] Pay by use no Azure IoT services

Amazon TwinMaker [1] Tier based pay by use no AWS IoT services

Ansys Twin Builder [2] Licence based no ?

ThingWorx [17] Licence based no ?

Insights Hub [20] Licence based no MQTT, OPC-UA

ThingsBoard Professional [23] Tier based Apache 2.0 MQTT, OPC-UA, HTTPS
REST, FTP, SNMP, ODBC Python

ThingsBoard Community Free Apache 2.0 MQTT, OPC-UA, HTTPS
REST, FTP, SNMP, ODBC Python

DTaaS [22] Free GPL v3 MQTT, RabbitMQ
InfluxDB, MongoDB

SMOL [8] Free BSD-3-Clause ? SMOL, FMO

Asset Administration Shell [3] Free CC-BY-4 OPC-UA

Eclipse Ditto [4] + Eclipse Vorto [5] Free EPL v2 MQTT, AMQP, HTTP, Kafka

SINDIT [25] Free MIT MQTT, OPC-UA, InfluxDB

3 SINDIT Knowledge Graph Based DT Framework
3.1 Software Architecture

SINDIT is structured according to the reference architecture for DT systems de-
veloped in COGNIMAN project. It aims to enhance flexibility and modularity
through interfaces to connect different components for the purpose of building
knowledge graph based DTs. Figure 2 depicts the four-layer architecture of SIN-
DIT along with its constituent components.
Physical Twin The Physical Twin refers to real-world physical assets that are
replicated and modeled as DTs within virtual environments. Physical twins can
be tangible objects such as sensors, actuators, machinery, or equipment which are
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monitored during the production in the factory. They can also include intangible
artifacts such as processes that need optimization or software systems used in
operations. They can even extend to human DTs [24], which represent individuals
in virtual form, facilitating personalized simulations, health monitoring, and
performance optimization of the operators in the manufacturing environment.

Data

Databases Streaming Servers

Digital Twin Representation

Knowledge Graph

Physical Twin

Service

Analytics Simulation
U

ser InterfaceData Connectors

API / C
LI

D
ata

Im
porters

Dataset 
(CSV, Images)

Fig. 2. SINDIT Software Architecture.

Data Layer To interact with DTs, physical twins need to provide interfaces
for the collection of data necessary for building their virtual representations and
for receiving the control feedback from the DT. This can be achieved by us-
ing data streaming servers that support bidirectional communication, such as
OPC-UA [11], MQTT [18], or RESTful [12] APIs. The Data Layer contains the
software components that handle interaction with the physical twins, supporting
the collection, storage, and management of data generated by them. It also in-
cludes various databases to persist the generated data. Additionally, for physical
systems that can only export historical datasets manually, the Data Layer pro-
vides Data Importers to onboard these datasets into its internal databases. The
Data Connectors are the critical components to make data available to the higher
layer. Data Connectors provide a standardized interface to access the data, re-
gardless of the underlying databases and streaming servers. Furthermore, new
data connectors can be dynamically registered to support new communication
protocols or new database systems employed by the physical twins. Similarly,
whenever physical systems generate datasets with a new data format, a new
implementation of the corresponding data importer can be added to the Data
Layer. This solution enables loose coupling between the layers and among the
components, thereby enhancing the modularity and flexibility of the framework.

Digital Twin Representation Layer The Digital Twin Representation Layer
employs the Knowledge Graph as a conceptualization layer, integrating all the
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components defined in the Data Layer. The knowledge graph incorporates the
metadata of the physical twins and their relationships, providing a comprehen-
sive and interconnected representation of the DT. For scalability and perfor-
mance efficiency, the knowledge graph does not necessarily contain all historical
time-series data already persisted in the Data Layer. Instead, it may capture only
the latest values and/or aggregated values (e.g., average, minimum, maximum
values) for real-time monitoring purpose. Additionally, the knowledge graph pro-
vides the necessary information for the higher layer to retrieve detailed data from
the Data Layer. Figure 3 depicts an excerpt from the information model for the
knowledge graph within the Digital Twin Representation Layer. This model was
developed using the Eclipse Semantic Modelling Framework (ESMF)7, which in-
cludes a meta-model and editor tailored for DT modeling. ESMF also provides
standardized vocabularies, such as those for units of measure and data types,
facilitating semantic interoperability across different DT frameworks. Thus, by
employing ESMF for our DT solution, our goal is to ensure a robust and inter-
operable representation of our DT system.

