
A Systematic Approach to Integrate Common Timed

Security Rules within a TEFSM-Based System

Specification

Amel Mammar

Institut Telecom SudParis, CNRS/SAMOVAR, France

amel.mammar@it-sudparis.eu

Wissam Mallouli

Montimage EURL, 39 rue Bobillot, 75013, Paris, France

wissam.mallouli@montimage.com

Ana Cavalli

Institut Telecom SudParis, CNRS/SAMOVAR, France

ana.cavalli@it-sudparis.eu

Abstract

Context: Formal methods are very useful in the software industry and
are becoming of paramount importance in practical engineering techniques.
They involve the design and modeling of various system aspects expressed
usually through different paradigms. These different formalisms make the
verification of global developed systems more difficult.

Objective: In this paper, we propose to combine two modeling for-
malisms, in order to express both functional and security timed requirements
of a system to obtain all the requirements expressed in a unique formalism.

Method: First, the system behavior is specified according to its func-
tional requirements using TEFSM (Timed Extended Finite State Machine)
formalism. Second, this model is augmented by applying a set of dedicated
algorithms to integrate timed security requirements specified in Nomad lan-
guage. This language is adapted to express security properties such as per-
missions, prohibitions and obligations with time considerations.

Results: The proposed algorithms produce a global TEFSM specification
of the system that includes both its functional and security timed require-

Preprint submitted to Information and Software Technology July 25, 2011

ments.
Conclusion: It is concluded that it is possible to merge several require-

ment aspects described with different formalisms into a global specification
that can be used for several purposes such as code generation, specification
correctness proof, model checking or automatic test generation. In this paper,
we applied our approach to a France Telecom Travel service to demonstrate
its scalability and feasibility.

Key words: Formal Methods, Timed Extended Finite State Machines,
Nomad Language, Test Generation.

2

1. Introduction

1.1. Context and motivations

Security and reliability are important issues in designing and building
systems with time constraints because the consequence of any security failure
on a user’s business and/or environment may be irreversible. Currently,
software engineers developing systems with time constraints are not only
confronted with their functional requirements but also have to manage other
aspects concerning security issues. By ”functional requirements”, we mean
the services that a system provides to end-users. Security rules denote the
properties (restrictions) that a system has to fulfill to be constantly in a safe
state. For instance, a file system may have to specify an access prohibition
to a specific document for a user if he/she is not authenticated or if his/her
10 minute session has expired. More generally, a security rule expresses
the obligation, permission or interdiction to perform an action under given
conditions called context.

Complex systems are often incrementally designed and are evolutionary.
New requirements appearing during the life cycle have to be integrated into
the initial specification. In this paper, we deal with particular kinds of re-
quirements denoting security properties. Security rules are typical examples
of such requirements. At France Telecom1 for instance, there are many sys-
tems running for which new security requirements appear due to security
breaches discovered during their life cycles. An example of such systems
that we use to illustrate our approach is the Travel Web application which
is a management application that deals with business travel (called ‘mis-
sions’) of the different employees of the company. During the deployment
of this application, France Telecom needs to ensure, among other things,
that two successive mission requests are separated by at least 2 minutes.
This requirement prevents denial of service attacks for example. Redoing
the development of these systems to take these new security requirements
into account would be very expensive and time consuming. Furthermore, in
general the formal specifications of such systems already exist and can be
updated to include the additional security requirements. The present paper
addresses this need by providing a formal approach to integrate security rules
involving time constraints into a system specification based on communicat-
ing extended timed automata called TEFSM specification [1].

1France Telecom is the main telecommunication company in France

3

The analysis of security issues led researchers and security experts to de-
fine a large number of security languages and models that provide a formal
representation of the system’s security policies. With the great majority of
these models, security rules are specified using modalities like permission,
prohibition and obligation that express some constraints on the system be-
havior. Among these models, we can mention for instance the Policy Descrip-
tion Language (PDL) [2], Ponder [3], RBAC (stands for Role Based Access
Control) [4, 5] and Nomad [6] (stands for Non atomic actions and deadlines).
This latter is the one we have chosen since it allows security policies with
time constraints to be easily expressed.

1.2. Contribution with respect to previous work

In the literature, previous works dealing with secure system specifications
are based on integration methodology. The authors of [7] and [8] for instance
proposed formal procedures that make it possible to augment a functional
description of a system with security rules expressed with OrBAC language
[9] (stands for Organizationnal Based Access Control language). In both
work, they described security rules that specify the obligation, permission or
interdiction of a user to perform certain actions under a given context. How-
ever, this context does not involve time aspects. In fact, they only specified
rules without time considerations. Another work presented in [10] proposed
to translate security rules (still without time constraints) into observers that
can communicate with the functional specification of a system specified in
EFSM formalism [11] (stands for Extended Finite State Machine) to regulate
its behavior.

To overcome the limit of the previous work in dealing with time aspects,
we have presented in [12, 13, 14] an approach that goes further by consider-
ing time constraints which are relevant in the modern applications that are
time-dependent. The approach consists in defining integration algorithms
that allow Nomad security rules to be added into a TEFSM specification of
the functional requirements of a system. However, the main drawback of this
proposal is the large number of clocks it introduces. Indeed, a new clock is
defined for each Nomad security rule that the underlying system must fulfill.
Since a large number of clocks may lead to a state space explosion when
we apply the testing based approach to the resulting TEFSM specification,
this paper presents new algorithms that use a unique master clock to inte-
grate any number of Nomad rules. In addition to these new algorithms, the
contributions of this paper with respect to [12, 14] are as follows:

4

• We define algorithms not only to deal with basic rules that include
atomic action, but also those involving sequential actions.

• The correctness proof of one integration algorithm which demonstrates
the accuracy of our approach.

• An application of the proposed approach to an industrial case study
provided by France Telecom.

This paper is organized as follows. Section 2 provides the basic concepts
used for the modeling of system behavior from both a functional and secu-
rity point of view. In section 3, we present an overview of the approach we
have developed to augment a TEFSM specification with timed security rules.
Then, we describe the integration algorithms in sections 4 and 5. The proof
of one of the proposed algorithms is presented in section 6. To demonstrate
the feasibility of the developed approach, in section 7 we present an indus-
trial case study that deals with a business travel reservation web application
provided by France Telecom. Finally, section 8 concludes the paper.

2. Preliminaries

2.1. Modeling communicating systems using TEFSM model

The objective of modeling a system is to provide an operational specifica-
tion of a system. This operational specification may include time constraints
and can be used as an input to existing validation tools such as interac-
tive or random simulators, model-checkers or test generation engines. In our
case, we rely in this paper on a TEFSM model supported by IF language [1]
because it includes the main concepts needed to design real-time systems.
Moreover, several tools allowing the simulation and the generation of test se-
quences exist and are open source. A TEFSM modeling of a system consists
of a set of IF processes (i.e entities), each one denotes a TEFSM that can
communicate with other processes via FIFO channels.

5

Definition 1. A TEFSM M is a 7-tuple M = < S, s0, I, O, ~x, ~c, Tr >

where S is a finite set of states, s0 is the initial state, I is a finite set of
input symbols (messages possibly with parameters), O is a finite set of output
symbols (messages possibly with parameters), ~x is a vector denoting a finite
set of variables, ~c is a vector denoting a finite set of clocks and Tr is a finite
set of transitions. Each transition tr is a 4-tuple tr =< si, sf , G,Act > where
si and sf are respectively the initial and final state of the transition, G is the
guard which denotes a predicate (boolean expression) on variables ~x and clocks
~c and Act is an ordered set (sequence) of atomic actions including inputs,
outputs, variable assignments, clock setting, process creation and destruction.

