
A Passive Testing Approach for Security Checking and its
Practical Usage for Web Services Monitoring∗

Ana Rosa Cavalli
Institut Telecom / TELECOM &

Management SudParis
9, rue Charles Fourier

F-91011 Evry Cedex, France

ana.cavalli@
it-sudparis.eu

Azzedine Benameur
SAP Labs

805 Avenue du Docteur
Maurice Donat, F-6000
Mougins Cedex, France

azzedine.benameur@
sap.com

Wissam Mallouli
Montimage EURL

39 rue Bobillot
F-75013 Paris Cedex, France

wissam.mallouli@
montimage.com

Keqin Li
SAP Labs

805 Avenue du Docteur
Maurice Donat, F-6000
Mougins Cedex, France

keqin.li@sap.com

ABSTRACT
To achieve a meaningful business goal, Web services are combined
and connected together based on a predefined workflow. In this dis-
tributed configuration, tasks are executed by different entities usu-
ally managed by different business partners which makes the secu-
rity monitoring of the whole business process complex. Indeed, the
application of classical monitoring methods is not suitable in this
kind of service oriented architecture (SOA) where execution traces
collection is generally distributed and security requirements impli-
cate several Web services. In this paper we propose a passive test-
ing approach for SOA, encompassing a non-intrusive module that
gathers selected traces for web services in both cases of centralized
and decentralized workflows, and also a passive tester that analyzes
the distributed collected traces and deduces a verdict concerning
the respect of the Web services to their security requirements. Fi-
nally we apply the proposed methodology to a Loan Origination
Process using BPEL workflow.

Keywords
Web Services, Passive Testing, Security Checking, Nomad Formal
Language.

1. INTRODUCTION
Web service technology is defined by the W3C [14] as a software

system designed to support interoperable machine-to-machine in-
teraction over a network. It provides the possibility to integrate
business applications and connect business processes across com-
pany boundaries. A business process can then be composed of in-
dividual Web services that belong to different companies. In other
words, a business process is a network of Web services without
any global supervision system. To leverage Service Oriented Ar-
chitecture (SOA) [12], services are connected together to achieve
more complex tasks using a workflow specification language [2].
Currently, Business Process Execution Language for Web Service
∗The research leading to these results has received funding from the
European Community Seventh Framework Programme (FP7/2007-
2013) under grant agreement no 215995.

(BPEL4WS, denoted BPEL in the following) [6] is the de facto
standard to describe the interactions of the individual Web service
in both abstract and executable ways.

In SOA, communications are made through XML-Based mes-
sages called SOAP [13] messages. These communications are dis-
tributed and their security requirements implicates several Web ser-
vices. Thus, ensuring this security in such distributed configuration
is challenging. Testing is a mean to provide guarantee that the se-
curity properties are holding when the system is implemented.

Formal testing allows to check the respect of the security require-
ments of a system. It can be either active or passive. Active testing
permits to validate a Web service implementation by applying a set
of test cases and analyzing its reaction. It implies that we have a
global control on the service architecture which is difficult to per-
form in a dynamic topology in the case of decentralized workflows
for instance. Besides, the active testing becomes difficult to per-
form when the network is built from components (services) that
are running in their real environment and cannot be interrupted or
disturbed. In this situation, there is a particular interest in passive
testing techniques in which traffic flows of deployed Web services
are monitored. This testing consists in analyzing collected data ac-
cording to some functional and security requirements described in
a formal specification.

In this paper, we rely on passive testing techniques to study web
services in both cases of centralized and decentralized workflows
in order to detect any security flaw. Our main contributions are
the following: (i) A trace collection mechanism for both central-
ized and distributed web services. (ii) Formalization of security
properties/policies using Nomad formalism. (iii) A detailed imple-
mentation of the proposed mechanism (trace collection and passive
testing tool). (iv) A running example with security analysis, and
selected properties formalized.

The remainder of this paper is organized as follows. In section 2,
we discuss the related work tackling with Web services workflows
monitoring. Section 3 presents the distributed collection mecha-
nism of the web services traffic in both cases of centralized and
decentralized architectures. Section 4 presents the methodology
and tool to analyze this global trace by comparing it to the security
requirements described in Nomad formal language. In section 5

we apply our methodology on an industrial case study: Loan Orig-
ination Process. Section 6 concludes the paper and presents future
work.

