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Abstract

Dynamic code analysis attempts to find errors or vulnerabilities while a program is executing on a real
or virtual processor. The objective of dynamic analysis is to reduce debugging time by automatically
pinpointing and informing on errors as they occur. The use of dynamic analysis tools can reduce
the need for the developer to recreate the precise conditions under which an error, a vulnerability
or a security flow occurs. This paper presents a formal approach to detect software vulnerabilities
in C programs relying on formal models of vulnerabilities causes called “Vulnerability Detection
Conditions” (VDCs). These models provide a formal interpretation of a vulnerability to facilitate its
automatic detection using dynamic code analysis tool. To illustrate our approach, a prototype tool
TestInv-Code has been developed. It allows to detect the presence of vulnerabilities by checking the
VDCs on the execution trace of the studied C program. By traces we mean here the disassembled
instructions that are being executed. The tool has been applied on an open source application XINE
that contains a known vulnerability to demonstrate its effectiveness.

Keywords: Dynamic Code Analysis, Vulnerabilities Detection, Security Modelling, Passive Test-
ing

1 Introduction

1.1 Context and motivations

In computer science, software vulnerabilities are generally defined as specific instances of not intended
functionality in a certain software/environment leading to degradation of security properties or violation
of the security policy. They can be exploited by malicious code or misuse. The detection of such
vulnerabilities in software has become a major concern in the software industry.

Software vulnerabilities arise from deficiencies in the design of computer programs or mistakes in
their implementation. An example of a design flaw is the Solaris sadmin service, which allows any
unprivileged user to forge their security credentials and execute arbitrary commands as root. The solution
to this problem is to redesign the software and enforce the use of a stronger authentication mechanism.
Vulnerabilities of this kind are harder to fix, but fortunately, they are rare. Most software vulnerabilities
are a result of programming mistakes, in particular the misuse of unsafe and error-prone features of the C
programming language, such as pointer arithmetic, lack of a native string type and lack of array bounds
checking.

Though the causes of software vulnerabilities are not much different from the causes of software
defects in general, their impact is a lot more severe. A user might be willing to save their work more
often in case a program crashes, but there is little they can do to lessen the consequences of a security
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compromise. This makes the problem of detecting existing vulnerabilities and preventing new ones very
important for all software developers.

Although efforts are being made to reduce security vulnerabilities in software, according to pub-
lished statistics, the number of vulnerabilities and the number of computer security incidents resulting
from exploiting these vulnerabilities are growing [20]. One of the reasons for this is that information on
known vulnerabilities is not easily available to software developers, or integrated into the tools they use.
Thus many activities are designed to support secure software development like security education on
vulnerability causes, security goal and vulnerability class identification, goal and vulnerability driven in-
spections etc. Vulnerability cause presence testing is one of the main activities that support the validation
of secure software. It is used to detect vulnerabilities in software products in order to remove/mitigate
them. Several testing techniques can be used to perform this detection based on different models and
approaches (static/dynamic code analysis, fuzz testing, active/passive testing, etc.). In this paper, we
present a systematic approach to increase software security by bridging the gap between security experts
and software practitioners. Indeed, we provide software developers with the means to effectively prevent
and remove occurrences of known vulnerabilities when building software. To achieve this goal, we will
rely on a formal method for dynamic code analysis technique based on vulnerability detection conditions
(VDCs) models.

Currently, there are a large number of techniques and related tools that help developers improve soft-
ware security quality. Among these techniques, we can cite formal verification and validation (V&V)[8]
and also the static and dynamic code analyzers [17, 12]. However, existing approaches are often limited
and do not present rigorous descriptions of vulnerabilities they deal with [16, 18, 11]. It is quite difficult
for a user to know which vulnerabilities are detected by each tool since they are poorly documented. A
more detailed description of the related work is provided in section 2.

1.2 Contribution

Our approach combines a new formalism called Vulnerability Detection Conditions (VDCs) and formal
passive testing in order to implement a new method to detect vulnerabilities in C programs. These two
concepts are detailed respectively in sections 3 and 4.