The execution of any transition is spontaneous i.e. the actions associ-
ated with this transition occur simultaneously and take no time to complete.
The time progress takes place in some states before executing the selected
transitions. More details about time progress can be found in [15].

S 0 S 1

t 2

t1

t0

Figure 1: Example of a simple TEFSM with two states.

t0 =< S0, S0, P̄ , (input a; T ′ ; output x) >

t1 =< S0, S1, P, (input a; T ; set Ck := 0 ; output x) >

t2 =< S1, S0, when Ck > 6, (input b; T” ; output y) >

We illustrate the notion of TEFSM through the simple example shown in
Figure 1. This TEFSM is composed of two states S0, S1 and three transitions
that are labeled with two inputs a and b, two outputs x and y, one guard (or
predicate) P on variables, one clock Ck and three tasks T , T ′ and T ′′. The
TEFSM operates as follows: starting from state S0, when input a occurs,
predicate P is checked. If the condition holds, the machine performs task
T , starts clock Ck, triggers output x and moves to state S1. Otherwise, the
same output x is triggered but it is action T ′ that is performed and the state
loops on itself. Once the machine is in state S1, it can come back to state
S0 when the clock exceeds the value 6 and receives input b. If so, task T ′′ is
performed and output y is triggered.

Notations: In the remainder of the paper, we need the following nota-
tions. For each action a that belongs to the sequence of actions Act:

6

• before(a) denotes the actions of Act that are executed before action a.
before(a) is empty if action a is the first action of Act.

• after(a) denotes the actions of Act that are executed after action a.
after(a) is empty if action a is the last action of Act.

• The sequence of Act actions can then be denoted by: (before(a); a; after(a)).

For instance, the action of transition t1, of Figure 1, can be denoted by:

Act = (before(T); T ; after(T))

where (before(T) = input a) and (after(T) = (set Ck := 0; output x)).

2.2. Specification of security rules using Nomad

We use the Nomad formal language to specify without ambiguity the set
of security properties that the system has to respect. The choice of this lan-
guage is mainly determined by the Nomad features that provide a way of
describing permission, prohibition and obligation related to non-atomic ac-
tions within elaborated contexts that take into account time constraints. By
combining deontic and temporal logics, Nomad allows conditional privileges
and obligations with deadlines to be described, thanks to the time concept it
supports. Finally, it can also formally analyze how privileges on non atomic
actions can be decomposed into more basic privileges on elementary actions.

2.2.1. Nomad syntax and semantics

To meet the requirements of the functional model of the system, we define
an atomic action in Nomad using the same concepts as for TEFSM actions.

Definition 2. We define an atomic action as one of the following actions:
a variable assignment, a clock setting, an input action, an output action, a
process creation or destruction.

Definition 3. A non-atomic action is inductively defined as follows:

• If A and B are atomic actions, then (A; B), which means that “A is
followed immediately by B”, is a non-atomic action.

• If A and B are atomic actions, then (A‖B), which means that “A and
B are performed simultaneously”, is a non-atomic action.

7

• If A or B (or both) is a non-atomic action, then (A; B) and (A‖B) are
non-atomic actions.

Definition 4. (Formula) Let tc denotes the current instant of the system.

• If A is an action then start(A) (starting A), and done(A) (finishing
A) are formulae.

• If α and β are formulae then ¬α, (α ∧ β) and (α ∨ β) are formulae.

• If α is a formula and (d > 0), then O−dα is also a formula. O−dα

means that α was true at moment (tc − d).

• If α is a formula and (d > 0), then O<−dα is also a formula. O<−dα

means that it exists a moment t′ where α was true such that (tc − d ≤
t′ < tc).

• If α and γ are formulae then (α|γ) is a formula whose semantics is: in
context γ, formula α is true.

Remarks. In the remainder of the paper, we respectively refer to operators
“O” and “|” by timed and contextual operators, and we use the notation
O[<]−d to cover both cases O−d and O<−d with (d > 0). Notice also that
using Nomad formalism, we deal with discrete time. In our work, we use
real time units like seconds, milliseconds or microseconds depending on the
precision desired.

Definition 5. (A security rule) If α and β are formulae, R (α | β) is a
security rule where R denotes one of the following deontic operators: {P, F ,
O}. The security rule P (α | β) (resp. F (α | β), O (α | β)) means that
it is permitted (resp. prohibited, mandatory) to have α true when context β

holds.

In the sequel of the paper, formula α denotes a formula of the form
start(γ1) where γ1 is the execution of an actions (rep. a sequence of actions),
whereas formula β denotes the context of the form O[<]−ddone(γ2) with γ2

representing the execution of an actions (rep. a sequence of actions). Ac-
cording to definition 5, security rule P (α | β) implies that it is forbidden
to start the execution of γ1 in context β holds, that is: P (α | β)= F (α |
¬β). In practice, a security policy can be open or closes, that is, permission

8

or prohibition rules are specified. Indeed to avoid the negation in a context,
it would be better to write P (α | β) instead of F (α | ¬β). This is why we
propose integration algorithms for both cases (permissions and prohibitions
integration) even if they are very similar.

2.2.2. Examples of security rule specifications
We present in this section some examples of security rule specifications

expressed in Nomad:

Example 1:

P(start (input ReqDownload(user, file.doc))|
O<−30days (done (output SubscriptionOK(user))))

This rule expresses a permission granted to any user to request to download a
file ‘file.doc’, if he/she has paid his/her subscription. The subscription must
have been made during the last month.

Example 2:

O(start (output DisconnectOK(user))|
¬ O<−30min(done (input Message(user))))

According to this obligation rule, the system must disconnect a running con-
nection of any user who is inactive for 30 minutes, that is, the system does
not receive any input from him/her.

Example 3:

F(start (input AuthReq(user))|

O<−0.01s (done (input AuthReq(user))))

This prohibition rule forbids the system to accept more than one user au-
thentication request in the same millisecond.

3. Security integration methodology

The integration of security rules into a TEFSM model describing the be-
havioral aspects of a system leads to a TEFSM specification that takes the
security policy into account: we call it secure functional specification. The
integration process is twofold. At first, the algorithm searches for the rules

9

to be applied on each transition of the TEFSM specification. Then, it adds
some states, transitions or updates the guard of the related transition. These
modifications depend on the nature of the rule (prohibition, permission or
obligation) and its syntax format. To integrate security rules into a TEFSM
specification, we have to make the following assumption: the security rules
to be integrated are consistent. We assume that the security rules do not
contain any incoherent rules. The consistency of the security policy is out
of the scope of this paper and we assume that it has already been checked
using different techniques (see for instance [16]). This is an example of an
inconsistent security policy composed of two rules O(start(A)|O−30done(B))
and F(start(A)|O−30done(B)). We cannot force the system to perform ac-
tion A in a context (C = O−30done(B)) if this action is forbidden in the
same context. Note that no hypothesis is made on the non-deterministic
feature of the TEFSM. Indeed, the TEFSM may be non deterministic if for
instance two outgoing transitions have their guard true at the same time. In
that case, one of them, chosen randomly, is fired. The proposed algorithms
remain applicable.
According to the Nomad syntax, there are several possible forms for security
rules. It would obviously be tedious to deal separately with each of these
forms. Consequently, we classify the Nomad security rules in two main classes
described as follows:

(1) Basic security rules: in this class we consider security rules of the form
R(start(A)|O[<]−ddone(B)) where A and B are actions, R ∈ {F ,O,P}
and (d > 0). To make the integration of such rules easier, we also
distinguish two subclasses:

– Basic security rules with atomic actions: actions A and B are
atomic.