2. RELATED WORK
Most of works related to Web services reasoning focus on two

related but distinct problems. The first one is the formal descrip-
tion of Web services composition. One of the proposed approaches
is to use planning techniques on behavioral models as in [7, 9,
10]. For instance, [9] proposes a methodology to specify Web ser-
vices composition into Petri nets and provides decision procedures
for Web service simulation, verification and composition. Other
works, such as [10], rely on transition rule systems that model the
interactions among services at the knowledge level. This allows
us to avoid the explosion of the search space due to the usually
large and possibly infinite ranges of data values that are exchanged
among services. The authors of [7] proposes to build the behavioral
Web services model by automatically translating existing process
descriptions, such as BPEL ones, into timed automata system. This
system specification is used later for model-based testing purpose.

The second problem is the property verification on Web services
in order to guarantee that deployed applications satisfy a set of re-
quirements and temporal properties (for instance, the absence of
deadlocks). It is usually argued, for instance by [11], that exist-
ing automated model-checking tools can support these tasks under
the condition that components’ behavior and their interactions are
described by formal models. Web services development reinforces
the need of tools to improve their reliability and their security re-
spect. Several works [5, 15] tried to deal with the functional be-
havior of Web services. [5] is devoted to monitoring component-
based software systems whose behavior is modeled using a formal-
ism based on Petri nets. In addition, [15] relies on existing BPEL
specifications and examine how to translate them into a transition
rule formalism. In this paper, we propose a formal approach to
develop a monitoring tool dedicated for Web services workflow se-
curity checking. We claim that our methodology is innovative and
do not generate any fault positives.

3. PRELIMINARIES

3.1 Background on BPEL Workflow for Web
Services

A workflow could be defined as a collection of tasks organized
to accomplish some business process [4]. A task can be performed
by one or more software systems (e.g., web services), one or a team
of humans, or a combination of these. In addition to a collection
of tasks, a workflow defines the order of task invocation or condi-
tion(s) under which tasks must be invoked, task synchronization,
and information flow (dataflow). Workflow management systems
(WFMSs) are used to provide the ability to specify, execute, report
on, and dynamically control workflows.

Traditionally, the workflow management and scheduling is car-
ried out by a single centralized workflow management system. This
WFMS is responsible for enabling task execution, monitoring work-
flow status, and guaranteeing task dependencies. However, in an
electronic commerce environment with inter-organizational work-
flows, since the systems are inherently distributed, heterogeneous,
and autonomous in nature, decentralized workflow management
systems are used.

Therefore with respect to our work, the collection mechanism of
execution traces has to work with both the centralized and decen-
tralized architectures.

3.1.1 Centralized Workflow
A typical example of centralized workflow is a business process

defined by BPEL4WS [2]. BPEL Business Processes offer the pos-
sibility to aggregate web services and define the business logic be-
tween each of these service interactions. It is also said that BPEL
orchestrates such web service interactions. Each service interac-
tion can be regarded as a communication with a business partner.
Such an interaction is potentially two sided: the process invokes
the partner and the partner invokes the process.

In BPEL, there exist a couple of simple activities with the pur-
pose of consuming messages from and providing messages to web
service partners. These activities are the receive activity, the reply
activity and the invoke activity. All these activities allow exchang-
ing messages with external partners (services). At the same time,
BPEL provides means to structure the business logic according to
business needs, using sequence activity, if-else activity, repetitive
activities, etc.

From the trace collection point of view, each service (business
partner) can have a local view of execution information (e.g., SOAP
message exchange) related to the business process, and the orches-
trator, i.e., the BPEL engine, has a global view.

3.1.2 Decentralized Workflow
From a system point of view, the collaborating enterprises consti-

tute an autonomous decentralized system since they pursue a com-
mon goal as a whole but each of them is highly independent. The
features of this kind of collaboration are as follows:

• On the one hand, it is required that business processes of col-
laborating partners should be integrated seamlessly in order
to ensure high operation efficiency;

• On the other hand, it is required that only necessary informa-
tion should be exchanged across organizational boundaries.
The internal structures of the business process should remain
as black-box because the technical know-how and commer-
cial secrets of a company are embedded in its business pro-
cesses.

