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Abstract—Safety monitoring of Industrial Control Systems
(ICS) is a must for optimal operation of safe manufacturing
facilities. Failures and miss-behaviours seldomly occur without
prior warning, but these warnings are often subtle, requiring
careful analysis of data by experienced personnel for early
detection. Monitoring function allows to promptly take adequate
corrective actions in order to maximize uptime and increase trust
of running industrial systems. In this paper, we present two
main approaches of monitoring techniques implemented in the
Montimage MMT tool. The first approach is a signature-based
approach, where there are safety properties to be checked on
the ICS logs, and the other relies on Machine Learning (ML) to
detect anomalies. Both methods have been applied to check safety
on an industrial system: a crane load position system provided by
ABB. Several experiments have been performed to check if the
information provided by a system’s PLC is correct, guarantying
the safety of the system.

Index Terms—Monitoring techniques, Industrial Control Sys-
tems (ICS), signature-based analysis, anomaly detection, ML-
based analysis, MMT tool.

I. INTRODUCTION

Industrial Control Systems (ICS) is a generic term that
refers to different types of control systems that operate and/or
automate industrial processes. These systems consist of a
combination of devices, software, and networks that together
achieve an objective, such as manufacturing a product, water
treatment, energy generation, etc.

Managing safety during operation is one of the main ob-
jectives of evolving ICS systems. Besides, cybersecurity is
playing an essential role in process safety systems. In this
sense, monitoring of security and safety properties has become
an important part of today’s software development projects
where different pieces of code from several providers can be
used and integrated into evolving ICS environments [1]. In
particular, in these systems, the cyber-physical infrastructures
must guarantee the protection of the traditional (physical)
elements, such as sensors, controllers and actuators; as well
as the novel (cyber) capabilities, in terms of computing and

communication protection [2]. The topic has been attracting
increasing attention since the Stuxnet incident when the suc-
cessful cyber-physical sabotage of a uranium enrichment plant
in Iran took place [3]. More recently, the coronavirus pandemic
has increased the interest of industry actors on cybersecurity
operation technology [4].

Procuring cybersecurity in ICS becomes more critical over
time because of the imperfections of the existing protection
tools, and the increasing presence of vulnerabilities. Compared
with the previous year’s data, the proportion of vulnerabilities
that have a high or critical severity score has grown. More
than half of the vulnerabilities identified in ICS systems
were assigned CVSS v.3.0 [5] base scores of 7 or higher,
corresponding to a high or critical level of risk. Kaspersky
has also reported the main challenges according to industrial
companies: their results show that companies are concerned
of safety of employees, as well as damaging of products and
services, and loss of proprietary or confidential information,
due to cybersecurity incidents [4]. Therefore, in today’s con-
text, cybersecurity is a priority in industrial systems, and it
affects factors as important as the lives of employees, or the
quality of a company’s products.

Nevertheless, ensuring safety requires that relevant actors
inside the company acquire proper knowledge and skills to
guarantee security at deployment and operation phases, such
that a system can resist attacks and handle security errors
appropriately [6]. They also need to be supported by tools
to ensure dynamic risk management techniques [7], [8], for
the automatic detection of missbehaviours and vulnerabilities
and their mitigation at runtime.

Currently, there are two main monitoring approaches that
are widely used to identify possible breaches in computer
systems: signature-based and anomaly-based intrusion detec-
tion. Both methods attempt to verify security properties, which
also aim to guarantee safety in the systems under monitor.
However, both methods have limitations. In the case of a



specific case study like the one we will describe in this paper,
signature-based monitors may be difficult to configure, since
there is no clarity on the security properties that must be
monitored to avoid the situation that compromises the safety
of the system. system. Whereas anomaly detection algorithms
tend to always be a bit less accurate, and having important
rates of false-negatives results.