– Basic security rules with decomposable actions. A or B or both
are non-atomic actions.

(2) General security rules: a general security rule denotes any rule that
does not fit into the first class. This means that the rule may contain
several contextual and/or timed operators and/or logical connectors.

As a first step of our research work, this paper deals with the first class of
security rules.

10

S0 S1

B

BACB

A

S2S3

B,A

t1=<S0, S1,_,B>
t2=<S1,S2,_,A>

t3=<S2,S0,_,(B,A,C,B)>
t4=<S3,S0,_,(B,A)>

t1

t2
t3

t4

S0 S1

B

A

S2S3

S4

A

B

S5
B

ACB

t1=<S0, S1,_,B>
t2=<S1,S2,_,A>

t3=<S2,S5,_,B>
t4=<S3,S4,_,B>

t5=<S5,S0,_,(A,C,B)> t6=<S4,S0,_,A>

t1

t2

t3
t4

t5

t6

Figure 2: Transition decomposition

4. Integration of basic security rules involving atomic actions

This section describes the integration of basic security rules of the form
R(start(A|O[<]−ddone(B)) where R ∈ {F ,O,P}, A and B denote atomic
actions, and (d > 0). Since we deal with a timed context, we need to define
a global clock gck to manage the temporal aspect of the rules.

4.1. Prohibition integration: F(start(A)|O[<]−ddone(B))

The key idea of integrating such a prohibition rule in a TEFSM model
is to check the rule context before performing the prohibited action. If this
context is verified, the prohibited action A must be skipped. Otherwise, if
the context is not valid, the action is performed without any rule violation.

To achieve this goal, we have to construct a table Prohib to store all
the instants (or moments) where it is prohibited to trigger a given transition
since it contains the forbidden action A. These instants are denoted by a
predicate on clock gck which is a global clock for the system launched in its
initial state. For instance, a predicate ((gck < 10) ∨ (gck = 15)) means that
the execution of a transition tr is prohibited till the tenth unit of time and
also at the fifteenth since it contains a prohibited action. We also define the
function val(gck) that provides the clock value gck at a specific moment.
Table Prohib(tr) is updated as follows (tr denotes a transition where action
A appears):

• After each occurrence of B in the TEFSM transitions, the value of
Prohib(tr) is updated by adding a predicate on the instant(s) when it

11

Algorithm 1 Prohibitions Integration
Require: The TEFSM model M =< S, s0, I, O, ~x,~c, T r > and the prohibition security

rule F (start(A) | O[<]−d done(B))
1: Let TrBA be the set of transitions where action A appears after action B.
2: while (TrBA 6= ∅) do

3: for each (transition tr =< Si, Sj , G,Act > such that (tr ∈ TrBA)) do

4: /*tr = < Si, Sj , G, {before(B), B, after(B) ∩ before(A), A, after(A)} >*/
5: /*Create a new state S′ and a new transition tr′*/
6: tr := < Si, S

′, G, {before(B), B,after(B) ∩ before(A)} >;
7: tr′ := < S′, Sj , , {A, after(A)} >;
8: end for

9: Update(TrBA)
10: end while

/*At this point, there is no transition where A appears after B*/
11: Let TrA be the set of transitions where action A appears
12: Let TrB be the set of transitions where action B appears
13: for each (transition tr =< Si, Sj , G,Act > such that (tr ∈ TrB)) do

14: tr := < Si, Sj , G, {before(B), B, Updatetr′∈TrA
(Prohib(tr′)), after(B)} >;

15: end for

16: for each (transition tr =< Si, Sj , G,Act > such that (tr ∈ TrA)) do

17: tr := < Si, Sj , G ∧ {when (¬Prohib(tr))}, Act >;

18: end for

is prohibited to trigger tr since it contains action A. The new value of
Prohib(tr) is defined by:

Prohib(tr) =



















Prohib(tr) ∨ (gck < val(gck) + d),

forF(start(A)|O<−ddone(B))

Prohib(tr) ∨ (gck = val(gck) + d),

forF(start(A)|O−ddone(B))

• Before triggering the prohibited transition tr, we check whether the
value val(gck) satisfies (Prohib(tr)) to deduce if tr can be fired or not.

Notice that Prohib(tr) can be updated according to all the security rules
that deny the execution of any action A that may be executed in tr. De-
pending on each context, the update of Prohib(tr) is performed as mentioned
above.

12

S0 S1

Prohibit(t2):=Prohibit(t2) or (gck < val(gck) + d);

Prohib(t5):=Prohib(t5) or (gck < val(gck) + d);

Prohib(t6):=Prohib(t6) or(gck < val(gck) + d)

not(Prohib(t2));

A

S2S3

S4

not(Prohib(t6));A

BX

S5
BX

not(Prohib(t5);A;

CBX

BX

X==

Figure 3: Prohibition Rule Integration : F (start(A) | O<−d done(B))

The prohibition integration methodology is described in pseudo-code in Al-
gorithm 1, which performs a primary processing of the initial TEFSM spec-
ification, so that no transition would contain the prohibited action A af-
ter action B. Figure 2 illustrates this primary phase by decomposing the
transitions where prohibited action A appears after action B. Transition
(t4 =< S2, S0, , (B,A,C,B) >) for instance has been split into two transi-
tions (t4 =< S2, S5, , B >) and (t6 =< S5, S0, , (A,C,B) >) by introducing
the new state S5. In the resulting specification, we want to integrate the rule
F (start(A) | O<−d done(B)) which stipulates that it is forbidden to perform
action A within d units of time of B being performed. The application of
algorithm 1 produces the secure system depicted in Figure 3.

4.2. Permission integration: P(start(A)|O[<]−ddone(B))

The algorithm to integrate a permission rule is very similar to Algorithm
1. We define a variable Permis(tr) for each transition that contains an action
A appearing in a rule of the form P(start(A)|O[<]−ddone(B)). Permis(tr)
stores all the instants where it is permitted to trigger tr; it is updated exactly
as Prohib(tr) each time action B occurs. Finally, we have to check that
predicate Permis(tr) is satisfied before triggering transition tr.

4.3. Obligation integration

Since different obligation rules related to action A may be defined, we
have to take into account the possible dependencies that may exist between
them. In fact let us consider for instances rules O (start(A) | O−5 done(B))

13

and O (start(A) | O<−10 done(C)) where action C is executed 3 units of
times (less than 5 units of times) after the execution of B. The execution
of action A five units of time after the execution of B satisifies both rules
at the same time. The idea behind this simple example is to check if it
necessary to execute the mandatory rule for each execution of the context
action. To integrate an obligation security rule in the TEFSM based system
specification, we rely on a new process RHP which ensures the execution of
the mandatory action. If the related mandatory action is not executed by
the initial specification, process RHP then has the task to execute it itself.
The integration methodology follows these steps for a rule in the form of O
(start(A) | O[<]−d done(B)) where d > 0:

• A boolean variable waitA is defined. It checks whether we are waiting
for the execution of an instance of action A or not. This variable is
set to true at the execution of each action B for which an obligation
rule O (start(A) | O[<]−d done(B)), and set to false when action A is
executed.