Asset

+assetDescription: str

SINDITKG

AbstractProperty

+propertyUnit: str

+propertySemanticID: str

+propertyDescription: str

+propertyDataType: str

+propertyValue: str

+propertyName: str

Connection

+type: str

+host: str

+port: int

+username: str

+passwordPath: str

+tokenPath: str

+isConnected: bool

+connectionDescription: str
DatabaseProperty

+query: str

StreamingProperty

+streamingTopic: str

TimeseriesProperty

File

+fileType: str

+filePath: str

*

*

11

Fig. 3. SINDIT Knowledge Graph Information Model.

As depicted in Figure 3, the SINDIT Knowledge Graph (SINDITKG) con-
sists of different Assets, which represents the physical devices in the Physical
Twins. Each asset may have different Abstract Properties, which can be either
quantitative (with Unit and Data Type) or qualitative values. The Semantic ID
attribute of these properties refers to an externally defined standardized vocabu-

7 https://eclipse-esmf.github.io/

https://eclipse-esmf.github.io/
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lary that explains the precise semantic interpretation of the data value. Examples
of such vocabularies include the IEC 61360 - Common Data Dictionary8 for elec-
tric/electronic devices and ECLASS9 for data across various industrial domains.
The Semantic ID can also reference a concept defined in other domain-specific
OWL ontologies, ensuring comprehensive semantic interoperability within the
framework. The Property Value attribute maintains the observed value of the
property. As previously mentioned, this could represent either the latest obser-
vation or accumulated values derived from time-series data.

The Connection class within the information model contains details neces-
sary to establish a connection to the underlying database or streaming server.
This connection is utilized for instantiating a new Data Connector to the Data
Layer. For security reasons, the knowledge graph does not store any credential
information (such as passwords or access tokens); instead, it includes paths to
external secret vaults where this sensitive information is securely stored.

In addition to the Abstract Property, the information model also includes
several concrete properties. The Streaming Property facilitates real-time data
retrieval from a streaming server, with the Streaming Topic attribute specifying
the identifier of the value on the server (e.g., the topic in an MQTT server
or the node path in an OPC-UA server). The Database Property represents a
data value stored within a database system (e.g., a measurement in a time-series
database or a column in a relational table), with a query used to retrieve that
specific value from the database. Additionally, the Timeseries Property and File
Property denote a continuous value or an object stored in a time-series database
or file system, respectively.

Service Layer The Service Layer comprises the functionalities that leverage
the data and representation in the Digital Twin Representation and Data Layers
to provides various data-driven services. This layer is structured on modular
principles, allowing different components to be integrated using standardized
APIs provided by the underlying Digital Twin Representation layer. Examples
of these services can include:

– Analytics: Performs data analysis to derive insights and predictions.
– Simulation: Conducts simulations to predict outcomes and test scenarios.
– Graph-based Reasoning: Utilizes logical inference and rule-based systems to

make decisions and recommendations based on data from the graph.
– Monitoring: Continuously access and update data from the knowledge graph

to detect anomalies or deviations from expected norms.
– Control: Uses insights derived from analytics and simulations to automate

actions and optimize operations in real-time.

These capabilities leverage the integrated data from the Digital Twin Rep-
resentation Layer to enhance decision-making and operational efficiencies across
diverse applications and industries.

8 https://cdd.iec.ch/
9 https://eclass.eu

https://cdd.iec.ch/
https://eclass.eu
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User Interface The three layers — Data, Digital Twin Representation, and
Service — not only provide APIs and CLI for internal communication but also
facilitate seamless integration with external systems and applications. The User
Interface Layer leverages these interfaces to enhance user interaction. It utilizes
APIs and CLI to offer intuitive interfaces for users to interact with DT function-
alities. This includes visualizing real-time data, configuring simulations, evaluat-
ing different ML models, accessing analytical insights, modifying the knowledge
graph to add new assets, controlling the physical devices, and configuring con-
nections through user-friendly dashboards and controls.