A VDC allows to formally describe a vulnerability without ambiguity. This task is performed by
a security expert that needs to study vulnerabilities then determine its causes. Each cause needs to be
extracted and translated into a logical predicate on which it becomes possible to reason. In a second step,
VDCs descriptions are instantiated by a dynamic analysis tool to allow the automatic detection of this
vulnerability in any C program. The tool is based on passive testing technique, which has proven to be
very effective for detecting faults in communication protocols [4]. In summary, the main contributions
introduced by this paper are:

• A new formalism, called Vulnerability Detection Conditions (VDCs), is designed to describe vul-
nerability causes in a rigorous way without ambiguity. This formalism also constitutes a good
way to have a good understanding of each software vulnerability and its causes. It bridges the gap
between security experts, developers and testers.

• An editor tool to build new VDCs based on a set of know vulnerability causes described in the
SHIELDS SVRS1.

1The SHIELDS SVRS is a centralized repository that allows the storage and sharing security models in order to reduce known
security vulnerabilities during software development
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• A model-based dynamic analysis tool TestInv-Code2 that automatically detects vulnerabilities in
C programs based on VDCs.

• An end-to-end methodology that allows to detect vulnerabilities and provides for each detection
information about the vulnerability, the different ways to avoid it and the C code line where the
vulnerability occurs (if the code is available).

• Application of the approach and the obtained results on an open source application XINE that
contains a known vulnerability.

The approach proposed in this paper is original since it covers all the steps of vulnerability detection,
from the modelling phase relying on VDCs, to their automatic detection on the executable traces using
the TestInv-Code tool.

The rest of the paper is organized as follows. The section 2 presents different approaches used
in literature for dynamic detection of vulnerabilities. Section 3 introduces the VDC model, its basics
and use. Section 4 introduces the dynamic code analysis technique based on these models and its tool
TestInv-Code. Section 5 introduces the experimentation and results and Section 6 summarizes our work
and describes future work.

2 Related work

Different techniques have been proposed to perform dynamic detection of vulnerabilities [3]. For in-
stance, Fuzz testing is an approach that has been proposed to improve the security and reliability of
system implementations [10]. Fuzz testing consists in stimulating the system under test, using random
inputs or mutated ones, in order to detect unwanted behavior as crashing or confidentiality violation.
Penetration testing is another technique that consists in executing a predefined test scenario with the ob-
jective to detect design vulnerabilities or implementation vulnerabilities [21]. Fault injection is a similar
technique that injects different types of faults in order to test the behavior of the system [7]. Following a
fault injection the system behavior is observed. The failure to tolerate faults is an indicator of a potential
security flaw in the system. These techniques have been applied in industry and shown to be useful.
However, most of the current detection techniques based on these approaches are ad hoc and require a
previous knowledge of the target systems or existing exploits.

Model checking techniques have also been revisited for vulnerability detection. Hadjidj et al.[9]
present a security verification framework that uses a conventional push down system model checker
for reachability properties to verify software security properties. Wang et al. [22] have developed a
constraint analysis combined with model checking in order to detect buffer overflow vulnerabilities. The
memory size of buffer-related variables is traced and the code is instrumented with constraints assertions
before the potential vulnerable points. The vulnerability is then detected with the reachability of the
assertion using model checking. All model checking works are based on the design of a model of the
system, which can be complex and subject to the combinatorial explosion of the number of states.

In the dynamic taint approach proposed by Chess and West [6], tainted data are monitored during the
execution of the program to determine its proper validation before entering sensitive functions. It enables
the discovery of possible input validation problems which are reported as vulnerabilities. The sanitization
technique to detect vulnerabilities due to the use of user supplied data is based on the implementation of
new functions or custom routines. The main idea is to validate or sanitize any input from the users before

2TestInv-Code testing tool is one of Montimage tools (http://www.montimage.com). It is a dynamic code analysis tool that
aims at detecting vulnerabilities by analyzing the traces of the code while it is executing.
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using it inside a function. Balzarotti et al. [2] present an approach using static and dynamic analysis to
detect the correctness of sanitization process in web applications that could be bypassed by an attacker.