The research described in this paper was designed as a case
study to investigate the use of two different security monitoring
approaches, in order to provide a solution to a safety problem
in an Industrial Control System. There were three research
objectives for this case study:

1) To explore the applicability of signature and ML based
monitoring techniques to solve a safety problem in a
Load Position System

2) To gain understanding of the drawbacks and benefits of
each of the proposed monitoring techniques

3) To measure the accuracy of the proposed monitoring
techniques in the classification task proposed in the case
study described in Section II

The paper is organised as follows. Section II describes the
case study proposed by ABB. Section III presents related
work. Section IV shows the monitoring solution in terms
of architecture and functionalities. Section V presents the
experimentation environments and the results in the context
of the industrial crane LPS system. Finally, section VI gives
the conclusion and future work.

II. CASE STUDY DESCRIPTION

The following subsections describe the context of this
research, which is the European project VeriDevOps, and its
concrete case study that motivated this research.

A. VeriDevOps projet

VeriDevOps 1 project addresses automation of verification
methods and monitoring for prevention and protection of
industrial control systems. The innovation resides in using
Natural Language Processing (NLP) to automatically generate
formal specifications of security requirements, that normally
are written in natural language. The idea is to provide a way
of preventing inconsistencies from propagating into operations
and identifying the faults that could be introduced in the
requirements. Therefore, this formalized security requirements
will be leveraged to perform monitoring activities at the
operations stage of the system, in order to verify security and
safety.

B. ABB Case Study

ABB Load Position System (LPS) is a camera-based track-
ing system that determines a hanging crane load position with
help of attached LED markers on the load. As can be seen in
Figure 1, the system consists on a camera on top of a crane
that keeps tracks of LED markers in a load that is in motion. In

1https://www.veridevops.eu/veridevops

addition, there is single Programmable Logic Controller (PLC)
that analyses the camera images.

The workflow of ABB LPS is as follows:

1) The camera captures images of the moving load
2) The camera performs a local analysis of the picture,

and it produces an array of coordinates of what the
camera thinks are markers a.k.a. marker candidate list,
that include the real markers to monitor and noise in the
image

3) The PLC receives the marker candidate list
4) The PLC, based on statistical algorithms (proprietary to

ABB, and therefore confidential), makes a selection of
the real markers and discard the noise

5) The maker spatial coordinates are used for the system
to know the current position of the load, and calculate
the following movements of the crane

However, it has happened that noise detected by the camera
is tagged as markers by the PLC. This situation might lead to
incorrect movements of the crane and compromise the safety
of the system.

Fig. 1. The Load Position System

The monitoring techniques utilized in this paper aim to per-
form a classification task, in order to indicate if the selection
of markers made by the PLC was valid or not. For such a
purpose, the two techniques aim to find the real markers based
on a group of features that are related to the LPS configuration,
and the spatial coordinates of the candidates.

It is important to notice, that the utilized techniques do not
attempt to find the real markers themselves, but to verify the
PLC results, based on a group of features that are related
to the LPS configuration, and the spatial coordinates of the
candidates.

For the purposes of this research work, two LPS configura-
tions were simulated by ABB. Both configurations differs in
terms of internal parameters of the LPS system, for example
the model of the ABB crane, or the positions of the markers
in the load. Finally, system configuration number two was
recorded two times in different days, which varies the load and
environmental conditions, such as the weather. More details
about the data recorded from the simulations is provided in
Section V-A and in Table I.



Figures 2 and 3 depict examples of three different records
performed in the two simulated LPS system configurations. In
the pictures, it is possible to see that spatial information is
not enough to determine the validity of a marker; therefore,
another features must be considered.

Fig. 2. Spatial representation of the markers: System configuration 1

Fig. 3. Spatial representation of the markers: System configuration 2-a (right),
2-b (left)

III. RELATED WORK

The monitoring of approaches are generally divided into two
main categories. The first one relies on formal properties to be
checked on collected traces, and the second one uses artificial
intelligence algorithms to detect drifts and anomalies. These
two categories will be presented in the next two subsections.

A. Signature-based monitoring

Signature-based Intrusion Detection Systems (SIDS) are
monitor tools that compare captured system or network events
to a set of predefined malicious activity patterns. Therefore,
if one of these previously recorded behaviors is detected, an
alert is triggered.

One of the main problems with this approach is that attacks
are already described/modelled in a specific manner; therefore,
a simple mutation could make them undetectable. Further-
more, the choice of algorithms to accurately and efficiently
detect malicious behaviors and intrusions [9], and how to
identify attacks that span across several events [10] remain
also open issues.