3.2 Implementation and Deployment

The implementation and deployment of the SINDIT framework focus on ensuring
modularity, scalability, and ease of integration with various data sources and
systems. To facilitate rapid prototyping and deployment, the SINDIT framework
is containerized using Docker, enabling different components to be deployed as
separate containers. Key components include:
Data Layer This layer contains the components supporting bi-directional in-
teraction with the Physical Twins and persisting the generated data. The cur-
rent version of SINDIT includes components that support MQTT and OPCUA
servers. For data storage, it employs InfluxDB10 for time series data and MinIO11

for object data such as documents and images. As mentioned earlier, the Data
Layer is designed to be easily extended to support different databases or com-
munication protocols. Accordingly, we proposed a unified interface for each type
of communication (e.g., to retrieve the database, to interact with the streaming
server) so that the integration of new systems is streamlined. This modular de-
sign allows for the seamless addition of new functionalities without disrupting
existing operations.

For the secret vault, HashiCorp Vault12 is employed. However, similar to
other types of databases, new technologies for secret storage can also be inte-
grated as long as an adapter that implements the secret vault interface is avail-
able. This ensures that sensitive information, such as credentials and private
keys, is securely stored and managed.
Digital Twin Representation Layer This layer employs a Knowledge Graph
to integrate all components defined in the Data Layer, capturing the metadata
of the physical twins and their relationships. GraphDB13—an RDF triplestore
which has shown decent performance as benchmarked in [10]—is employed to
store and manage the knowledge graph data within the Digital Twin Represen-
tation Layer. Most RDF triplestores provide a SPARQL endpoint, which is a
standardized HTTP protocol to query and update semantic knowledge graphs
using SPARQL syntax. Consequently, other triplestores can be easily integrated
10 https://www.influxdata.com/
11 https://min.io/
12 https://www.hashicorp.com/products/vault
13 https://graphdb.ontotext.com/

https://www.influxdata.com/
https://min.io/
https://www.hashicorp.com/products/vault
https://graphdb.ontotext.com/
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into the Digital Twin Representation Layer, enabling flexibility and adaptability
of the system. This ensures that the knowledge graph can evolve with emerg-
ing technologies and changing requirements, providing a robust foundation for
advanced data analytics and reasoning within the SINDIT framework.

Service and User Interface Layers These two layers are currently highly
application-specific, tailored to meet the precise needs of various use cases. Ac-
cordingly, we have different components and dashboards developed for these use
cases as described in [25]. Our immediate focus is to ensure that the frame-
work meets the specific requirements of different manufacturing environments,
providing optimal performance and relevance.

Looking ahead, our vision is to transform this layer into a more generic and
versatile toolkit. Future developments will include a range of machine learning
models, enabling users to easily evaluate and deploy these models. This will
provide a modular and flexible suite of tools, allowing users to customize and
extend the functionalities of the SINDIT framework.

Moreover, similar to the design strategy in the Data Layer, we plan to develop
unified interfaces to integrate various simulation technologies and retrieve results
from analytics and simulations seamlessly. This standardization will facilitate
smoother integration and interoperability, streamline the development of user
interfaces, and allow users to leverage advanced simulation and analytical tools
without extensive customization efforts.

The SINDIT open-source prototype, written in Python, can be found on the
GitHub repository14, along with a use case for the Fischertechnik Factory. It is
also being adapted for two pilots in the COGNIMAN project, specifically within
the domains of precision machining and additive manufacturing. Details about
these use cases will be discussed in the next section.

4 Use Cases

In this section, we describe the application of the SINDIT framework. The digital
twin of the Fischertechnik factory is already implemented, showcasing real-time
monitoring and anomaly detection. Additionally, we outline the vision for ap-
plying SINDIT in two COGNIMAN pilots: precision machining and additive
manufacturing, aimed at enhancing decision-making and efficiency.

4.1 Digital Twin of the Fischertechnik Factory

This section describes the implementation of the DT for the Fischertechnik fac-
tory15, a fully realized application of SINDIT framework. This training factory
simulates Industry 4.0 processes, incorporating a high-bay warehouse, a multi-
processing station, a sorting line with color recognition, an environmental station
with various sensors and surveillance camera, a delivery and pickup station with
14 https://github.com/SINTEF-9012/SINDIT
15 https://www.fischertechnik.de

https://github.com/SINTEF-9012/SINDIT
https://www.fischertechnik.de


10 A.N. Lam et al.

colour detection and NFC reader, and a vacuum suction gripper robot. These
physical components constantly send sensor data to the DT through MQTT and
OPC-UA servers. The list of 37 sensor values is described in Table 2.