Therefore, integrated business process management of this loosely
coupled and dynamically changed partnership does not require a
centralized business process model that will be shared and main-
tained by all collaborating partners. Instead, it is required that
business processes of an enterprise are designed, implemented and
managed by the enterprise itself. The function as well as the mon-
itoring and control of a business process is wrapped as externally
accessible service, which will be integrated with the business pro-
cesses of the collaborating enterprises on demand as well as on the
fly. In summary, business processes are modeled and executed in a
decentralized manner.

Correspondingly, several decentralized workflow management
systems are proposed, such as [1] and [8].

From the trace collection point of view, in such an architecture,
no single workflow management agent has the global view of the
workflow. The distributed pieces of execution information of the
workflow need to be correlated to obtain a global picture.

3.2 Security Rules Specification for BPEL
To formally specify security properties that the BPEL-based work-

flow has to respect, we rely on an interpretation of Nomad lan-
guage [3]. Nomad stands for ‘Non Atomic Actions and Deadlines’
model. It allows to express privileges on non atomic actions or
tasks performed within a workflow. It combines deontic and tempo-

ral logics and can describe conditional1 privileges and obligations
with deadlines. The main features of Nomad model are to provide
means to specify:

• Privileges (permission, prohibition or obligation) associated
with non atomic actions/tasks.

• Conditional privileges, which are privileges only triggered
when specific conditions are satisfied.

• Privileges that must be fulfilled before some specific dead-
lines.

Nomad formal model is designed to regulate the nature and the
context of tasks that can be performed within different systems or
organizations workflow. Intended to be generic, Nomad do not for-
mally define any atomic action it can rely on, so that it can be ap-
plied to case studies with different characteristics. In this paper,
we instantiate Nomad to fulfill passive testing aspects and we de-
fine then an atomic action as the occurrence of an event within the
studied system workflow. This event (emission or reception of a
message between two system components) can be detected by the
trace collection unit and is stored in a log file. Some constraints on
message parameters values are also considered in the action syntax
description:

Event (Par1 op Val1, Par2 op Val2, ... , Parn op Valn)

Where:

• Event represents a message exchanged between two system
entities.

• Pari (i ∈ {1, ... , n} are the message parameters. These
parameters represent the relevant fields in the message (n is
the number of these relevant message fields). Some of these
parameters are always considered, such as the message type,
the sender identifier (IP address) and the destination identi-
fier (IP address).

• V ali (i ∈ {1, ... , n}) are the possible parameters values.

• op is an operator that allows to compare Pari and Vali. op ∈
{=,6=, <, >, ≤, ≥, 3}.

DEFINITION 1. (Abstention of doing an action)
If A is an action that can be performed within a system S, then
not(A) (which means “the non occurrence of A”) is an action.

DEFINITION 2. (Non-atomic action)
If A and B are actions that can be performed within a system S,
then (A; ∗;B) (which means ”A followed by B”), (A;B) (which
means ”A followed immediately byB”) and (A&B) (which means
”A in parallel with B”) are non-atomic actions.

DEFINITION 3. (Formula)
If A is an action then start(A) (A is being started), doing(A)
(A is being performed) and done(A) (A has been finished) are
formula.

DEFINITION 4. (Formula)

• If α and β are formula then ¬α, (α∧ β), (α∨ β), (α→ β)
and (α↔ β) are formula.

1Most privileges do not apply unconditionally. Thus, we need to
model privileges that are only active in specific contexts.

• If α is a formulae then ⊕nα (in the n next messages/events
in the trace, α will be true) and 	nα (in the n previous mes-
sages/events in the trace, α was true) are formula.
For instance, if we are in the event number ‘nb’,⊕nα means
that α will be true for a certain event i such as (nb < i <
nb+n+1). While,	nα means that α was true for a certain
event i such as (nb− n− 1 < i < nb).

• If α is a formulae then Odα (α was true d units of time ago
if d ≤ 0, α will be true after d units of time if d ≥ 0) is a
formulae.

• If α is a formulae then O<dα (within d units of time ago, α
was eventually true if d ≤ 0, α is eventually true within a
delay of d units of time if d ≥ 0) is a formulae.

• If α is a formulae then
⊙<d α is formula.

⊙<d α is to be
read α will be true (if d ≥ 0) or was true (if d≤0) during d
units of time.

• If α and γ are a formula, then (α|γ) is a formulae: in the
context γ, the formulae α is true.

DEFINITION 5. (More details)

• If n = 1, then ⊕1α can be denoted ⊕α and means: immedi-
ately in the next event in the trace, α will be true.