• The definition of a new process that can be created (forked) n times
by the initial functional specification, where n is the maximum number
of simultaneous executions of action B in the initial TEFSM specifi-
cation. This new process has two parameters. The first parameter,
equal to (val(gck) + d) (resp. (val(gck) + (d − 1)))2, states the in-
stant when (resp. before which) action A should be executed if we
deal with the O−d timed operator (resp. O<−d). The second parameter
exactT ime is a boolean variable which determines whether action A

must be executed at (val(gck) + d) (for a rule of the form O (start(A)
| O−d done(B))) units of time or before this moment (for a rule of the
form O (start(A) | O<−d done(B))). The process has to wait until the
execution deadline of action A is reached. Also, we give it a lower pri-
ority with respect to the main process in order to let this last executes
its actions at first. To do that, we declare the transitions of this new
process as delayable. A delayable transition allows time progress unless
time progress disables it, in that case it is taken. The deadline and the
actions to perform (deadline, Action) depend on the type of rule and

2Term 1 in (val(gck) + (d − 1)) denotes a unit of time which may be a second, a
millisecond, etc.

14

S0 S1

B, fork RHP(gck+(d-1), true);

 waitA:=true

S2S3

Process RHP(v, exactTime)

S0

when {gck=v}, if (wait A),

{A,waitA:=false}

B, fork RHP(gck+(d-1), true);

 waitA:=true,

A, waitA:=false,C,

B, fork RHP(gck+(d-1), true)

B, fork RHP(gck+(d-1), true);

waitA:=true;

A;waitA:=false

S1

S2

when exactTime

when not(exactTime)

when not waitA

A;

waitA:=false
when {gck=v}, if (wait A),

{A,waitA:=false}

Figure 4: Obligation Rule Integration : O (start(A) | O<−d done(B)).

whether we are waiting for an execution of action A:

(deadline,Action) =



















(gck = val(gck) + d,A; (waitA := false); stop),

for O(start(A)|O−ddone(B))

((gck = val(gck) + (d − 1)) ∨ ¬waitA, if waitA then (A; stop)),

for O(start(A)|O<−ddone(B))

The complete algorithm that permits an obligation rule of the form O
(start(A) | O−d done(B))3 to be integrated is as follows:

3For an obligation rule of the form O (start(A) | O<−d done(B)), we have only to
replace the second parameter of process RHP with the value false.

15

Algorithm 2 Obligations Integration
Require: The TEFSM model M =< S, s0, I, O, ~x,~c, T r > and the obligation security

rule O (start(A) | O<−d done(B))
1: In the initial state of M , waitA := 0
2: for each (transition tr =< Si, Sj , G,Act > such that (tr ∈ Tr)) do

3: if (B ∈ Act) then

4: tr := < Si, Sj , G, (before(B);B;waitA := true;
fork RHP (gck + (d − 1), true); after(B)) >

5: end if

6: if (A ∈ Act) then

7: tr := < Si, Sj , G, (before(A);A;waitA := false; after(A)) >

8: end if

9: end for

Process RHP used by Algorithm 2 is defined by algorithm 3. In Figure 4,
we present the integration of an obligation rule within the initial system de-
picted in Figure 2. In this functional system, we can find several occurrences
of the atomic action B.

Algorithm 3 The RHP process
1: for RHP process (v, exactTime) do

2: Define two states S1 and S2 and five transitions tr1, tr2, tr3, tr4 and tr5

3: tr1 := < S0, S1, {when exactT ime}, >

4: tr2 := < S0, S2, {when not exactT ime},) >

/*We should execute action A even if an other instance of this action has already
been executed */

5: tr3 := < S1, , {when gck = v},if (waitA) (waitA := false;A; stop) >

/*We should execute action A only if no instance has been executed before (v =
gck + d)*/

6: tr4 := < S2, , {when gck = v}, if (waitA) {waitA := false;A; stop} >

7: tr5 := < S2, , {when not(waitA)}, stop >

8: make transitions tri(i=1..5) as delayable.

9: end for

5. Basic security rules with non-atomic actions

In this section, we consider the integration of security rules with non-
atomic actions (see Definition 3). A non-atomic action A may contain sev-
eral sequential (“;”) and parallel (“‖”) operators. We only provide here
integration algorithms that deal with security rules including the sequential
operator. First, we define two different non-atomic action categories.

16

S0 S1

S3 S2

d;a;b

a;b

c

h;e;f

t1=<S0, S1,_,(d;a;b)>
t2=<S1,S2,_,(a;b)>
t3=<S2,S3,_,c>
t4=<S3,S0,_,(h;e;f)>

Figure 5: Examples of non-atomic actions: 1 Tr (a;b) and 2 Tr (a;b;c)

Definition 6. (1 Tr actions) a non atomic action A is 1 Tr action with
respect to a transition tr =< si, sf , G,Act > if and only if A ⊆ Act. That
means that there exists sequences of actions X and Y such that (Act =
(X; A; Y)). Both sequences X and Y may be empty.

Definition 7. (k Tr actions) a non atomic action A is k Tr action with
respect to the ordered set of transitions Tr = {tr1, . . . , trk} if and only if the
execution of A needs the triggering of all the transitions of Tr in their order
in Tr. More formally:

1. ∀i.(1 ≤ i ≤ (k − 1) ⇒ FS(tri) = IS(tr(i+1))) where IS(tr) (resp.
FS(tr)) denotes the initial state (resp. Final state) of transition tr.

2. action A is a sub-action of (Act(tr1); . . . ; Act(trk)) where Act(tr) de-
notes the sequence of actions labeling transition tr. In other words,
there are two sequences of actions X and Y such that ((Act(tr1); . . . ; Act(trk)) =
(X; A; Y)).

For instance in Figure 5, (a; b) is a 1 Tr action with respect to transi-
tion from S0 to S1, whereas action (a; b; c) is a 2 Tr action with respect to
transitions {from S1 to S2 then from S2 to S3}.

In the sequel of the paper, the time of execution of non-atomic actions
denotes the instant at which the execution of the last basic action is achieved.

5.1. Integration of Rules with 1 Tr Actions

Let us consider a 1 Tr non atomic action Act with respect to a transition
tr, and a security rule of the form R(A|O[<]−dB). The integration of security

17

S0 S1

S3 S2

Prohib(t4):=
Prohib(t4) or
gck< val(gck)+d

a;b;

c

d;a;b;

Prohib(t4):=
Prohib(t4) or gck< val(gck)+d

when not Prohib(t4),
h;e;f

Figure 6: Prohibition Rule Integration with 1 Tractions: F(start(e; f)|O<−ddone(a; b))

rules containing the Act in the transition tr is performed in a manner similar
to that in the case of atomic actions since we are handling a unique transition.
In other words, we can apply the algorithms we have defined in section 4 by
distinguishing the two following cases:

• If Act is B:

– For prohibition (resp. permission) rules, action Updatetr(Prohib(tr))
(resp. Updatetr(Permis(tr))) is added to the action of tr imme-
diately after the execution of action Act.

– For obligation rules, action (waitAct := true; fork(vak(gcd)+(d−
1), v)) is added to the action of tr immediately after the execution
of action Act.

• If Act is A :

– For prohibition (resp. permission) rules, guard {when(¬Prohib(tr))}
(resp. {when(Permis(tr))}) is added is added to each transition
tr immediately before the execution of action Act.