Table 2. Sensor data collected from the Fischertechnik Factory.

Physical Devices Sensor Values Streaming
Protocol

Environment Sensor 14 values for temperature, humidity, air
quality and pressure, camera positions
and its image

MQTT

Muti-Processing Station (MPO) 2 values for MPO status OPC-UA
Sorting Line (SLD) 2 values for SLD status OPC-UA
Highbay Warehouse (HBW) 6 values for HBW status and positions MQTT
Delivery and Pickup (DPS) 4 values for DPS status OPC-UA
Robot (VGR) 9 values for VGR status and poistions OPC-UA

The Data Layer of the Fischertechnik DT includes Data Connectors for both
MQTT and OPC-UA to provide real-time data retrieval. Additionally, this layer
also incorporates an InfluxDB database to store historical sensor values from
these two streaming servers, as well as MinIO to store object files such as images
taken from the camera, CAD images, and manuals for the physical devices.

type

sindit:assetProperties

sindit:assetProperties

Environment
Sensor

sindit:propertyDataType

type

sindit:streamingPropertyConnection
Temperature

type

sindit:propertyDataType

sindit:databasePropertyConnection

sindit:propertyUnit

Humidity

sindit:
Assetxsd:float

unit:
degreeCelsisus

unit:
percent

type

InfluxDB
Connection

type

MQTT
Connection sindit:

Streaming
Property

sindit:
Timeseries
Property

sindit:propertyUnit

sindit:
Connection

Fig. 4. Snapshot of the SINDIT subgraph for the Fischertechnik factory. Bold nodes
are defined in the SINDIT information model; others are the factory instances.

Figure 4 illustrates a subgraph of the Digital Twin Representation Layer
where the metadata (e.g., data type, units of measure, connection details) of the
humidity and temperature sensor values are captured by the graph. As described
in Section 3, the attributes (also known as data properties) of the nodes (e.g.,
credential information of the connection, data values of the properties) are also
captured in the knowledge graph. These attributes can be used to retrieve more
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data from the Data Layers, such as by instantiating new Data Connectors to the
MQTT or InfluxDB servers.

Fig. 5. Fischertechnik Factory Digital Twin Dashboard.

The Digital Twin Representation Layer also provides APIs for higher layers
to retrieve data from the knowledge graph, supporting data analytics and visual-
ization. Figure 5 shows a snapshot of the dashboard developed for the DT of the
factory. A live version of this user interface is also available online16. The dash-
board includes a window displaying the full knowledge graph and a side window
visualizing the details of the selected node. As shown in Figure 5, the histori-
cal data of the humidity value from InfluxDB is visualized in the left sidebar.
Furthermore, the Service Layer of the Fischertechnik DT includes a Similarity
Pipeline for anomaly detection in the time series data with human-in-the-loop
interaction. Accordingly, the dashboard allows the user to annotate and label
specific time frames of a particular time series data whenever errors occur in the
factory (e.g., the sorting line gets stuck, or the NFC cannot read the data). This
enables the system to learn from these annotations and improve its detection
capabilities over time. By incorporating user feedback, the Similarity Pipeline
can more accurately identify anomalies and provide timely alerts to prevent po-
tential issues. This collaborative approach enhances the overall reliability and
efficiency of the DT, making it a valuable tool for predictive maintenance and
operational optimization. Details about this service can be found at [16].

16 https://sindit.sintef.cloud/

https://sindit.sintef.cloud/


12 A.N. Lam et al.

4.2 Digital Twin Supporting Precision Machining

In this section, we present a pilot case for automating the deburring of large metal
parts. We outline the logical blocks to be developed according to the conceptual
framework of layers, and we highlight the primary benefits that SINDIT provides
in supporting the user stories related to the digital twin.