• If n = 1, then 	1α can be denoted 	α and means: immedi-
ately in the previous event in the trace, α was true.

• If n = ∞, then ⊕∞α means: at certain point in the future
in the trace, α will be true.

• If n = ∞, then 	∞α means: at certain point in the past in
the trace, α was true.

Notice that using Nomad formalism, we deal with a discrete
time. The choice of the unit of time can be very important and
depends on the studied system.

DEFINITION 6. (Temporal modalities)
If α is a formulae then �α (α is necessary) and♦α (α is possible)
are formula.

DEFINITION 7. (Deontic modalities)
If α is a formulae then modality P(α) (α is permitted), F(α) (α is
forbidden) and O(α) (α is mandatory) are formula.

DEFINITION 8. (A security rule)
We define a security rule as a formulae with the following format:
R (α|β) where R ∈ {P ,F ,O} and α and β are formula. P (α|β)
(resp. F (α|β), O (α|β)) means that it is permitted (resp. prohib-
ited, mandatory) to have α true when context β holds.

4. TRACE COLLECTION MECHANISM
FOR SOA

Web services can be seen as black-box, where only the inter-
faces and input/output parameters are known. The communication
is made through SOAP messages where these interfaces are called
and parameters are sent.

In general, to collect execution traces on a running system, we
need to install observation points (called also probes) into specific
strategic points. These observations points aim to collect data ex-
changed between relevant entities. The collected traces are usually
stored in one or many trace files depending on if we are dealing

Application Server

BPEL Process
Instance

BPEL Process
Instance

● ● ●

Monitoring
Module

Log File

Client
Application

R

Client
Application

● ●

R

Policy DB

● ● ●
Monitoring
Policy

Monitoring
Policy

BPEL Engine

Figure 1: Trace Collection Module

with centralized or distributed workflows. In the case of Web ser-
vices monitoring, we rely on integrated modules within each BPEL
engine that collects local traces. We retrieve then trace files that
describe the communication between distributed Web services in a
system.

The architecture of our trace collection module is depicted in
Figure 1. The module is placed at each workflow engine layer. It
logs selected elements of a SOAP message, which are defined in
the logging policy file. In the case of centralized workflow, all the
message exchanges are handled by the BPEL workflow engine and
only a trace collection module is needed.

Table 1 gives an example on how the logging policy is expressed.
Each service is identified by its namespace, the name of the XML
element follows. The first audit rule depicted is to select the content
of the node < username > from a web service identified by the
namespace http : //ws1.com and to select the same node from an-
other web service identified by the namespace http : //ws2.com
which is distinct from the first one.

The second audit rule specifies to log the content of the node <
LoanRequest > from a web service identified by the namespace
http : //ws1.com and to select all the nodes (using ∗) from the
web service identified by the namespace http : //ws3.com. For
readability we use two rules but they can be expressed in one line

using the spacing separator. The policy can also be expressed using
de facto standards such as Xpath.

5. PASSIVE TESTING METHODOLOGY

5.1 Preliminaries
Our passive testing methodology for security checking is divided

into three main steps:

• The definition of passive testing architecture: This architec-
ture depends on the nature of the workflow. Collection mod-
ules are placed at each workflow engine layer. The traces
files are then merged (based on each event timestamp) into
one file that describes all the exchanged messages within the
whole system. Notice that in the case of a centralized work-
flow, only one file is generated from the beginning.

• The description of the system security requirements using a
formal specification language: the description concerns the
security rules that the studied system has to respect. We rely
in this paper on Nomad language introduced in section 3.2.
This can be done by an expert of the Web service under test
that understands in details its security requirements.

Audit rule 1 logNodList = http : //ws1.com | username http : //ws2.com | username
Audit rule 2 logNodList = http : //ws1.com | LoanRequest http : //ws3.com | ∗

Table 1: Example of a Logging policy

• The security analysis: based on the security policy specifi-
cation, the passive tester has to perform security analysis on
the global trace file to deduce a global verdict. This verdict is
PASS if the system trace respects the specified security pol-
icy and FAIL if it does not. The INCONCLUSIVE verdict
is possible if the tester can not extract the necessary informa-
tion from the collected traces in the case of a short trace for
example. If the trace is long enough (or if the traffic collec-
tion is continuous), we can claim that it describes the global
behavior of the system and consequently the verdict concerns
the system conformance according to its security policy.