In the table 1, we present a list of tools for dynamic code analysis. Contrary to our solution, these
tools/libraries are used to detect runtime errors but they do not allow users to define vulnerabilities to be
checked on the analysed executable program.

3 Vulnerability Modelling

In order to describe the presence of a vulnerability in a program, we rely in this paper on Vulnerability
Detection Conditions (VDCs) formalism. VDCs basically indicate that the execution of an action under
certain conditions could be dangerous or risky for the program. They permit to express in a logical pred-
icate the different causes that lead to the considered vulnerability. The main idea behind the definition
of the VDC formalism is to point out the use of a dangerous action under some particular conditions, for
instance “it is dangerous to use unallocated memory”. Thus, if we evaluate a piece of code where we
find such VDC we know that it is vulnerable.

3.1 Definitions

Definition 1. (Vulnerability Detection Condition). Let Act be a set of action names, Var be a set of
variables, and P be a set of predicates on (Var ∪ Act). We say that Vdc is a vulnerability detection
condition if Vdc is of the form (long brackets denote an optional element):

Vdc ::= a/P(Var,Act)|a[/P(Var,Act)];P′(Var,Act)

where a denotes an action, P(Var,Act) and P′(Var,Act) represent any predicates on variables Var
and actions Act. A vulnerability detection condition a/P(Var,Act) means that action a occurs when
specific conditions denoted by predicate P(Var,Act) hold.

Similarly, a vulnerability detection condition a[/P(Var,Act)];P′(Var,Act)) means that action a used
under the optional conditions P(Var,Act) is followed by a statement whose execution satisfies P′(Var,Act).
Naturally, if action a is not followed by an action, the predicate P′(Var,Act) is assumed to be true.

More complex vulnerability detection conditions can be built inductively using the different logical
operators according to the following definition.

Definition 2. (General Vulnerability Detection Conditions). If Vdc1 and Vdc2 are vulnerability detection
conditions, then (Vdc1 ∨Vdc2) and (Vdc1 ∧Vdc2) are also vulnerability detection conditions.

3.2 Some examples

Let us define a vulnerability detection condition Vdc1 that can be used to detect possible accesses to a
free or an unallocated memory. If we denote by Assign(x,y) the assignment of value y to the memory
variable x and IsNot Allocated a condition to check if memory x is unallocated then the VDC is given by
the expression:

Vdc1 = Assign(x,y)/IsNot Allocated(x)

In programming languages like C/C++, there are some functions that might lead to a vulnerability if
they are applied on out-of-bounds arguments. The use of a tainted variable as an argument to a memory
allocation function (e.g. malloc) is a well-known example of such a vulnerability, which is expressed
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Table 1: List of dynamic code analysers.
Tool Name Developed by Description

Valgrind Valgrind developers Valgrind runs programs on a virtual processor and can
detect memory errors (e.g., misuse of malloc and free)
and race conditions in multithread programs.

Insure++ Parasoft Insure++ is a memory debugger computer program,
used by software developers to detect various errors in
programs written in C and C++.

Dmalloc Gray Watson Dmalloc is a memory debugger C library that helps
programmers to find a variety of memory allocation
programming errors for dynamic memory. It replaces
parts of standard programming library provided by the
operating system for malloc and other software with
its own versions which help the programmer detect
buffer overflows and other critical programming issues.

DynInst University of DynInst is a runtime code-patching library that is useful
Wisconsin-Madison in developing dynamic program analysis probes and

and University applying them to compiled executables. Dyninst does
of Maryland not require source code or recompilation in general,

however, non-stripped executables and executables
with debugging symbols are easier to instrument.

Daikon MIT Daikon (system) is an implementation of dynamic
invariant detection. Daikon runs a program, observes
the values that the program computes, and then reports
properties that were true over the observed executions,
and thus likely true over all executions.