This pilot aims to create a safe and responsive smart robotic solution for de-
burring unique and small-batch large metal parts, shifting the physical burden
from humans to robots while ensuring high-quality finishes. The specific objec-
tives include: (i) Developing a robot that collaborates with humans, navigates its
environment to avoid collisions, and is easy to operate; (ii) equipping the robot
with cognitive capabilities through advanced sensors and machine learning to
minimize human input, enabling autonomous deburring and quality checks, and
allowing the robot to learn from experience for new tasks; and (iii) ensuring the
robot can autonomously and safely navigate around the parts.

The development of a series of logical components will be undertaken, de-
tailed according to the COGNIMAN architectural framework as follows: (i) The
physical layer includes device-level components such as deburring tool sensors
(triaxial accelerometer, force and torque sensor, 2D Gocator laser, touch probe
sensor), Automated Guided Vehicle (AGV) sensors (Ridbadge laser 2D), AGV
onboard RGB and Light Detection and Ranging (LiDAR) cameras, and external
sensors for detecting people and positioning parts; (ii) The data layer comprises
datasets like the map and part piece model, deburring trace model, deburring
feedback quality model and semantic map model; (iii) The service layer en-
compasses embedded software tools for navigation and deburring planning, au-
tonomous navigation and deburring, safety awareness, semantic map generation,
quality feedback and improvement, and global mission control; (iv) The digital
twin layer includes the Gazebo Simulator and a real-time ROS2 board viewer; (v)
The UI layer features the Human Machine Interface (HMI), and; (vi) The con-
nectivity layer consists of software bridges for edge-cloud communication using
ROS2 Data Distribution Service (DDS) and MQTT protocols.

The robotic solution, as shown in Figure 6, consists of an AGV providing
mobility for a robotic arm that performs automatic deburring functions. This
system is integrated under a control system, a mobile based user interaction and
a external sensor located at the ceiling of the workspace, composed by a LiDAR
module and a set of mirrors that concentrate the laser beams to obtain a dense
pointcloud of the space below to detect the positions of the robot and the part.

Within the pilot case, several use cases delineate the requirements of various
stakeholders regarding the utilization of a DT Users aim to monitor and interact
with the robotic solution via a human-machine interface, enabling tasks such as
loading maps, parts, and missions, handling alerts, and adjusting priorities. They
also seek the capability to perform virtual modifications to assess the robotic
deburring performance prior to actual deployment. Additionally, real-time mon-
itoring through a dashboard is desired to understand the solution’s operation.
For developers, particularly those working on the deburring control and seman-
tic Simultaneous Localization and Mapping (SLAM) generator components, a



SINDIT: A Framework for Knowledge Graph-Based Digital Twins 13

virtual environment serves as an AI training ground to optimize processes and
components. Furthermore, developers aim to specify technical details, including
inputs, outputs, configuration parameters, and metadata such as functional de-
scriptions, licenses, and versions, for creating or updating components. They also
focus on defining, orchestrating, and parametrizing component compositions at
runtime, and ensuring efficient testing and debugging of deployed solutions.

Fig. 6. Conceptual robotic approach for autonomous deburring of large metal parts.

Building upon the needs previously presented, the following lists some of the
key features of SINDIT that assist in fulfilling these requirements for creating
a DT in the pilot case: (i) The ability to receive information from a robot’s
physical sensors using various communication protocols. SINDIT includes con-
nectors for MQTT or REST and, through its extensibility to create new plugins
or components, a bridge will be integrated to directly support the DDS protocol,
connecting SINDIT with a ROS2-based robot at the edge; (ii) The capability
to persistently store various datasets, supporting relational, unstructured, or
time-series databases. SINDIT includes components to safeguard data in vari-
ous database management systems and will be able to offer a direct bridge with
the COGNIMAN data cloud tool; (iii) The ability to unify and centralize the
logs of distributed systems into a single data source, facilitating the monitor-
ing and testing of the solution. SINDIT includes data safeguarding mechanisms
and can establish a specific logging source that allows real-time visualization on
a dashboard to facilitate debugging; (iv) The capability to include new specific
services or user interface widgets for the pilot case that enable autonomous move-
ment and deburring tasks. SINDIT allows extending its service or user interface
layers through plugins or its microkernel architecture, so new components can
be installed on the platform based on a standard definition and instantiated at
runtime to create more complex solutions; (v) The ability to orchestrate busi-
ness logic through flows that define a composition of services. SINDIT features
a design environment where compositions of instantiated services on the plat-
form can be created, along with an engine that supports their interpretation
at runtime to build more complex services or automate alert generation; (vi)
The capability to have a unified user interface that centralizes all layers of the
solution. SINDIT provides a web-based human-machine interface and can be
extended with new widgets to include real-time ROS2 dashboards and simula-
tion environment visualizers, offering a single access point to visualize the DT
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from all perspectives; (vii) The ability to incorporate mechanisms for controlling
user permissions and safeguarding SSH aspects. SINDIT includes a user-based
authentication layer and, through new services, will encompass SSH-related as-
pects such as image anonymization, and; (viii) Additionally, for all those ad-
vanced functionalities that cannot or should not be integrated into the SINDIT
platform itself, a REST API is provided to access each layer programmatically,
thus facilitating its extension and coverage for new DT scenarios.