5.2 Passive Testing Tool
To automate the process of scanning the captured traces in order

to detect possible violations of security rules, we rely on a passive
testing tool developed by Montimage. A high level description of
this tool is given in Figure 2.

Figure 2: Passive Testing Tool

This tool allows automated analysis of the captured traces to de-
termine if the given Nomad security rules are satisfied or not. It
takes as input three different files:

• The system security rules defined/described in Nomad for-
mal language and written in XML format.

• The traces captured by the collection module.

• And information on the Web Service that is being observed.
This information represents data of interest (mainly event
fields’ names) that are relevant to the automated analysis of
the captured traces. It indicates the fields of interest (defined
also in the logging policy file) so that only these are extracted
and stored by the tool.

In order to use the tool, first the security rules and the data of
interest need to be defined. This is performed by an expert of the
Web service. Then, the security rules are written in XML format
(see Figure 3) to make them easier to be interpreted by humans and
software.

The context part of the rule is denoted by an<if> tag that identi-
fies the triggering event. An event is a set of conditions that need to
be satisfied for a given message exchange. When analyzing a secu-
rity rule, we have the triggering event, called ‘reference’ event, and
the other events, called ‘current’ events, that should occur before or

...

<rule name="NOMAD RULE N">
<if>
<event verdict="FALSE">
<condition>
<variable>EventType</variable>
<operation>=</operation>
<value>calculateLoan</value>

</condition>

...
</event>

</if>
<then type="BEFORE" max_skip="-1" max_time="10">
<event verdict="TRUE">
<condition>
<variable>EventType</variable>
<operation>=</operation>
<value>storeLoan</value>

</condition>

...
</event>

</then>
</rule>

...

Figure 3: XML Format for Defining a Nomad Security Rule

after the triggering event (depending on the rule). The events that
need to be verified on the ‘current’ events are found in the <then>
tag. Conditions are of the form:

(<variable>)(<operation>)(<variable> | <value>)

meaning that a <condition> compares a <variable> to <value>
or another <variable> through an <operation>. Variables can re-
fer to the ‘reference’ event or the ‘current’ event. This allows com-
paring the two. Values can be strings or numbers and operations
can be: contains, is equal to, does not contain, is different than, is
less than, is less than or equal to, etc.

The second step is to parse the captured trace to analyze it ac-
cording to these security rules. The verdict obtained for a security
rule can be either PASS, FAIL or INCONCLUSIVE meaning re-
spectively that all events where satisfied, that at least one event was
not satisfied or that it is not possible to give a verdict due to the lack
of information in the trace.

6. CASE STUDY: LOAN ORIGINATION PRO-
CESS

6.1 Introduction
The Loan Origination Process (LOP) describes a customer want-

ing to buy a bundled product. Several external and internal ratings
need to be obtained by the processing clerk in order to check the
credit worthiness of the customer (internal rating, Credit Bureau).
Once the credit worthiness of the customer has been positively es-
tablished, the bank selects a bundled product and submits it to the
customer. If the customer is satisfied by the proposed product, both
parties come to an agreement and sign a contract.

Figure 4 illustrates the different steps of the scenario, with the
actors and the roles involved. After the customer makes a loan
request:

• (1) His identity is checked by the pre-processing clerk. Then,
two parallel rating engines start and the customer worthiness
is establish by two separate entities.

Figure 4: Loan Origination Process Workflow

• (2) The credit worthiness of the customer is checked by query-
ing a third party, namely Credit Bureau.

• (3) The internal rating checks the customer worthiness with
regards to his history in the bank. In case of negative result,
the manager can intervene.

• (4) The bank calculates the price of the loan using the bank
Internal Computer System

• (5) The bank and the customer come to an agreement.

This case study in a banking context is very interesting from the se-
curity and privacy point of view. It involves different organizations
dislocated geographically and organizationally which implies that
some properties can be satisfied locally and no necessary hold on
the global workflow.

6.2 Architecture and Implementation
The implementation of the scenario is based on the Service Ori-

ented Architecture paradigm [12]. We assign several services to
the different entities: front office, back office, back office of the
manager. So far, we have implemented a simplified version of a
workflow having excluded a manager approval task.

• The front office is in charge of identifying the customer, stor-
ing the loan request and finalizing the contract. These func-

tions are performed respectively by the following Web ser-
vices: ‘WS Authentication’, ‘WS Store Loan’ and ‘WS Loan
Calculation’.

