
Security Testing as part of Software Quality
Assurance: Principles and Challenges

Wissam Mallouli
Research & Development Dept.

Montimage EURL
Paris, France

wissam.mallouli@montimage.com

Software quality assurance (SQA) is a means and practice
of monitoring the software engineering processes and methods
used in a project to ensure proper quality of the software.
It encompasses the entire software development life-cycle,
including requirements engineering, software design, coding,
source code reviews, software configuration management, test-
ing, release management, software deployment and software
integration. It is organized into goals, commitments, abilities,
activities, measurements, verification and validation. In this
talk, we will mainly focus on the testing activity part of the
software development life-cycle. Its main objective is checking
that software is satisfying a set of quality properties that are
identified by the ”ISO/IEC 25010:2011 System and Software
Quality Model” standard [1].

Indeed, this ISO/IEC 25010 standard identified eight soft-
ware quality characteristics to assess its quality. These char-
acteristics are functional suitability, reliability, performance
efficiency, use-ability, security, compatibility, maintainability
and portability.

Security refers to how well a software or system protects in-
formation and data from security vulnerabilities. The complex-
ity and the variety of the deployed time dependent systems,
as well as the high degree of security and robustness required
for their global functioning, justify the care provided to the
design of the best possible tests. Moreover, it is significant to
automate these steps with an aim of reducing the time and the
development cost and especially of increasing the quality and
security of the offered products.

To reach this objective, different security testing techniques
has been conceived in the literature [2] and most of them are
used in classical technical security audit of IT systems. They
either rely on predefined security requirements or on identified
threats (part of risk assessment), and in the majority of cases
on both of them. They use different techniques like:

• Model based testing : in general the system under test
is specified as well as its security requirements and/or
identified threats.

• Risk based testing : a risk assessment is performed to
identify vulnerabilities that can be exploited by testers.

• Data based testing : data is mutated to check its impact
on the system (e.g., malformed data or bad data types).

• Mutation testing : Like fuzz testing, it uses different mu-
tation operators and combine them to generate malicious

and unexpected inputs.
• ML based testing : The optimization of tests suites as

well as their coverage can be performed using machine
learning techniques.

Security testing techniques also depend on our knowledge
level of the system/software under test. White box testing
methods considers that internal structure as well as source code
are known to tester which is not the case for black box testing
methods. Static and Dynamic code analysis are thus performed
using different tools and techniques. The big challenges for
software security testing are in generals as follows:

• High-priority vulnerabilities: It is not allowed to make
trade-offs in resources and coverage while performing
security testing. A vulnerability (even minor) can have a
big impact of the whole application and system resiliency.

• Test hidden parts of the application: Understanding the
relationship between application components and data
flows is not always easy when performing black box
security testing.

• Security testing during operation: This task requires
maintenance to perform tests that can harm the avail-
ability of the running application.

• Available interfaces: Some software or system does not
allow external interactions which makes its testing very
hard or requiring specific hardware components.

• Software context: the context can be itself vulnerable
generating thus more risks.

• Tackling zero days vulnerabilities and attacks.

ACKNOWLEDGEMENT

This work was made possible with funding from the Eu-
ropean Union’s Horizon 2020 research and innovation pro-
gramme, under grant agreement No. 957212 (VeriDevOps).
The opinions expressed and arguments employed herein do
not necessarily reflect the official views of the funding body.

REFERENCES

[1] ISO/IEC 25010, ISO/IEC 25010:2011, Systems and software engineering
— Systems and software Quality Requirements and Evaluation (SQuaRE)
— System and software quality models, Std., 2011.

[2] M. Felderer, M. Büchler, M. Johns, A. D. Brucker,
R. Breu, and A. Pretschner, “Security testing: A survey,”
Adv. Comput., vol. 101, pp. 1–51, 2016. [Online]. Available:
https://doi.org/10.1016/bs.adcom.2015.11.003