– For obligation rules, action (waitAct := true; fork(gcd + d− 1, v))
is added to the action of tr immediately after the execution of
action Act.

Figure 6 illustrates the integration of the prohibition rule F(start(e; f)|O<−d

done(a; b)) into the specification depicted in Figure 5.

5.2. Integration of Rules with n Tr Actions

The handling of decomposable actions are inspired by [17]. Let Act be
k Tr action decomposable on the distinct transitions Tr = (tr1, . . . , trk).
According to these k transitions, we introduce the following notations:

18

S 1 S 2

S 3

S 4S 0

S 6 S 7

S 8S 5

S T E T

I T 1 I T 2

O T 1

O T 2

a

b
c

d

e

Figure 7: Example of 4 Tr decomposable action with its start-
ing/intermediate/outgoing/ending transitions

• The starting transition ST : denotes the transition that the system has
to follow to start the action: ST = tr1.

• The ending transition ET : denotes the transition that the system has
to follow to end the action: ST = trk.

• The intermediate transitions set ITS: includes the remaining transi-
tions: IT = {tr2, . . . , trk−1} and may be empty.

• The outgoing transitions set OTS: includes the transitions that don’t
belong to Tr and whose initial states belong to those of transitions
(Tr−{tr1}). This set is formally defined as follows: OTS = {tr|∃tr′.(tr′ ∈
Tr − {tr1} ∧ IS(tr) = IS(tr′) ∧ tr 6= tr′}.

In Figure 7, action (a; b; c; d) is a 4 Tr decomposable action. We have one
starting transition (ST), two intermediate transitions (IT1 and IT2), one
ending transitions (ET) and two outgoing transitions (OT1 and OT2).

This paper only discusses the integration of a prohibition security rule of the
form F(start(A)|O<−ddone(B)) with A and/or B denoting decomposable
actions. The other cases can be deduced based on the same methodology.
To integrate a security rule with decomposable actions we have to know
whether the underlying system is executing any decomposable action. Let
(C = (c1; . . . ; cn)) be a decomposable action with respect to transitions Tr =
{tr1, . . . , trk} (k ≤ n). A system is executing action C if and only if it is
firing transitions Tr in the right sequence order. To record such a state, we
define a variable vC that is initialized to false and updated in the TEFSM as
follows:

• The action (vC := true) is added to the starting transition ST .

19

S1 S2

S3

S4S0

S6 S7

S8S5
a

b
c

d
v:=true

v:=false

v:=false

(if v, Update(Prohibit(t);v:=false);

when not(Prohibit(t));e

where t=<S7, S8,_,e>

Figure 8: Prohibition Rule Integration with n Tr actions: F(start(e)|O<−ddone(a; b; c; d))

• The action (vC := false) is added to each outgoing transition tr ∈
OTS. In fact if the system fires a transition belonging to OTS, this
means that the possible execution of action C is interrupted.

Variable vC being defined for each decomposable action, the integration
process proceeds as follows:

• if C is B: variable Prohib(tr) is updated when the whole decomposable
action is performed, that is, when the system is firing the ending tran-
sition ET and while vC is true. So, we add action (Update(Prohib(tr)))
by stating that this action is only performed when vC is true.

if C is A: to forbid the execution of action C in a given context, we
chose to skip the last action(s) in the transition trk when a context
condition holds. In our case for instance, we add the condition ((when
not Prohib(trk) ∨ not(vC)) to the ending transition ET . In this way,
we state that this transition is only fired if it is not prohibited and we
are executing the prohibited action. Also, we set variable vC to false
to express the end of the decomposable action.

Figure 8 shows the integration of security rule F(start(e)|O<−ddone(a; b; c; d)).
Variable v is added to check if the system is running the decomposable action
(a; b; c; d) or not.

Note that in our approach, sets {ST,ET, IT, ITS} must be mutually
disjoint such that each transition of an n Tr non atomic action belongs to
only one set. Indeed, transitions of each set are modified in a specific way.
If this assumption is not satisfied (e.g. n Tr non atomic actions containing
cycles), another approach has to be defined to integrate the security rule.
This constitutes one of the limitations of our work.

20

6. Correctness proof of the integration approach

To ensure the correctness of the proposed approach to integrating security
rules, we have to prove all the algorithms presented in the previous sections.
This paper only presents the correctness of algorithm 1 for rules of the form
F (start(A) | O<−d done(B)). Other correctness proofs are similar and can
be found in [18].

By proving the correctness of algorithm 1, we demonstrate precisely that
the integration of prohibition rule of the form F (start(A) | O[<]−d done(B)),
where (d > 0), produces a secure TEFSM specification. To achieve this goal,
we define for each occurrence of action B:

• tB is the instant of the execution action B.

• k is the time elapsed since the last execution of action B.

• gck is a global clock of the system that gives the current time.

We have to prove that we cannot perform action A within d units of time
after the execution of action B. Mathematically, we have to establish that
for each positive integer k the following predicate holds:

((k < d) ∧ (val(gck) = tB + k)) ⇒ ¬start(A) (1)

To prove that action A cannot be executed at the moment (val(gck) = tB+k),
it is sufficient to prove that at this moment all the transitions Tr of the secure
system labeled by action A cannot be traversed, that is, that all the guards
of the transitions Tr are false. In the secure system, the algorithm 1 adds
the guard (when (¬Prohib(tr))) before each execution of A. Thus, we have
to prove, for each positive integer k, that:

((k < d) ∧ (val(gck) = tB + k)) ⇒ Prohib(tr) (2)

Predicate Prohib(tr) is a disjunction of predicates to which predicate
(gck < val(gck) + d) has been added when action B has been executed
at instance tB. The added predicate is equivalent to (gck < tB + d) (See
algorithm 1). Consequently, it is sufficient to establish that:

((k < d) ∧ (val(gck) = tB + k)) ⇒ val(gck) < tB + d (3)

which is obviously true.

21

7. Formal testing of security rules

In [19], we presented a passive testing based monitoring[20] approach to
check an implementation against a set of Nomad security rules. A passive
testing approach consists in observing, during execution, whether the system
behavior conforms to a set of formal properties. Following this approach, a
user has no control of the collected traces which may be insignificant with
respect to the properties to be checked. Such an approach is especially useful
when the abstract formal specification of the implementation we would like
to verify is not available. However, an active based approach becomes more
interesting in the presence of such a formal specification from which signifi-
cant test scenarios can be derived to check specific behaviors of the system.
Indeed, these test scenarios are used to simulate the implementation and to
observe how it behaves with respect to the properties to be checked. Our
approach takes the following three elements as input:

• a TEFSM functional description of the system,

• a set of security rules described using Nomad language,

• the existing implementation of the system.

The objective is to check whether the existing implementation verifies the
security rules. It proceeds in four steps as shown in Figure 9.

1. The security rules are integrated into the TEFSM specification accord-
ing to the different algorithms we presented in the previous sections.

2. Abstract test cases are automatically generated from the secured TEFSM
specification obtained in the first step. We use TestGenIF tool that im-
plements a formal test case generation approach based on the Hit-or-
Jump algorithm [21]. This tool accepts a TEFSM specification encoded
in the IF textual formalism [22].

3. The abstract test cases are transformed into an executable script ca-
pable of communicating via http (or https) with the implementation
under test.

4. The concrete test cases obtained from the instantiation are executed on
the implementation under test to check whether it verifies the security
rules.