• The risk assessment is done by a parallel invocation of the
bank internal rating engine and a third party represented by
WS Internal Rating and WS External Rating.

• The back office is modeled as an interface of the WS Calcu-
lation Offer.

The logical architecture of the LOP implementation is depicted
in figure 5. Four layers are needed to fully decouple the business
logic from the functional implementation. A database layer makes
a clear separation between the database of the bank computing the
internal rating, and the credit bureau database providing an external
assessment. The Rules layer enables decoupling of the business
rules from the code in such a way that if regulations (or practices)
of the partner evolve, the only layer to update is the rules layer. The
Web service layer is complemented by the orchestration layer that
contains the BPEL specification of the process that is interpreted
by a WFMS. The latter describes how web services works together
and on which interface.

BPEL Process

WS
Authentication

WS
Credit Bureau

WS Store
Loan

WS Internal
Rating

WS Loan
Calculation

Orchestration Layer

Web Service Layer

Rules Layer

Database Layer

Bank DB
Credit Bureau

DB

Rules engine Rules engine Pricing engine

Figure 5: Layered Implementation Achitecture of The Loan Origination Process Workflow

6.3 Security Analysis
We want to check several security properties that the LOP pro-

cess has to respect. The first step consists in formalizing them using
Nomad formal language:

1. (Security Rule 1) Separation of duty: between the pre and
the post processing clerks. The loan processing is divided
into two main phases: pre-processing and post-processing.
To avoid frauds the pre-processing clerk should not be the
same employee as the post-processing clerk.

F(start(Event(EventType = calculateLoan, Processor =
user))| 	∞ done(Event(EventType =

storeLoan, Processor = user)))

where user = “http-8080-Processor”+“i” and i ∈ {1,...,30}

2. (Security Rule 2) Authentication: to ensure that the user is
authenticated before executing the workflow. The employee
should be authenticated before performing any operation. In
the LOP, this is obtained by contacting a Security Token Ser-
vice which issues a security token to the service client. The
service client contacts the web service with the provided to-
ken and the service can decide whether the client is a trusted
entity or not.

F(start(Event(EventType = Any, Processor = user))|
¬ 	∞ done(Event(EventType =

WSAuthentication, Processor = user)))

where user = “http-8080-Processor”+“i” (i ∈ {1,...,30})
and Any ∈ {WSLoanStorage, WSInternalRating, WSCredit-
Bureau, WSLoanCalculation, WSWFTerminator }

3. (Security Rule 3) Deny of service attack avoidance: if a same
clerk/cus-tomer has more than 3 loan requests within the
same minute, we consider him/her as a potential malicious
clerk/customer and we might want to investigate later.

F(start(Event(EventType =
WSLoanRequest, Processor = user))|
O<−1mindone(Event(EventType =

WSLoanRequest, Processor =
user)); ∗; Event(EventType =
WSLoanRequest, Processor =
user)); ∗; Event(EventType =

WSLoanRequest, Processor = user)))

where user = “http-8080-Processor”+“i” and i ∈ {1,...,30}

4. (Security Rule 4) Timeout property: calculateLoan should be
called within 10 minutes after storeLoan is called.

P(start(Event(EventType = calculateLoan, Processor =
user1))|O<−10mindone(Event(EventType =

storeLoan, Processor = user2)))

where user1 = “http-8080-Processor”+“i” (i ∈ {1,...,30}),
user2 = “http-8080-Processor”+“j” (j ∈ {1,...,30}) and i 6=
j.

6.4 Trace Collection
In order to be able to check the properties expressed in 6.3. We

first identify the web services involved, and then the elements con-
tained in the SOAP message that will be required to use passive
testing. The trace collection policy depicted in table 2 is based on
the following reasoning.

• Separation of Duty: the pre-processing clerk identifies him
self on WS Authentication, and then the release of the loan
is done by the post-processing clerk on WS Store Loan. The
XML schema for these messages contains a tag element <
employeeName >. Therefore the audit rules for this prop-
erties will log the element < EmployeeName > from the
two namespaces respectively belonging to WS Authentica-
tion and WS Store Loan. (see audit rules 1 and 2)

• Authentication: Each workflow instance has a unique ID. We
need to check that for any given workflow ID there is a re-
spective successfully message exchange with WS Authenti-
cation. The audit rule 3 expresses that we have to log mes-
sages from all the services (namespace=http://*) that contain
the LoanID element. Then, we use audit rule 4 that allows to
verify that the authentication is ok.