IBM IBM IBM Rational AppScan is a suite of application security
Rational solutions targeted for different stages of the development
AppScan lifecycle. The suite includes two main dynamic analysis

products: IBM Rational AppScan Standard Edition, and
IBM Rational AppScan Enterprise Edition. In addition,
the suite includes IBM Rational AppScan Source Edition
a static analysis tool.

Purify IBM Purify is a memory debugger program used by software
developers to detect memory access errors in programs,
especially those written in C or C++. It was originally
written by Reed Hastings of Pure Software. Pure Software
later merged with Atria Software to form Pure Atria
Software, which in turn was later acquired by Rational
Software, which in turn was acquired by IBM. It is
functionally similar to other memory debuggers, such as
Insure++ and Valgrind.

Intel Intel Intel Thread Checker is a runtime threading error analysis
Thread tool which can detect potential data races and deadlocks in
Checker multithreaded Windows or Linux applications.
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by the vulnerability detection condition Vdc2 below. A variable is tainted if its value is obtained from a
non-secure source, or in other words, produced by reading from a file, getting input from a user or the
network, etc.

Vdc2 = memoryAllocation(S)/tainted(S)

3.3 Describing vulnerabilities with formal Vulnerability Detection Conditions

An informal description of a vulnerability states the conditions under which the execution of a dangerous
action leads to a possible security breach. So, it should include the following elements:

1. A master action: an action denotes a particular point in a program where a task or an instruction
that modifies the value of a given object is executed. Some examples of actions are variable
assignments, copying memory or opening a file. A master action Act Master is a particular action
that produces the related vulnerability.

2. A set of conditions: a condition denotes a particular state of a program defined by the value and
the status of each variable. For a buffer, for instance, we can find out if it has been allocated or not.
Once the master action is identified for a scenario, all the other facts are conditions {C1, . . . ,Cn}
under which the master action is executed. Among these conditions, a particular condition Ck may
exist, called missing condition, which must be satisfied by an action following Act Master.

Let {P1, . . . ,Pk, . . . ,Pn} be the predicates describing conditions {C1, . . . ,Ck, . . . ,Cn}. The formal vul-
nerability detection condition expressing this dangerous scenario is defined by:

Act/(P1 ∧ . . .∧Pk−1 ∧Pk+1 . . .∧Pn);Pk

For example, consider the vulnerability CVE-2009-1274, a buffer overflow in XINE media player.
According to the description, the vulnerability is the result of computing a buffer size by multiplying
two user-supplied integers without previously checking the operands or without checking the result of
the allocation. An attacker may cause the execution of arbitrary code by providing a specially crafted
media file to the user running the XINE application. A scenario associated to this vulnerability can be
expressed as:

1. An allocation function is used to allocate a buffer

2. The allocated buffer is not adaptive

3. The size used for that allocation is calculated using tainted data (data read from the media file)

4. The result returned by the allocation function is not checked

To define the VDC associated with this scenario, we have to express each of these conditions with a
predicate:

Use of malloc/calloc/realloc the program uses C-style memory management functions, such as malloc,
calloc or realloc to allocate memory. For each memory function allocation f , applied on value V to
allocate a buffer B, the following predicate holds:

memoryAllocation( f ,B,V )
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Use of nonadaptive buffers the program uses buffers whose sizes are fixed when they are allocated
(allocation may take place at run-time, e.g. malloc, or at compile-time). Non-adaptive buffers can only
hold a specific amount of data; attempting to write beyond their capacity results in a buffer overflow.
Adaptive buffers, in contrast, can adapt themselves to the amount of data written to them. For each
declared nonadaptive buffer B, the following predicate holds:

nonAdaptiveBuffer(B)

User supplied data influences buffer size the size of a dynamically allocated buffer is computed, at
least in part, from user-supplied data. This allows external manipulation of the buffer size. If a buffer is
made too large, this may result in a denial of service condition; if it is too small, then it may later result
in a buffer overflow. For each variable V whose value is produced from an insecure source, the following
predicate holds:

tainted(V )

Note that a tainted variable will be untainted if it is bound checked by the program.