4.3 Digital Twin and Additive Manufacturing

Laser Powder Bed Fusion (LPBF) Additive Manufacturing (AM) processes are
widely used in the medical device industry for the creation of complex compo-
nents due to their high degree of design freedom. The ability of LPBF to create
highly complex surfaces and geometries, including metal foams and fine lattice
structures, offers great benefits for lightweighting, patient-specific implants, and
osteointegration structures, giving it a significant competitive advantage over
traditional manufacturing methods. Due to the complex nature of the process
and the critical nature of component quality, it is essential that the process is
highly qualified and that appropriate controls are put in place. In this use case,
the developed framework will be applied to the LPBF process for the collection of
meltpool emission data for monitoring and analysis of AM process performance.
The goal of this is to develop a DT that can understand process signatures,
detect anomalies and failures, and reduce overall production costs. Moreover, a
DT of the process will be able to automatically analyze the process monitoring
data, detect anomalies or failures, and send alerts during the printing process. It
will also be capable of performing more in-depth analysis of the data to generate
reports that can compare previous production runs for the same or similar com-
ponents and output statistical analyses of build performance. This analysis, over
time, can be compiled with physical testing and measurements to potentially
reduce the quality control checks required for the process.

The 3D printer used in this use case is a Renishaw RenAM500S LPBF sys-
tem, which is equipped with a single 500W laser (wavelength = 1080 nm). The
focused laser spot size diameter is approximately 0.075 mm. The RenAM500S
system can 3D print using both continuous and modulated laser modes. For
modulated laser processing, the laser fires for a set exposure time at a given
power and then switches off, subsequently moving to the next position and re-
peating the process. The printer’s build volume is 250 mm × 250 mm × 350 mm.
Example printing conditions used are: layer height: 0.030 mm, power: 200 W,
point distance: 0.075 mm, and exposure time: 50 microseconds; however, these
vary depending on the area of the component and the type of features to be
generated. The Renishaw RenAM500S has process monitoring capabilities built
into the machine, specifically the Renishaw InfiniAM Spectral system [9]. This
system is equipped with three photodiode sensors that can measure the optical
emissions from the laser and the meltpool. To measure the laser emissions, a
fixed mirror allows a small amount of laser emission to pass through it and be
detected by the LaserView module. The MeltView module has two photodiodes
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that measure near-infrared plasma emissions in the range of 700 nm to 1040 nm
and in the near-infrared range of 1090 nm to 1700 nm. The data acquisition rate
for the photodiodes is 100 kHz. The data can be post-processed into a unitless
number for each photodiode that represents the emission level, with an associ-
ated X and Y coordinate. A TXT file of the raw data is generated per layer,
which stores this emission data. An overview of the system is shown in Figure 7.

Fig. 7. Schematic of the InfiniAM Spectral system installed on the RenAM 500S LPBF
3D printer [19].

Figure 8 illustrates the overall data flow in the quality control system. The
SINDIT system collects printing data from the Renishaw machine, either in
batches or as a stream. This data is then preprocessed by SINDIT before being
fed into the Digital Twin Model, developed by Montimage. The model evaluates
the product printing quality, generating a quality report and providing alerts if
any errors or defects are detected. The reports can be sent back to SINDIT for
visualizing the quality results, ensuring a more efficient and accurate evaluation
of the manufacturing process.