Regarding Industrial Control Systems, Richey’s thesis [11]
aims to leverage the static topology of ICS networks and those
programs that define them to enhance the IDS’s knowledge of

the environment in which it is deployed. The author describes
a method for automatically generating rules and signatures
to detect possible intrusions, by parsing PLC ladder logic
to extract address register information, data types and usage.
Moreover, a Ladder Logic Parser program was created to test
the proposed method, showing that it is not only applicable to
a controlled test environment, but can also create a significant
number of Snort rules that define abnormal behavior using
real-world ladder files. Using a smaller test case ladder file,
the functionality of this method was proven accurate and
a sampling of the larger real-world files were found to be
thorough and valid.

B. ML based anomaly detection

Anomaly-based Intrusion Detection Systems (AIDS) work
by comparing the actual comportment with a previously-
established “normal” model of the behavior of the system. Any
substantial deviance between the observed behavior and the
model is considered as an anomaly, which can be translated as
an intrusion or attack into the system. AIDS has drawn interest
from a lot of scholars due to its capacity to overcome the
limitation of the Signature-based Intrusion Detection Systems
(SIDS) [10].

Normally, in AIDS, the normal model of the behavior of a
computer system is created using machine learning, statistical-
based, or knowledge-based methods. We will consider only the
machine learning method.

The applications of machine learning techniques in the
design of Intrusion Detection Systems (IDS) have remained
a trend in the last few years [12]. Therefore, there have been
numerous anomaly-based IDS prototypes that implement these
techniques.

Recently, there is an increasing interest in the use of Deep
Learning techniques as a prospective method for the next gen-
eration of IDSs due to their capability of automatically finding
correlations in data [12], [13]. Several author have summarized
various intrusion detection mechanisms using a combination
of machine learning and deep learning approaches [14], [15].

IV. MONITORING APPROACHES USED IN ABB CASE
STUDY

The following subsections describe the existing monitoring
approach techniques that we used to solve the problem stated
in the ABB case study, described in Section II.

A. Global monitoring architecture

The monitoring approaches are intended to be performed
during ICS operations. Figure 4 depicts the global workflow
of the monitoring activities.

First, application logs from the LPS system are taken
as inputs. Logs can be analyzed both online and offline.
Therefore, near real-time monitoring or analysis of previously
saved logs is possible.The feature extraction module analyzes
the data, and extracts the selected features to be considered
in both monitoring approaches. The data is then processed
by the SIDS and AIDS components. Finally, the results are



Fig. 4. Monitoring architecture

displayed in a dashboard with relevant graphs that summarize
the status of the system and display alerts when security flaws
are suspected or detected. Section 4.1 describes each of the
modules that compose the main architecture.

For the experimentation described in this paper, only offline
analyzes were performed.

a) Features Extraction: The feature extraction task is
performed by MMT-Extract [16], a C library that analyzes
network traffic and application logs, to extract network and
application-based events. Extraction is powered by a plugin
architecture that allows adding new protocols or application
message formats to parse. In this case study, new plugins were
added to the library to analyze data from the ABB system,
which uses internal ABB protocols.

b) Signature-based monitoring: MMT-Security [16] is
a signature-based monitoring solution, that allows analysing
network traffic according to a set of properties called MMT-
Security properties. These properties contain signatures that
formally specify security goals, or malicious behaviours re-
lated to the monitored system.

The MMT-Security property model is inspired by Linear
Temporal Logic and can refer to two types of properties:

• Properties that describe the normal, legitimate behaviour
of the application or protocol under analysis. In con-
sequence, the non-respect of the property indicates a
potential violation of a safety or security requirement;
e.g., all the ports in a computer must be closed unless
they are being used by an authorised application.

• Attacks that describe malicious behaviour corresponding
to an attack model, a vulnerability or misbehaviour.
In this case, the respect of the property indicates the
detection of a potential incident; e.g., a big number of
requests in a short period of time could be a denial-of-
service attack.