Failed to check return value from calloc the program does not contain mechanisms to deal with low
memory conditions in a safe manner (i.e. deal with NULL return values from calloc). Running out of
memory in programs that are not written to handle such a situation may result in unpredictable behavior
that can possibly be exploited. This cause is detected when the return value B of an allocation function is
not followed by a check statement. For each value B returned from an allocation memory function that
is not checked, the following formula is defined:

notChecked(B,null)

The vulnerability detection condition expressing this scenario is then defined by:

memoryAllocation( f ,B,V )/

 nonAdaptiveBuffer(B)
∧

tainted(V )

 ;notChecked(B,null)

This last vulnerability detection condition expresses a potential vulnerability when a given allocation
function f is used with a non-adaptive buffer B whose size V is produced from an insecure source and
its return value is not checked with respect to NULL.

3.4 VDC editor

The VDC editor is a GOAT3 plug-in, which offers security experts the possibility to create vulnerability
detection conditions (VDCs). These VDCs will be used to detect the presence of vulnerabilities by
checking software execution traces using Montimage TestInv-Code testing tool. The VDC editor user
interface includes some features that allow simplifying the construction and composition of VDCs. The
VDC editor has the following functionalities:

• The creation of new VDCs corresponding to vulnerability causes from scratch and their storage in
an XML format.

• The visualization of already conceived VDCs.

• The editing (modification) of existing VDCs in order to create new ones.
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Figure 1: Vulnerability detection condition for “Use of tainted value to malloc” in GOAT.

The VDCs are stored in an XML file that constitutes one of the inputs for the Montimage TestInv-
Code tool. A vulnerability is discovered if a VDC signature is detected on the execution trace. A VDC
is composed within the editor of at most 3 parts:

1. Master condition: The triggering condition called also master action (denoted a). When analysing
the execution trace, if this condition is detected, we should verify if the state and post conditions
of the VDC hold as well. If this is the case, then a vulnerability has been detected. The master
condition is mandatory in a VDC.

2. State condition: A set of conditions related to the system state (denoted P(Var,Act)). The state
condition describes the states of the specified variables at the occurrence of the master action. The
state condition is mandatory in a VDC.

3. Post condition: A set of conditions related to the system future state (denoted P′(Var,Act)). If a
master action is detected in the state condition context, then we should verify if the post condition
holds in the execution that follows. If this is the case, a vulnerability has been detected. This post
condition is not mandatory in a VDC.

4 Dynamic code analysis for vulnerability detection

4.1 Basics: Passive testing

Our approch for dynamic code analysis is inspired from the classical passive testing technique [1, 15, 13]
designed for telecommunication traffic analysis. Passive testing allows to detect faults and security flaws
by examining captured trafic packets (live trafic or log files) according to a set of events-based properties
that denote either:

• a set of functional or security rules that the trafic has to fulfill[4, 5, 14], or

• a set behavioral attacks like those used in classical intrusion and detection systems.

In the case of executable code analysis, events are assimilated to the disassembled instructions that are
being executed in the processor. They are produced by executing the program under the control of the
TestInv-Code tool, similar to what a debugger does.

For dynamic program analysis to be effective, the target program must be executed with sufficient test
inputs to cover different program behaviours. The use of classical testing techniques for code coverage

3http://www.ida.liu.se/divisions/adit/security/goat/
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helps to ensure that an adequate part of the program’s set of possible behaviours has been observed. Also,
care must be taken to minimize the effect that instrumentation has on the execution (including temporal
properties) of the target program.

While static analysis collects information based on source code, dynamic analysis is based on the
system execution (binary code), often using instrumentation. The advantages that can be expected from
using dynamic analysis are:

• Has the ability to detect dependencies that are not detectable in static analysis. Ex.: dynamic
dependencies using reflection, dependency injection etc.

• Allows the collection of temporal information.

• Allows the possibility of dealing with runtime values.

• Allows the identification of vulnerabilities in a runtime environment.