• Deny of service attack avoidance: each loan request has a
unique number and is associated to a pre and post processing
clerk. We here use the complete execution trace over mul-
tiple workflow instances and the elements < LoanID >,
< EmployeeName >. (see audit rules 5 and 6)

In figure 6 presents some trace lines which show the brokered
authentication mechanism.

Audit rule 1 logNodList = http : //authentication.ws.ebusiness.prototype.serenity
.crnce.sap.com | EmployeeName

Audit rule 2 http : //loanstorage.ws.ebusiness.prototype.serenity
.crnce.sap.com | EmployeeName

Audit rule 3 logNodList = http : //∗ | LoanID
Audit rule 4 logNodList = http : //authentication.ws.ebusiness.prototype.serenity

.crnce.sap.com | ClientSSN
Audit rule 5 logNodList = http : //authentication.ws.ebusiness.prototype.serenity

.crnce.sap.com | EmployeeName
Audit rule 6 logNodList = http : //authentication.ws.ebusiness.prototype.serenity

.crnce.sap.com | LoanID

Table 2: Trace Collection Policy

2008-10-28 16:25:23,812 [http-8080-Processor18]
INFO com.sap.crnce.serenity.patterns.security.
a2.logging.SecureLogHandler - SecureLoggingMod
ule: http request from Address: 127.0.0.1 to Ad
dress: http://localhost:8080/axis2/services/Sec
urityTokenService

2008-10-28 16:25:23,812 [http-8080-Processor18]
INFO com.sap.crnce.serenity.patterns.security.
a2.logging.SecureLogHandler - SecureLoggingMod
ule: action performed -> http://schemas.xmlsoap
.org/ws/2005/02/trust/RST/Issue

(...)

2008-10-28 16:25:27,046 [http-8080-Processor16]
INFO com.sap.crnce.serenity.patterns.security.
a2.logging.SecureLogHandler - SecureLoggingMod
ule: http request from Address: 127.0.0.1 to Ad
dress: http://localhost:8080/axis2/services/WSA
uthentication

2008-10-28 16:25:27,046 [http-8080-Processor16]
INFO com.sap.crnce.serenity.patterns.security.
a2.logging.SecureLogHandler - SecureLoggingMod
ule: action performed -> urn:AuthenticateClient

(...)

Figure 6: Example of Captured Traces for LOP Process

6.5 Passive Testing Results
The security rules described in Section 6.3 were evaluated in the

traces provided by SAP obtained from the point of observation de-
picted in the Figure 1. The security rules are defined using the
XML format supported by the passive testing tool (see figure 8 for
the first Nomad security rule), defining the types of events to in-
spect and evaluate in the trace. This file, in conjunction with the
trace file, where provided as input for the passive testing tool.

The verdicts obtained were PASSED for all the security rules, ex-
cept for three cases where the security rule number 2 was applied (2
INCONCLUSIVE verdict and one FAIL verdict) and for four cases
where the security rule number 4 was applied taking into account a
10 minutes timeout value (FAIL verdict). A more detailed review
of the tool output showed that the FAILED results of the fourth rule
actually correspond to false positive verdicts and correct events in
the trace were detected as errors by the experiment. Indeed, a mis-
take was embedded in the XML design of the security rule where
the timeout was assigned to 100 seconds and not 10 minutes.

The results obtained with the second security rule shows the dif-
ficulty, in some cases, of applying passive testing techniques to an

<rule name="NOMAD RULE 1">
<if>
<event reference="TRUE" verdict="FALSE">
<condition>
<variable>EventType</variable>
<operation>=</operation>
<value>StoreLoan</value>

</condition>
</event>

</if>
<then type="AFTER" max_skip="100" max_time="infinity">
<event verdict="TRUE">
<condition>
<variable>EventType</variable>
<operation>=</operation>
<value>CalculateLoan</value>

</condition>
<condition>
<variable>Processor</variable>
<operation>different</operation>
<variable type="REFERENCE">Processor</variable>

</condition>
</event>

</then>
</rule>

Figure 7: XML Format for The First Nomad Security Rule

application such as the LOP process. Indeed, at the beginning of
the captured trace, some operations are performed and the authen-
tication of users is not logged (but perhaps this authentication is
done before the beginning of the trace capture). This indicates that
the definition of the security rule is not sufficiently precise to be
relevant in the case of too short traces that do not provide all the
needed data information.