XML format was chosen as the language of MMT-Security
properties, due to its simplicity and straightforward structure
verification. A property is a general ordered tree as shown in
Figure 5, where the leaf nodes are the atomic events captured
in the traces. Each property is composed of a context, in the

Fig. 5. Security property structure [16]

left branch, and a trigger, in the right branch. Then a property
is valid when the trigger is valid, and the trigger is inspected
only if the context is valid. Figure 9 show an example of one
MMT-Security property implemented in the context of ABB
case study, according to the strategy NoOfCandidates detailed
below in this Section. Syntax of MMT-Security properties is
detailed in [16].

Determining MMT-Security properties using the PLC fea-
tures, such as the trolley and hoist positions and speeds,
depicted in Figure 7, is not a trivial task. There is not a direct
relation between the spatial coordinates, trolley position and
speed, main hoist position and speed, nor the gantry speed
and the validity of the markers. Therefore, for a non-expert on
the LPS system, it would be a difficult task to create MMT-
Security properties using these features that allow to monitor
and validate the PLC verdict.

However, the relationship between the number of marker
candidates and the validity of markers seems more direct,
once border values are determined, as shown in Figures 6
and 8. Moreover, considering the hypothesis that since the



Fig. 6. Relationship between the number of marker candidates and their validity (Right: System conf. 2-a, Left: System conf. 2-b)

Fig. 7. Data features calculated by the PLC (System conf. 2-b), and their
relation with the validity of the markers (Yellow: valid markers, Purple: invalid
markers)

markers are in constant motion there should be no sudden
jumps between one marker and another, we propose three
other strategies that aim to detect these jumps. Below we
present a list of the proposed strategies, which we specify
as MMT-Security properties to verify them on the ABB data,
and provide a solution to the marker classification problem:

1) Number of marker candidates (NoOfCandidates):
Figure 6 and 8 show that all valid verdicts occurred in a
specific region of number of marker candidates, outside
of with the verdicts were invalid. Therefore, the number
of marker candidates must be within a certain range.
Violation of this property would mean that the selected
markers are potentially noise.

2) Speed variation: The variation speed of a marker (dis-
placement/ time interval) must be less than the specified
threshold. Violation of this property would mean that
the selected markers are potentially noise.

3) Displacement magnitude: The magnitude of the dis-
placement between the markers must be less than the
specified threshold. Violation of this property would
mean that the selected markers are potentially noise.

4) Uneven displacement: The magnitude of the displace-
ment of the markers must be even. Violation of this
property would mean that the selected markers are
potentially noise.

All the strategies defined above require determining thresh-
old values. For that purpose, we use the optimization algorithm
Dual Annealing [17]. This is a well-known stochastic global
optimization algorithm, intended for objective functions that
have a non-linear response surface, as was the case for all
objective functions of the strategies mentioned above. It is a
stochastic optimization algorithm, therefore a candidate solu-
tion is randomly modified, and new solutions probabilistically
replace the current candidate solution. Consequently, worse
solutions may replace the current candidate solution. The
probability of this type of replacement rises at the beginning of
the search and decreases with each iteration, controlled by the
hyperparameters of the algorithm. One of the main limitations
of Dual Annealing is its computational cost, but it is able to
find a global maximum and not get stuck in local minima in
problems where the exact algorithms fail, although it usually
provides an approximation.

Fig. 8. Relationship between the number of marker candidates and their
validity (System conf. 1)

c) Machine Learning based anomaly detection: For per-
forming the anomaly-based monitoring task, we used a Multi-
layer Perceptron (MLP) classifier [18], with two hidden layer
with 4 neurons, that we determined based on the size of



Fig. 9. Example of MMT-Security property, to detect three marker candidates

the input layer and output layer, according to the empirical
results of [19]. Regarding the regularization parameter alpha,
which contributes to avoid overfitting by penalizing weights
with large magnitudes, we used α = 0.001, based on our
own experimentation. As for the activation function, we used
the widely-used activation function: the Rectified Linear Unit
(ReLU), defined as f(x) = max(x, 0). One of the main
advantages of ReLU function is that it does not activate all
the neurons at the same time, therefore Neural Networks
(NN) that use ReLU have been proved to be more easily
optimizable than neural networks that use other activation
functions, such as sigmoid or tanh units [20]. For the solver for
weight optimization, we used Adam solver [21], a first-order
gradient-based optimization algorithm that is straightforward
to implement, requires little memory, is computationally effi-
cient, and is suitable for problems that are large in terms of
data with thousands of training samples or more, as it was our
case. Finally, we used a gradually decreasing learning rate to
decrease the overfitting chances. Figure 10 resumes the utilized
MLP model. The used features are described in Section V-A
and summarized in Table II.