• Allows the use of automated tools to provide flexibility on what to scan for.

• Allows the analysis of applications for which you do not have access to the actual code.

• Allows identifying vulnerabilities that might be false negatives in the static code analysis.

• Permits validating static code analysis findings.

• It can be conducted on any application.

4.2 Using VDCs in TestInv-Code

In order to use the TestInv-Code tool, the main step consists in defining the vulnerabilities causes that
are of interest. Starting from informal descriptions of the vulnerabilities and VDCs models, a set of
conditions that lead to a vulnerability are derived. These conditions are formally specified as regular
expressions that constitute the first input for TestInv-Code tool.

Thus, end-to-end code analysis using TestInv-Code proceeds along the following steps:

1. Informal definition of vulnerable scenarios. A security expert describes the different scenarios
under which a vulnerability may appear. A scenario denotes a set of causes that produces the
vulnerability.

2. Definition of VDC. A VDC, expressing formally the occurrence of the related vulnerability, is
created for each possible situation that leads to the vulnerability using the VDC editor.

3. Vulnerability checking. Finally, TestInv-Code checks for evidence of the vulnerabilities during
the execution of the program. Using the VDCs, it will analyze the execution traces to produce
messages identifying the vulnerabilities found, if any, indicating where they are located in the
code.

Figure 2 depicts the passive testing architecture for vulnerability detection. As shown, the TestInv-
Code tool takes as input:

1. The vulnerability causes. The file containing the vulnerabilities causes formally specified using
VDCs.
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Figure 2: Passive testing for vulnerability detection.

2. The executable. The Executable Linked Format (ELF) file for the application that is to be tested.
This file contains the binary code of the application and it should include debug information if we
want the tool to be able to determine the line of code where the vulnerability occurs and provide
this information in the final verdicts.

In order to detect the presence of a VDC in an execution trace, it needs to be processed in such a way
that it is detected when and if it occurs during the execution of the program. In the case of TestInv-Code,
predicates and actions in the VDCs correspond to functions that allow analysing the executed instructions
and determining whether they are satisfied. The tool keeps information on the state of all the variables
used by the program, heap or stack memory addresses and registers. The states, are for instance, tainted
or not, bound checked or not, allocated or not etc. It also maintains information on the potential VDCs.
The tool is able to detect when a system call is made, the controls that are made on variables or return
values from function calls, when buffer allocations are made, etc. Thus it can verify all the conditions
that are used in the VDCs and generate messages if the VDCs are satisfied. The symbolic tables are
necessary to be able to determine the line of code that provokes the vulnerability that is detected.

It must be noted that the functions used to detect the VDC conditions could vary depending on the
execution environment, the compiler and the compilation options used. In this work we assume that the
execution environment is Linux version 2.6, the compiler is gcc version 4.3.3 and that the compilation
was performed for debugging (including symbolic tables) and without any optimisations. Other variants
could work but this has not yet been tested on other platforms. Certain optimizations performed by
the compiler could make it necessary to adapt the algorithms of the functions to certain particularities
introduced by the compiler.

5 Experiment and Results

5.1 XINE application

We demonstrate the application of our vulnerability detection method to an open source application
and free multimedia player that plays back audio and video, XINE4 written in C. This application was
selected as an example since it is a real world application, open source (so the source files are available

4http://www.xine-project.org
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free of copyright), and contains a number of known vulnerabilities which can be used to demonstrate the
effectiveness of our approach.

The application contains a set of modules and librairies. The one we are concentrated on is xine-lib5

(xine core). This is a module developed in C language and which has several vulnerabilities inside its
files. We selected an obsolete version of xine-lib so we can use the vulnerabilities found in them.

5.2 Xine selected vulnerability

The xine v1.1.15 application has a number of vulnerabilities. The one that we dealt with is CVE-2009-
1274.

• Summary: Integer overflow in the qt error parse trak atom function in
de-muxers/demux qt.c in xine-lib 1.1.16.2 and earlier allows remote attackers to execute arbitrary
code via a Quicktime movie file with a large count value in an STTS atom, which triggers a heap-
based buffer overflow.