In this paper, we focus on the two first steps that are illustrated through
an industrial case study. More details about the others can be found in [23].

22

F u n c t i o n a l
R e q u i r e m e n t s

S e c u r i t y
R e q u i r e m e n t s

A u t o m a t i c T e s t
G e n e r a t i o n

A b s t r a c t T e s t C a s e s

I F M o d e l

S e c u r e I F M o d e l

W e b
A p p l i c a t i o n

T c l w e b t e s t S c r i p t sT e s t e r

V e r d i c t

N o m a d

Figure 9: Testing Methodology Overview

7.1. Description of the case study: the France Telecom travel application

To demonstrate the feasibility of our approach, we applied it to different
case studies, among them a real application used at France Telecom. We
present the results obtained. This application manages ‘missions’ (business
travel) of the company employees. To facilitate the presentation, this paper
considers a simplified version of this real-size application where a potential
traveler can connect to the system (using a dedicated URL) to request a travel
ticket and a hotel reservation for a specific period according to some business
purposes (called a mission). This request can be accepted or rejected by
his/her hierarchical superior (called a validator). In the case of an acceptance,
the travel ticket and hotel room are booked by contacting a travel agency.

The main functionalities of this system are represented by the TEFSM
of Figure 10 where transitions ti(i=0..9) are defined as follows:

t0 =< S0, S0, , input req create mission(v recv,m recv), output error >

t1 =< S0, S1, , input req create mission(v recv,m recv),

23

S0 S1

S2S3

t1

t2

t6

t5
t8t9

t7

t3

t4

t0

Figure 10: TEFSM specification of the case study

output grant create mission(v recv,m recv) >

t2 =< S1, S2, , input req prop list(v recv,m recv),
output recv prop list(v recv,m recv) >

t3 =< S2, S2, , input req prop list(v recv,m recv),
output recv prop list(v recv,m recv) >

t4 =< S2, S2, , input req choice(v recv,m recv),
output unvalid choice >

t5 =< S2, S2, , input req prop list(v recv,m recv), output empty list >

t6 =< S2, S3, , input req choice(v recv,m recv),
output grant choice(v recv,m recv) >

t7 =< S3, S3, , input req validation(v recv, p recv) >

t8 =< S3, S0, , input send unvalidate notif(v recv,m recv),
output recv validate notif(v recv,m recv) >

t9 =< S3, S0, , input send validate notif(v recv,m recv),
output recv validate notif(v recv,m recv) >

In the initial state S0, the system receives an input message req create mission

from a given user to create a new mission. Depending on specific condi-
tions, the system may reject (in the case of an internal error) or accept
(grant create mission) the creation of the requested mission. In the sec-
ond case, the user can ask for a list of possibilities (different departure dates
for instance) for his/her mission (req prop list). After receiving the first
proposal from the system (recv prop list), the user can request other pro-
posals if those given are not suitable for him/her (loop on state S2 with mes-
sage (req prop list)). If there is no possible proposal (empty propal list),

24

the system moves into its initial state. After selecting the desired proposal
(req choice) and depending on the current conditions, the choice is either re-
jected (unvalid choice) or accepted (grant choice). If accepted, the system
has to ask for the validation of the hierarchical person in charge. Finally,
the system informs the user about the validation decision and returns to the
initial state.

France Telecom proposed a preliminary version of the case study Travel, in
which some informal security requirements are provided. Based on these
requirements, we formally specified a set of 34 security rules using Nomad.
In this paper, we only present three of them:

25

• Rule 1:

F (start (output req create mission(t))|
O<−2min done (output req create mission(t)))

This first prohibition rule states that two missions requests by the same
traveler must be separated by at least 2 minutes. This request can be
performed in the basic traveler process.

• Rule 2:

P (start (output req proposition list(t, m))|
O<−10min done (output req proposition list(t, m)))

This permission rule expresses that a traveler can request for another
list of travel propositions within a delay of 10 minutes if he/she has
already asked for a first list of travel propositions. This request can be
performed in the traveler mission process.

• Rule 3:

O (start (output req validation())|
O−10080min done (output req validation()) ∧

¬ O<−10080min (done (input recv validate- notification())
∨ done (input recv unvalidate notification())))

This obligation rule states that if a traveler requested validation of
his/her mission and if he/she did not receive an answer, the system
must send, as a reminder, another request to the potential mission
validator. This reminder is sent within a delay of (10080 min = 7 days).
The requests and answers are made in the travel mission process.

7.2. Security rules integration

To take the security requirements presented in the previous section into
account, the TEFSM specification depicted in Figure 10 was augmented by
the Nomad rules that model them. This is achieved by applying the dif-
ferent algorithms provided in this article which were implemented using C
language. Table 1 shows some measurements concerning the modified and

26

Table 1: IF Travel System Modifications According to Each Rule

Rule M&A Transitions Added Var Added Proc

1 1+1 1 0
2 2+1 1 0
3 4+3 1 1

added transitions (M&A Transitions), the added variables (Added Var), the
added processes (Added Proc).

As we can see in this case study but also from the various experiments we
have achieved, the modifications inserted in the formal specification (modified
and added transitions) are about 20% of the initial specification. Thus, we
can conclude that the integration of security rules does not generate any
explosion of number of states/transitions which demonstrates its scalability.

7.3. Test Generation

To generate test cases automatically from the secure specification of
Travel, we use TestGen-IF [13] a test generation tool. This tool implements
a timed test generation algorithm based on a Hit-or-Jump exploration strat-
egy [21]. This algorithm constructs test sequences efficiently with high fault
coverage, avoiding state explosion and deadlock problems encountered re-
spectively in exhaustive or exclusively random searches. It allows a set of
test scenarios to be produced according to a set of test purposes. A security
test purpose is a necessary property to be checked in the system studied. It
can be derived from the set of security rules that the system has to respect.
The automatic test generation only targets security issues and, as a result, it
is less time consuming. No performance or stress tests are generated (out of
scope). Our main objective is to covers all possible scenarios. To reach this
objective we used, for Travel test generation, two users and two missions:

• the user can be either a traveler or a validator

• the mission can be either ”created and not validated yet” or ”created
and validated”.

The generation of test cases for only two users and two missions is thus sound
and valid and covers all relevant scenarios. We also defined adequate interval
values for data variables in order to reduce the accessibility graph size and
avoid state explosion problems.

27

Table 2: Some Test Generation Metrics
Rule Strategy Maxdepth Jumps Test Case Length Visited States Duration

1 BFS 10 0 9 291 0.2s
2 BFS 10 1 16 7844 10s
3 BFS 10 2 23 26552 1m25s

A set of timed test cases are generated based on the IF specification
of Travel Web application and the timed test purposes for each rule, using
TestGen-IF. These test cases are then filtered according to the observable
actions (input, output and delays) relating to the system under test. Some
measurements concerning this test generation relating to three rules are pre-
sented in Table 2. This table shows the characteristics of TestGen-IF accord-
ing to the main standard criteria used in the testing field to compare test
generation tools. Table 2 indicates that our test generation tool TestGen-IF
has good performance according to these criteria. The choice of maximum
depth should be as small as possible without having a big number of jumps
which is the case.
For instance, the filtered timed test case for rule 3 is presented in Figure 11
where ”?” and ”!” are standard notations for respectively input and output
messages, and ”/” a separator. Each message has some parameters defined
in the formal specification of the studied formal (described in IF language).
For instance, message request connect(0, 0) means that the user with (id =
0) and password (pwd = 0) wants to connect to system. Notice that the
input/output signals described in each test case are relative to the system
under test. In our case it is the Travel system designed by the two processes
basic travel and travel mission. The test cases generated by the TestGen-
IF tool are abstract but usable; they are produced in aldebaran standard
notation facilitating their portability and their automatic execution.