Fig. 10. Two hidden layer MLP

V. EXPERIMENTATION

In the following subsections we describe the experimenta-
tion we did applying the two proposed monitoring approaches.

A. Data
Table I shows the datasets utilized in this experimentation.

Data was extracted of two different ABB LPS system con-
figurations. Each entry of the datasets contain the group of
candidate markers, the PLC verdict, that indicates which of
the candidates are the real markers, and the validation of the
PLC verdict, performed manually by experts on the system
from ABB. Assuming that in a stand still trolley, the load will
not be able to suddenly jump several meters, experts used an
ABB visualization tool, that allowed to see jumpy and jerky
positions that were physically impossible for a 30 ton container
to do. Consequently, in such a cases if the PLC selected those
type of markers, they could determine its verdict was wrong.

All the datasets contain features calculated by the PLC
of the corresponding system, Figures 7, 6, and 8 depict the
relation between these features and the validity of the markers.

Besides, relevant attributes were extracted from the original
data, and correlated to compute new features: displacement
between consecutive markers (euclidean distances), and speed
variation between two consecutive markers. All the features
are summarized in the Table II.

For performing the ML experiments, we used the three
datasets described in Table I. Machine Learning applications
require important amounts of data containing fair represen-
tations of each of the classes, in this case: valid and in-
valid markers. Table I depicts that the three studied datasets
were highly unbalanced. Therefore, in order to generate new
samples of under-represented class, we utilized random over-
sampling with replacement of the current available samples,
in both training and testing dataset. Moreover, training dataset
was divided using proportions 75% and 25% to create the
training and verification datasets respectively. Finally, as the
chosen ML model is sensitive to feature scaling, we scaled
each attribute to values between [−1,+1].

B. Signature-based analysis results
Table III shows the partial results we obtained by using

the proposed strategies on the dataset System conf.1. Though



TABLE I
LPS DATASETS

Name Description Total number
of entries

Number of valid
PLC verdicts

Number of invalid
PLC verdicts

System conf.1
Recording of the system configuration 1. In this record the system behave in a erratic way, more noise in
the camera image were detected, so the marker selection process made by the PLC was more difficult
than in the datasets 2-a and 2-b

2031 1547 484

System conf.2-a 1st recording of the system configuration 2 79102 78327 775

System conf.2-b 2nd recording of the system configuration 2, registered under the same crane and LPS configuration as
the dataset conf.2-a, but in a different day, therefore different weather conditions 80057 79942 115

TABLE II
FEATURES

ID Features name Description Type

X1 Coordinates Spatial coordinates of markers

PLC

X2 TrolleyPos Trolley position
X3 Hoistpos Hoist position
X4 TrSpd Trolley speed
X5 GaSpd Gantry speed
X6 MhSpd Hoist speed
X7 NoOfCandidates Number of marker candidates found including noise

X8 Speed Variation speed of a marker (displacement/ time interval) CalculatedX9 Displacement Magnitude of the displacement between the markers

still insufficient, the number of marker candidates (NoOfCan-
didates) probed to be the most accurate method. The other
proposed strategies that aimed to detect jumps in the spatial
coordinates of the markers, were not effective and must be
substituted. The best accuracy obtained with signature-based
analysis did not exceed 73%.

C. ML-based analysis results

The results on both system configurations, using different
features are summarised in Tables III.

For the first system configuration, we were disposed only of
a single dataset, therefore we have performed validation (on
the divided 75%−25% dataset), without a possibility of testing
the model on a new dataset (testing set). However, the results
demonstrate that the model is able to predict the validity of
PLC verdicts with over 74% accuracy.