Notice also that the security rule number three was never applied
in the collected trace since no malicious was acting during the trace
capture.

In general the results of the experimentation showed that the
techniques used worked correctly on the captured traces and the
approach is suitable for applying on Web services such as the LOP
process.

7. CONCLUSIONS AND FUTURE WORK
Passive testing has shown to be well adapted to test systems, or

components, which are in operation in their real environment and
cannot be interrupted or disturbed. In this paper, we presented a
passive testing approach and its application for security checking
of web services based on the SOA architecture. In particular, the
passive testing is applied to a case study, the LOAN Origination
Process using BPEL workflow. The security properties have been

described using the Nomad language, well adapted to describe per-
mission, prohibition and obligations and includes time constraints.
The security properties to be evaluated have been provided by SAP
and their evaluation has been carried out using a passive testing
tool developed by Montimage. The implementation of the Loan
Origination Process has also been provided by SAP.

Several experiments have been performed on the service imple-
mentation. The application of these techniques showed that passive
testing techniques can be applied to industrial cases studies to help
improve the reliability of the proposed services and that the tech-
niques and tools are scalable.

As future work, we plan to explore and evaluate new types of
security rules in this framework. The XML representation of the
Nomad security rules need also to be refined to be able to express
and test more complex security rules. Regarding the passive testing
tool, we plan to adapt it to be able to analyze SOAP packets on-
line. This will also allow the tool to be used to detect that the
protocol exchanges occur as expected during the operation of the
Web service.

8. ADDITIONAL AUTHORS
No additional authors.

9. REFERENCES
[1] V. Atluri, S. A. Chun, and P. Mazzoleni. A chinese wall

security model for decentralized workflow systems. In CCS
’01: Proceedings of the 8th ACM conference on Computer
and Communications Security, pages 48–57, New York, NY,
USA, 2001. ACM.

[2] Business process execution language v2.0, 2007.
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf.

[3] F. Cuppens, N. Cuppens-Boulahia, and T. Sans. Nomad: A
Security Model with Non Atomic Actions and Deadlines. In
CSFW, pages 186–196, 2005.

[4] D. Georgakopoulos, M. Hornick, and A. Sheth. An overview
of workflow management: From process modeling to
workflow automation infrastructure, 1995.

[5] I. Grosclaude. Model-based monitoring of software
components. In R. L. de Mántaras and L. Saitta, editors,
Proceedings of the 16th Eureopean Conference on Artificial
Intelligence (ECAI), pages 1025–1026. IOS Press, 2004.

[6] M. B. Juric. Business Process Execution Language for Web
Services BPEL and BPEL4WS 2nd Edition. Packt
Publishing, 2006.

[7] M. Lallali, F. Zaidi, A. Cavalli, and I. Hwang. Automatic
timed test case generation for web services composition. Web
Services, European Conference on, 0:53–62, 2008.

[8] F. Montagut, R. Molva, and S. T. Golega. The pervasive
workflow: a decentralized workflow system supporting long
running transactions. IEEE Transactions on Systems, Man
and Cybernetics Part C - Applications ans reviews Volume
38 N3: Special issue on Enterprise services computing - May
2008, 2008.

[9] S. Narayanan and S. A. McIlraith. Simulation, verification
and automated composition of web services. In WWW ’02:
Proceedings of the 11th international conference on World
Wide Web, pages 77–88, New York, NY, USA, 2002. ACM.

[10] M. Pistore, A. Marconi, P. Bertoli, and P. Traverso.
Automated composition of web services by planning at the
knowledge level. In L. P. Kaelbling and A. Saffiotti, editors,
IJCAI, pages 1252–1259. Professional Book Center, 2005.

[11] G. Salaün, L. Bordeaux, and M. Schaerf. Describing and
reasoning on web services using process algebra. In ICWS,
pages 43–. IEEE Computer Society, 2004.

[12] Oasis standard: Reference model for service oriented
architecture v1.0, 2006.
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.html.

[13] Simple object access protocol 1.1, 2000.
http://www.w3.org/TR/soap/.

[14] World Wide Web Consortium. http://www.w3.org/.
[15] Y. Yan, M.-O. Cordier, Y. Pencole, and A. Grastien.

Monitoringweb service networks in a model-based approach.
Web Services, European Conference on, 0:192–203, 2005.