• Published: 04/08/2009

• CVSS Severity: 5.0 (MEDIUM)

The exploitation occurs when someone is trying to play with xine a Quicktime encod-ed video that
an attacker has modified to make one of its building blocks (the “time to sample” or STTS atom) have
an incorrect value. The malformed STTS atom processing by xine leads to an integer overflow that
triggers a heap-based buffer overflow probably resulting in arbitrary code execution. The patch to this
Vulnerability is in v1.1.16.1 that is also included in the v1.1.16.3.

CVE-2009-1274 is a vulnerability instance and can be considered as part of the family or class of
vulnerabilities named “Integer Overflow” has the ID CWE 190 in the Common Weakness Enumeration
database. The CWE 190 description is summarised as follows “The software performs a calculation that
can produce an integer overflow or wraparound, when the logic assumes that the resulting value will
always be larger than the original value. This can introduce other weaknesses when the calculation is
used for resource management or execution control” [19].

Figure 3: VDC model of CVE-2009-1274 vulnerability.

5Xine-lib source code can be downloaded from: http://sourceforge.net/projects/xine.
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5.3 Vulnerability modelling

Starting from the informal description of CVE-2009-1274 vulnerability, we have designed the 3 VDCs
and the corresponding regular expressions to be used for input to the TestInv-Code tool.

1. Calloc(buffer, buffer size) / Fixed(buffer) ∧ Result(buffer size, user input)∧ Result(buffer size,
addition); Unchecked(buffer, NULL)

2. Calloc(buffer, buffer size) / Fixed(buffer) ∧ Result(buffer size, user input) ∧ Result(buffer size,
addition) ∧ Unchecked(buffer size, buffer bounds)

3. CopyVar(loop counter, user input) / Fixed(buffer) ∧ Unchecked(loop counter,
counter bounds); CopyData(buffer, user input, loop counter)

Using the VDC editor, we can build the VDC models for each cause scenario. Figure 3 illustrates the
VDC model for the first scenario.

5.4 Application of TestInv-Code

The created VDCs are one of the inputs needed by the TestInv-C testing tool. In order to analyse the
xine-lib it is necessary to use it. To be able to reach the plug-in that contains the error (the quicktime file
demuxer), the muxine application was run on a quicktime file. The TestInv-Code tool allows performing
the analysis on all the application’s functions (including those of the library and the plug-ins). The user
can also identify a given function or set of functions that he wants to analyse. Using this feature is neces-
sary to avoid performance issues, particularly in applications that perform intensive data manipulations
(like video players). The complete list of available functions can be obtained automatically. Another
feature that helps improve the performance of the tool is the possibility of limiting the number of times
a piece of code in a loop is analysed. The following XINE code is executed:

Code fragment from demux_qt.c

...

1907 trak->time_to_sample_table = calloc(

1908 trak->time_to_sample_count+1,

sizeof(time_to_sample_table_t));

1909 if (!trak->time_to_sample_table) {

1910 last_error = QT_NO_MEMORY;

1911 goto free_trak;

1912 }

1913

1914 /* load the time to sample table */

1915 for(j=0;j<trak->time_to_sample_count;j++)

...

where trak->time_to_sample_table is tainted since it is set from information taken from the
external QuickTime file.

The tool will detect the particular vulnerability used here (CVE-2009-1274) when it is launched on
the muxine application using a quicktime video file. This needs to be done using the option allow-
ing to analyse all the functions (of the application, the library and the plug-ins) or just the function
parse trak atom in the quicktime plug-in. The result of the vulnerability cause presence testing activity
provided by TestInv-Code is shown in figure 4.
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Figure 4: Screenshot of TestInv-Code result for xine vulnerability.

16



VDC-Based Dynamic Code Analysis Mallouli, Mammar, Cavalli and Jimenez

5.5 Analysis

If we apply the same VDCs to other code under the same programming environment, we will be able
to detect the same types of vulnerabilities. For instance, we applied the same VDCs on ppmunbox, a
program developed by Linköpings university to remove borders from portable pixmap image files (ppm)
and we detected the same vulnerabilities.