Fig. 8. Data flow of building DT for Additive Manufacturing

4.4 Discussion

The SINDIT modular architecture has demonstrated its flexibility and extensi-
bility in advancing the field of smart manufacturing through the use of knowledge
graph-based DTs. By employing a four-layer architecture, SINDIT ensures easy
integration of components, facilitating the end-to-end development of DTs. This
modularity allows for flexible data integration, supporting a wide variety of data
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sources and communication protocols. This feature is particularly beneficial in
diverse manufacturing environments where different types of machinery and sys-
tems need to be interconnected.

The implementation of the DT for the Fischertechnik factory is a prime ex-
ample of the capability of SINDIT. It showcases the ability of the framework to
provide real-time monitoring and anomaly detection through the integration of
various sensor data using MQTT and OPC-UA servers. Additionally, the knowl-
edge graph enabled comprehensive information of the physical twins and data
querying and reasoning capabilities, which are crucial for predictive maintenance
and process optimization of the factory.

Moreover, the COGNIMAN project pilots in precision machining and addi-
tive manufacturing further underscore the versatility of the framework in dif-
ferent manufacturing settings. Although not fully implemented, the pilots high-
lighted the capacity of the framework to support human-machine interaction and
interfacing with industrial robots, enhancing decision-making and operational ef-
ficiency. In precision machining, the framework facilitated the development of a
smart robotic solution for deburring tasks, shifting the physical burden from hu-
mans to robots while ensuring high-quality finishes. In additive manufacturing,
SINDIT supported the automation of post-processing meltpool emission data
for analysis by the developed Digital Twin, reducing costs and improving the
quality control monitoring of 3D printed medical implants.

However, several challenges and areas for improvement have been identified.
One challenge is the need for advanced security mechanisms which have not been
considered in the current implementation. Additionally, more components need
to be developed to enhance the functionalities of the framework. For example,
the Data Layer needs to be extended with more Data Connectors and Data
Importers to support other databases and legacy systems, which are still being
used in current industrial settings. A data analytics toolkit for the Service Layer
is also required to support the dynamic development and deployment of AI/ML
solutions. Furthermore, a new user interface that facilitates the configuration
and integration of new components is also needed.

5 Conclusion and Future Work

The SINDIT framework has demonstrated potential in revolutionizing smart
manufacturing by providing a comprehensive approach for developing knowledge
graph-based DTs. The modular architecture of SINDIT, which includes flexi-
ble data integration, a generic data model, knowledge graph integration, and a
service-oriented approach, ensures seamless development and deployment of DTs
across various manufacturing domains. By providing unified interfaces in each
layer, SINDIT facilitates the integration of external solutions for real-time mon-
itoring, simulation, visualization and optimization of physical processes, leading
to improved decision-making and operational efficiency.

The practical applications of the SINDIT framework in the COGNIMAN
project, particularly in the pilots in precision machining and additive manu-
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facturing and the Fischertechnik factory, underscore its utility and versatility,
highlighting the framework’s ability to drive innovation and efficiency in smart
manufacturing environments.

Looking ahead, several key areas will be the focus of future developments to
enhance the SINDIT framework further:

– Integration with AAS: Future iterations of SINDIT will incorporate AAS
to provide standardized representation and interoperability of DTs, facilitat-
ing better data exchange across different platforms and systems.

– Data Spaces Integration: Expanding support for Data Spaces [15] will en-
able comprehensive data sharing, enhancing the scalability and adaptability
of DTs solutions in diverse manufacturing settings.

– Enhanced Machine Learning and Simulation Interfaces: Developing
a suite of machine learning and simulation models within the Service Layer
will provide users with modular and flexible tools to customize and extend
the functionalities of the SINDIT framework, improving its analytical and
predictive capabilities.

– Advanced Security Orchestration: Implementing advanced security mech-
anisms, including explainable security protocols [14], will ensure the re-
silience and trustworthiness of DT systems against potential cyber threats.

– Expanded Pilot Applications: Extending the framework to more pilot
projects within the COGNIMAN initiative and other industries will provide
insights and validate its effectiveness in diverse manufacturing scenarios.
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