Regarding the second system configuration, we were able
to validate and then test the model. Finally, Table III also
shows the results of the testing of the model using a completely
new, unseen dataset, that was recorded on the same system
configuration but at different time. Then, it contains different
environmental conditions than the training dataset. In this case,
the model reach accuracy close to 100%, using the marker
candidate number, and the spatial coordinates of the markers
as features.

As for the results in the cases when training and testing
data came from different system configurations, we did not
get good prediction accuracy. Therefore, the proposed model
is not adequate to these scenarios. Nevertheless, occurrence
of such a situation would be very rare in real-life scenarios,
as normally the chosen ML model can always be tuned and
adapted to a specific system configuration.

D. Discussion

We have proposed two main approaches to validate ABB
PLC verdicts, and guarantee security and safety at system
operations. The signature-base monitoring approach presented
important limitations, and in general we observed that in this
type of case studies a deep knowledge of the system, and in
particular of its variables. This is not always possible, and even
with the required system knowledge, the task of studying all
the variables involved and the use of them to write a property
that is ready to be checked on the system is very hard. In this
specific case study, for humans it was possible only to find
single-features properties, as showed in Table III. However,
while using ML techniques which correlated the features in
an automatic manner, we were able to obtain much better
results. In general, using multi-features relationships, generally
difficult to obtain manually, the design of security and safety
properties has become easier.

ML results were promising, in particular when the system
behave normally, as it is the case of the datasets System conf.2-
a and 2-b. In more erratic scenarios, as System conf.1, the
results are less good, but the model have been proved to predict
validity of the markers with an accuracy over the 74%.

As for the features, for the signature-based analysis per-
formed on the system configuration 1, best results were ob-
tained by using the number of marker candidates (NoOfCandi-
dates feature) found including noise. This is expected, because
this feature measures in someway the amount of noise that the
sensors process in a certain moment. Therefore, when there is
a big amount of marker candidates, it implies a big amount of
noise, and the markers are more probable to be incorrect. On
the other hand, if the marker candidates are below a minimum,
this can also indicate a problem in the sensor lecture. The
optimization process to find the corresponding maximal and
minimum values, based on evidence, is simple, as well as the
design of a safety rule to monitor this variable. Nevertheless,
this feature proved to not be enough for classifying all the
markers, and the rest of the tried features that aimed to detect
jumps in the markers were not effective. Finally, manually
designing properties based on the PLC features was not a
trivial task, Figure 7 depicts how the relation between the
validity of markers and PLC features is not straightforward.

Using ML techniques NoOfCandidates was very effective
when testing on system conf.2, but in the erratic behaviour
of system conf.1, the feature did perform well enough. As
for the spatial information (i.e Coordinates feature), it had



TABLE III
SUMMARY OF RESULTS

Monitoring approach Dataset Features Accuracy Recall invalid markers Recall valid markers Precision invalid markers Precision valid markers

Signature-based detection

NoOfCandidates 0.73 0.79 0.71 0.46 0.92
System conf.1 Speed variation 0.60 0.19 0.73 0.18 0.74

Displacement magnitude 0.59 0.77 0.54 0.34 0.88
Uneven displacement 0.63 0.63 0.63 0.35 0.84

Training data Validation/Testing data

ML Anomaly detection System 1 (0.75) System 1 (0.25)

NoOfCandidates, Coordinates 0.74 0.84 0.64 0.70 0.80
NoOfCandidates, Coordinates, Speed 0.74 0.83 0.65 0.70 0.79
Coordinates, Displacement, TrolleyPos, Hoistpos, TrSpd, GaSpd, MhSpd 0.78 0.97 0.59 0.70 0.95
NoOfCandidates, Coordinates, Displacement, TrolleyPos, Hoistpos, TrSpd, GaSpd, MhSpd 0.78 0.95 0.61 0.71 0.93
NoOfCandidates, Coordinates, Speed, TrolleyPos, Hoistpos, TrSpd, GaSpd, MhSpd 0.74 0.87 0.60 0.68 0.83
NoOfCandidates, Coordinates, Displacement, TrolleyPos, Hoistpos, TrSpd, GaSpd, MhSpd 0.76 0.92 0.61 0.70 0.88