This vulnerability is located in the ppmunbox.c file specifically in the following:

Code fragment from ppmunbox.c

...

76:/* Read the dimensions */

77:if(fscanf(fp_in,"%d%d%d",&cols,&rows &maxval)<3){

78: printf("unable to read dimensions from PPM file");

79: exit(1);

80 }

81:

82:/* Calculate some sizes */

83:pixBytes = (maxval > 255) ? 6 : 3;

84:rowBytes = pixBytes * cols;

85:rasterBytes=rows;rasterBytes=rowBytes*rows;

86:

87:/* Allocate the image */

88:img = malloc(sizeof(*img));

89:img->rows = rows;

90:img->cols = cols;

91:img->depth = (maxval > 255)?2:1;

92:p = (void*)malloc(rasterBytes);

93:img->raster = p;

94:

95:/* Read pixels into the buffer */

96:while (rows--) {

...

To illustrate the applicability and scalability of TestInv-Code, it has been applied to six different open source
programs to determine if known vulnerabilities can be detected using a single model. The following paragraphs
describe the vulnerabilities and give a short explanation of the results obtained. The results are summarized in
table 2.

Table 2: Summary of results running TestInv-Code with VDC codes
Vulnerability Software Detected ?

CVE-2009-1274 Xine Yes
Buffer overflow ppmunbox Yes
CVE-2004-0548 aspell Yes (two)
CVE-2004-0557 SoX Yes
CVE-2004-0559 libpng Yes
CVE-2008-0411 Ghostscript Yes

Besides, the application of the tool to the case study gave good performances. We did some experiments
in order to check the scalability of the tool by the application of a high number of VDCs (more than 100) to a
software data intensive (as in the case of video decoders). The tool performance remains good. We compared the
performance of our tool according to known dynamic code analysis tools in the market like Dmalloc, DynInst, and
Valgrind and the results were comparable. Indeed, the detection based on our tool does not insert a big overhead
(the execution time is almost equal to the programm execution time).
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To optimize our analysis, the tool is being modified so that the user can select specific functions to check in
the program. But in this case all the input parameters for this function are marked as tainted even if they are not.
Another solution that is being studied is to only check the first iteration of loops in the program, thus avoiding to
check the same code that is executed more than once.

At present, we have checked applications written in C, which do not have a complex architecture. We are
now starting to experiment more complex applications with architectures that integrate different modules, plugins,
pointers to function, variable number of parameters or mixing different programming languages.

6 Conclusions and future work

Security has become a critical part of nearly every software project, and the use of automated testing tools is
recommended by best practices and guidelines. Our interest lies in defining a formalism, called Vulnerability
Detection Conditions, to describe vulnerabilities so we can detect them using automated testing.

In this paper, we have also shown how a model-based dynamic code analysis tool, TestInv-Code, is used to
analyze execution traces and determine if they show evidence of a vulnerability or not. VDCs can be very precise,
we believe making it possible to detect vulnerabilities with a low rate of false positives. This is planned to be
studied and demonstrated in future work.

Since the vulnerability models are separate from the tool, it is possible for any security expert to keep them
up-to-date and to add new models or mutants. It also becomes possible for the tool user to specify new product-
specific vulnerabilities and apply the tool to check their presence. This is very innovative according to the normal
state-of-art tools, where users have no choice but to rely on the tool vendor to provide timely updates. Nevertheless,
it should be noted that if new predicates or actions are required, the function that will allow to detect them needs
to be added to the tool.

The work presented in this paper is part of the SHIELDS EU project [19], in which we have developed a
shared security repository through which security experts can share their knowledge with developers by using
security models. Models in the SHIELDS repository are available to a variety of development tools; TestInv-Code
is one such tool.

Looking to the future, we plan on applying the methods presented here to various kinds of vulnerabilities in
order to identify which predicates are required, and whether the formalism needs to be extended.
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