7.4. Test Cases Instantiation and Execution

In order to execute the generated test cases to a real Web application, they
need to be transformed into an executable script capable of communicating
via http (or https) with the implementation under test. In this work, we
translated the abstract test case automatically into the tcl script used by the
tclwebtest tool4 to execute the designed tests.

4TCLWEBTEST Tool, http://tclwebtest.sourceforge.net

28

1. ?give traveler id{0} / !req connect{0,0}

2. ?req connect{0,0} / !grant connect{0,0}

3. ?grant connect{0,0}

4. !req create mission{0}

5. ?req create mission{0}

6. !grant create mission{{0,0,0,{traveler mission}0,{travel mission}0}}

7. ?grant create mission{{0,0,0,{traveler mission}0,{travel mission}0}}

8. !req proposition list{0,{0,0,0,{traveler mission}0,{travel mission}0}}

9. ?req proposition list{0,{0,0,0,{traveler mission}0,{travel mission}0}}

10. ?give choice list{{{0},1}} /
!recv proposition list{0,{0,0,0,{traveler mission}0,{travel mission}0},{0},1}

11. ?recv proposition list{0,{0,0,0,{traveler mission}0,{travel mission}0},{0},1}

12. !req choice{0,{0,0,0,{traveler mission}0,{travel mission}0},0}

13. ?req choice{0,{0,0,0,{traveler mission}0,{travel mission}0},0}

14. !grant choice{{0,0,0,{traveler mission}0,{travel mission}0},0}
!req validation{{0,0,0,{traveler mission}0,{travel mission}0},0}

15. ?grant choice{{0,0,0,{traveler mission}0,{travel mission}0},0}

16. delay = 10080

17. !req validation{{0,0,0,{traveler mission}0,{travel mission}0},0}

Figure 11: Test Case for the Rule 3

The test cases execution was performed on a prototype implementation of
the Travel Web application (developed on the OpenACS platform) to verify
that the specified security requirements are respected. It is important to
highlight that some time settings in this prototype were changed so that the
application of the tests where faster than in the real system. For example,
we changed 10080 minutes (7 days) in the third rule to 3 minutes to reduce
waiting time. Therefore in this case study we verify the behavior of the
system concerning this rule using a delay of 3 minutes rather than 7 days.

The execution of the test cases is performed using a dedicated testing
tool proposed by the OpenACS community 5. This tool is called the ACS-
Automated-Testing tool that allows the instantiated test cases to be exe-
cuted, interacting with the Web-based application under test and, also, dis-
playing the verdict of each test case. The ACS-Automated-Testing tool is,
in itself, a Web application but we will refer to it just as the tester to avoid
any confusion between this system and the Web application to be tested.

As a result of the execution of the designed test cases on the prototype, we

5OpenACS Community, http://www.openacs.or

29

obtained positive verdicts for thirty test objectives, while, four test objectives
were violated (fail verdict). For example, a problem was detected with the
first rule, which expresses a prohibition. If a traveler requests a first mission
and then waits for 2 minutes, he/she is not allowed by the system to request
another mission. We analyzed the implementation of the Web-based system
and noticed a mistake in the code. Instead of 2 minutes, the Travel system
waited much longer before allowing a second mission request.

The Travel application was analyzed to detect the source of the four
errors. Once the mistakes were corrected, all the test cases were applied
again to the Web application. This time, all the verdicts were positive which
demonstrates the efficiency of our methodology.

7.5. Results analysis

Several criteria can be defined to characterize the quality of the proposed
integration approach described in the paper. According the CSE (Scientific
Council of Evaluation), quality assessment can be summed up in five criteria:
Utility-relevance, reliability, objectivity, scalability (possibility of generaliza-
tion) and transparency. We applied these criteria to our methodology in
the context of an experiment dealing with a real life case study provided by
France Telecom. This case study is an internal Web application used by the
company employees to manage their business travel (transport, accommoda-
tion, etc.). The evaluation of our approach according to the defined criteria
is as follows:

1. Utility-relevance: The integration methodology can be applied in sev-
eral domains and for different purposes. The chosen experiment was in-
tended to use the derived formal specification including both functional
and security requirement as a starting point to automatically generate
test cases in order to check the security of the studied Web applica-
tion. The automatic generation was based on classical model-based
testing techniques. The experimentation showed that our methodology
dealing with the integration of security rules within a TEFSM spec-
ification, allowed a correct and complete specification to be derived.
This specification can be used without any modification to generate
test cases targeting functional but also security objectives. The gen-
eration using a dedicated tool TestGen-IF was possible and the test
cases produced were good enough to be able to detect defects in the
Web application studied. Based on these results, we can conclude that

30

our approach is useful and relevant and has at least one possible ap-
plication, which is, testing. Using our method, generating test cases
for security checking becomes possible, and we are even able to gener-
ate timed test cases based on the time constraints that can be defined
within Nomad security rules. We believe that the integration approach
has other applications like model checking or code generation. Further
experimentations are planned to confirm our theory.

2. Reliability: The different proposed algorithms for the integration of
security rules within a TEFSM based specification were proved correct
(see section 7). These mathematical proofs demonstrate that the result
of the integration is a formal specification of the system studied that
takes into account the designed security rules. Thus, the test cases
derived from this specification (in this case, we used the specification for
a testing purpose) are obviously secure and do not violate any security
rule.

3. Objectivity: This criteria means that the evaluation results are not
influenced by personal preferences or institutional positions of evalu-
ation responsibility or at least that these preferences were adequately
explained or controlled so that we can assume that another evalua-
tion answering the same questions and using the same methods leads
to similar conclusions. This criterion was particularly respected for
our experiment since we mainly relied on quantitative results (number
of security rules, number of generated test cases, number of detected
defects etc.). This demonstrates the fairness of the work accomplished.

4. Scalability: The integration methodology has been applied to a real life
case study provided by a known telecommunication operator: France
Telecom. The size of the application studied is big enough and we
believe that our methodology is scalable since the modifications in-
troduced to the functional specification in order to derive a secure
specification are minor (almost 20% of the size of the specification).
The integration methodology may be extended to other situations and
contexts, even under different security policies.

5. Transparency: In addition to the requirement of a complete and rigor-
ous methodology, this criterion includes the idea that the experiment
must be clear enough to be able to determine its steps and limitations.
This was the case in our testing methodology where we clearly defined
the different experiment inputs and outcomes of each stage. We also
provided quantitative results to be able to express the results and the

31

limitations of the methodology.

8. Conclusion

In this paper, we have presented a formal approach to integrating timed
security rules, expressed according to Nomad, into a TEFSM specification
of a system. Roughly speaking, a security rule denotes the prohibition, obli-
gation or permission for the system to perform an action in a specific timed
context. To meet this objective, we have described a set of algorithms that
allows them to be added to a TEFSM specification describing the behavior
aspect of a system. A proof that demonstrates the correctness of the prohi-
bition integration algorithms is given. These algorithms are implemented in
a tool and the methodology was applied to several real-size applications that
gave very promising results. Finally, the complexity of the algorithms pre-
sented in this paper are linear (in O(n)) with n denoting the number of rules
in the policy. In practical experience, the integration of security rules into a
system does not produce important modifications since in general the num-
ber of rules is not huge. In most transitions, only some changes in predicates
are applied.