ML Anomaly detection System 2-a System 2-b

NoOfCandidates 1,00 1,00 1,00 1,00 1,00
Coordinates 0,97 1,00 0,95 0,95 1,00
TrolleyPos, Hoistpos, TrSpd, GaSpd, MhSpd 0,58 0,69 0,48 0,57 0,61
NoOfCandidates, Coordinates 1,00 1,00 1,00 1,00 1,00
NoOfCandidates, TrolleyPos, Hoistpos, TrSpd, GaSpd, MhSpd 0,98 0,96 1,00 1,00 0,96
Coordinates, TrolleyPos, Hoistpos, TrSpd, GaSpd, MhSpd 0,51 0,06 0,96 0,59 0,50
NoOfCandidates, Coordinates, TrolleyPos, Hoistpos, TrSpd, GaSpd, MhSpd 0,92 0,88 0,96 0,95 0,89

ML Anomaly detection System 2-b System 2-a

NoOfCandidates 0,90 0,80 1,00 1,00 0,84
Coordinates 0,58 0,16 1,00 0,98 0,54
TrolleyPos, Hoistpos, TrSpd, GaSpd, MhSpd 0,50 0,00 1,00 0,00 0,50
NoOfCandidates, Coordinates 0,90 0,81 1,00 1,00 0,84
NoOfCandidates, TrolleyPos, Hoistpos, TrSpd, GaSpd, MhSpd 0,90 0,80 1,00 1,00 0,84
Coordinates, TrolleyPos, Hoistpos, TrSpd, GaSpd, MhSpd 0,58 0,16 0,99 0,94 0,54
NoOfCandidates, Coordinates, TrolleyPos, Hoistpos, TrSpd, GaSpd, MhSpd 0,91 0,81 1,00 1,00 0,84

a performance below the 50% of accuracy for the system
conf.1 and of 58% for the system conf.2-b. However, for the
system conf.2-a, it performed extremely good. Nevertheless,
when testing on system 2-a, the prediction accuracy is very
poor, therefore this feature is not very trustworthy. As a matter
of fact, in Figure 3 it is possible to see that even though
the system’s configuration remains equal, the meteorological
conditions can radically change its spatial information, and
hence the invalid markers can appear in different coordinates.

Certain combination of the features was only possible using
ML techniques. In comparison, for the signature-based ap-
proach the problem of correlating the features was too complex
to make it manually, and the results by using only the PLC
features (TrolleyPos, Hoistpos, TrSpd, GaSpd, MhSpd) without
the number of marker candidates proved to be very inaccu-
rate. Adding spatial information (i.e Coordinates feature) did
not improved the results neither, due to the limitations ex-
plained before. But combining NoOfCandidates, Coordinates,
Displacement, TrolleyPos, Hoistpos, TrSpd, GaSpd, MhSpd
features, on the case of the erratic behaviour of system conf.1,
proved to be the most accurate strategy. As for the system
conf.2, NoOfCandidates, TrolleyPos, Hoistpos, TrSpd, GaSpd,
MhSpd features donate the best and more reliable results, as
they were constantly good in the two performed tests.

VI. CONCLUSION

This paper presents the preliminary results of the application
of monitoring techniques to an industrial system: ABB Load
Position System (LPS). The proposed monitoring solutions
have shown to increase security and safety by corroborating
PLC results, based on two main strategies: signature-based
monitoring and ML-based anomaly detection techniques (i.e.
neural networks).

The use of signature-based analysis showed its limitation
in the context of a complex system where the thresholds
of different features are not specified. The accuracy did not
exceed 73%. The usage of ML algorithms improved this accu-
racy, Multi-layer Perceptron (MLP) classifier showed excellent
results if the Crane LPS system is under the same configuration
for the training and testing datasets. As expected we also

noticed that the most features we have, the better accuracy
we have.

Although the results obtained are promising, we plan to
continue the application of MMT modules presented in this
paper in order to improve the accuracy and precision of
our analysis by using other ML algorithms and relying on
more features. Finally, we plan to study the feasibility and
performance of using both monitoring approaches combined,
in an industrial context. ML results could be used as a first
indication that a potential security breach has occurred, and
signature-based monitoring could be used to rule out false
positives and further identify the type of breach.
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