The integration of security rules into a TEFSM functional specification of
a system is not an end in itself. In this paper, we have shown how the secured
specification obtained is used to check the correctness of an implementation
with respect to a set of security rules thanks to a testing technique. Doing
so, we discovered errors in the implementation and corrected them.

Currently, we are working of the definition of integration rules to deal with
elaborated and general rules that may involve several timed/logical opera-
tors. Our aim is to define rewritten rules that allow decomposing such rules
into more simple rules on which it becomes possible to apply the algorithms
presented here. For instance, it is possible apply the proposed algorithm on
rule F(A|C1 ∨ C2) by rewriting it F(A|C1 ∨ C2) into {F(A|C1), F(A|C2)}.

9. Acknowledgment

The research leading to these results has received funding from the Euro-
pean Community’s Seventh Framework Program (FP 7/2007-203) under the
grant agreement number 215995 (http://www.shields-project.eu/).

32

References

[1] M. Bozga, S. Graf, I. Ober, I. Ober, J. Sifakis, The IF Toolset, in:
M. Bernardo, F. Corradini (Eds.), Formal Methods for the Design of
Real-Time Systems, International School on Formal Methods for the
Design of Computer, Communication and Software Systems(SFM-RT),
Vol. 3185 of Lecture Notes in Computer Science, Springer, 2004, pp.
237–267.

[2] J. Lobo, R. Bhatia, S. A. Naqvi, A Policy Description Language, in:
AAAI ’99/IAAI ’99: Proceedings of the sixteenth national conference
on Artificial intelligence and the eleventh Innovative applications of ar-
tificial intelligence conference innovative applications of artificial intel-
ligence, American Association for Artificial Intelligence, 1999, pp. 291–
298.

[3] N. Damianou, N. Dulay, E. Lupu, M. Sloman, Ponder: An object-
oriented language for specifying security and management policies, in:
10th Workshop for PhD Students in Object-Oriented Systems (Ph-
DOOS), 2000.

[4] J. Barkley, K. Beznosov, J. Uppal, Supporting relationships in access
control using role based access control, in: ACM Workshop on Role-
Based Access Control, 1999, pp. 55–65.

[5] R. Ferrini, E. Bertino, Supporting RBAC with XACML+OWL.

[6] F. Cuppens, N. Cuppens-Boulahia, T. Sans, Nomad: A Security Model
with Non Atomic Actions and Deadlines, in: 18th IEEE Computer Se-
curity Foundations Workshop(CSFW), IEEE Computer Society, 2005,
pp. 186–196.

[7] W. Mallouli, J.-M. Orset, A. Cavalli, N. Cuppens, F. Cuppens, A For-
mal Approach for Testing Security Rules, in: V. Lotz, B. Thuraisingham
(Eds.), 12th ACM Symposium on Access Control Models and Technolo-
gies,(SACMAT), 2007, pp. 127–132.

[8] N. Benäıssa, D. Cansell, D. Méry, Integration of Security Policy into Sys-
tem Modeling, in: J. Julliand, O. Kouchnarenko (Eds.), Formal Specifi-
cation and Development in B, 7th International Conference of B Users

33

(B 2007), Vol. 4355 of Lecture Notes in Computer Science, Springer,
2007, pp. 232–247.

[9] A. Abou El Kalam, R. E. Baida, P. Balbiani, S. Benferhat, F. Cuppens,
Y. Deswarte, A. Miège, C. Saurel, G. Trouessin, Organization Based
Access Control, in: International Workshop on Policies for Distributed
Systems and Networks (Policy), IEEE Computer Society, 2003, p. 120.

[10] K. Li, L. Mounier, R. Groz, Test Generation from Security Policies Spec-
ified in Or-BAC, in: 31st Annual International Computer Software and
Applications Conference (COMPSAC 2007), IEEE Computer Society,
2007, pp. 255–260.

[11] D. Lee, M. Yannakakis, Principles and Methods of Testing Finite State
Machines - A Survey, in: Proceedings of the IEEE, Vol. 84, 1996, pp.
1090–1126.

[12] W. Mallouli, A. Mammar, A. Cavalli, Modeling system security rules
with time constraints using timed extended finite state machines, in:
D. Roberts, A. El-Saddik, A. Ferscha (Eds.), 12th IEEE/ACM Interna-
tional Symposium on Distributed Simulation and Real-Time Applica-
tions (DS-RT), IEEE Computer Society, 2008, pp. 173–180.

[13] A.Cavalli, E. M. de Oca, W. Mallouli, M. Lallali, Two complementary
tools for the formal testing of distributed systems with time constraints,
in: D. Roberts, A. El-Saddik, A. Ferscha (Eds.), 12th IEEE/ACM In-
ternational Symposium on Distributed Simulation and Real-Time Ap-
plications (DS-RT), IEEE Computer Society, 2008, pp. 315–318.

[14] W. Mallouli, M. et Amel Amel Mammar, A. R. Cavalli, A formal frame-
work to integrate timed security rules within une spcification de systme
base tefsm, in: APSEC, IEEE Computer Society, 2009, pp. 489–496.

[15] M. Bozga, S. Graf, L. Mounier, I. Ober, IF Validation Environment
Tutorial, in: S. Graf, L. Mounier (Eds.), Model Checking Software,
11th International SPIN Workshop,(SPIN), Vol. 2989 of Lecture Notes
in Computer Science, Springer, 2004, pp. 306–307.

[16] L. Cholvy, F. Cuppens, Analyzing consistency of security policies, in:
IEEE Symposium on Security and Privacy, IEEE Computer Society,
1997, pp. 103–112.

34

[17] W. Mallouli, A. Cavalli, Testing Security Rules with Decomposable Ac-
tivities, in: Tenth IEEE International Symposium on High Assurance
Systems Engineering (HASE 2007), IEEE Computer Society, 2007, pp.
149–155.

[18] W. Mallouli, A. Mammar, A. Cavalli, Integration of Timed Security
Policies within a TEFSM Specification, Technical Report TI-PU-08-868,
Telecom SudParis (2008).

[19] W. Mallouli, F. Bessayah, A. Cavalli, A. Benameur, Security rules spec-
ification and analysis based on passive testing, in: the Global Commu-
nications Conference (GLOBECOM), IEEE, 2008, pp. 2078–2083.

[20] E. Bayse, A. Cavalli, M. Núñez, F. Zäıdi, A passive testing approach
based on invariants: application to the wap, Computer Networks 48 (2)
(2005) 235–245.

[21] A. Cavalli, D. Lee, C. Rinderknecht, F. Zäıdi, Hit-or-jump: An algo-
rithm for embedded testing with applications to in services, in: J. Wu,
S. Chanson, Q. Gao (Eds.), Formal Methods for Protocol Engineering
and Distributed Systems(FORTE), Vol. 156 of IFIP Conference Pro-
ceedings, Kluwer, 1999, pp. 41–56.

[22] M. Bozga, J. Fernandez, L. Ghirvu, S. Graf, J. Krimm, L. Mounier,
J. Sifakis, IF: An intermediate representation for SDL and its applica-
tions, in: Proceedings of SDL Forum, Elsevier, 1999.

[23] W. Mallouli, A Formal Approach for Testing Security Policies, Ph.D.
thesis, Telecom and Management SudParis Evry-France (December
2008).

35

