
A platform for security monitoring of
multi-cloud applications

Pamela Carvallo12, Ana R. Cavalli12 and Wissam Mallouli2

1 SAMOVAR, Télécom SudParis, CNRS, Université Paris-Saclay, Évry, France
2 Montimage EURL, Paris, France

{pamela.carvallo, ana.cavalli, wissam.mallouli}@montimage.com

Abstract. This paper presents a security assurance platform to moni-
tor and control the security in the context of multi-cloud applications.
Indeed, this property is a crucial issue in multi cloud-based environments
where many aspects need to be faced, including risk management, data
privacy and isolation, security-by-design applications, and vulnerability
scans. Moreover, it also becomes necessary to have an efficient system
that interrelates and operates all security controls that are configured
and executed independently on each component of the system.
In addition, as new attacks emerge every day, threat detection systems
play a fundamental role in security monitoring schemes, identifying pos-
sible attacks. These systems handle an enormous volume of data, as they
detect unknown malware by monitoring different activities from different
points of observation, as well as adapting to new attack strategies and
considering techniques to detect malicious behaviors and react accord-
ingly.
In this paper, we describe a monitoring platform for securing multi-cloud
applications, from a Service Level Agreement perspective. Moreover, we
present a case study depicting the multi-cloud monitoring of a smart-city
transport application for the citizens of Tampere, Finland. Considering
the nature of the application under study, the service requires continuous
execution and availability functionalities, as end-users may utilize the
service at any time.

Keywords: Cloud Computing; Security monitoring; Service Level Agreement;
Threat Detection; Reaction.

1 Introduction

Monitoring is a solution that is required to control the correct operation of the
whole system running in a multi-cloud environment. According to the taxon-
omy proposed by [14] and [13], the term multi-cloud denotes situations where a
consumer (human or service) uses multiple, independent clouds, unlike to Cloud
Federations that are achieved when a set of cloud providers voluntarily intercon-
nect their infrastructures to allow sharing of resources among them. According
to the state of the art, few concrete multi-cloud solutions exist, topics addressed



A platform for security monitoring
of multi-cloud applications

P. Carvallo, A. R. Cavalli
and W. Mallouli

in research projects like MUSA, OPTIMIS, mOSAIC, MODAClouds, PaaSAge
and Cloud4SOA [6, 12]. It is out of the scope of this paper to offer a complete
survey of such activities. We suggest the interested reader the following works:
[14, 5, 20].

Malfunctioning or even minor problems in a Virtual Machine (VM) could in-
troduce vulnerabilities and stability issues to other VMs, as well as threaten the
integrity of the host machine. In this paper, the monitoring function is needed to
be able to precisely understand what is happening at network, system and ap-
plication levels, pursuing a twofold objective. First, a proper monitoring system
that improves the security in the communications and services offered by the
multi-cloud virtual environments. Second, from the administration and manage-
ment’s point of view, a system that helps to ensure the environment’s health,
guarantee that the system works as expected and respects its Security Service
Level Agreements (SecSLAs) [8].

In this context, we present a platform for monitoring multi-cloud based appli-
cations where each application component can be deployed in a different Cloud
Service Provider (CSP). The proposed platform architecture raises several chal-
lenges when fulfilling an end-to-end security monitoring of the application exe-
cution and communication at runtime. These efforts are due to the complexity
of cloud platforms that may consist of multiple layers and service paradigms
(SaaS, PaaS, IaaS) and therefore need a flexible monitoring management in a
distributed scheme.

To the best of our knowledge, no security monitoring solution has been de-
signed for such multi-cloud distributed systems. Consequently, the main con-
tribution of this paper is the design and deployment of a security assurance
platform that gives an answer to these challenges along with preliminary results
of a smart-city case study that provides efficient and optimal transportation to
the half-a-million citizens of Tampere, Finland. This paper extends our work in
progress paper [7], by presenting results of the performed experiments.

The paper is organized as follows. In Section 2, we present an overview of the
multi-cloud security assurance platform and describe each of its modules. Section
3 presents the workflow for an use-case in this platform. Section 4 presents the
related work on monitoring tools and threat detection systems. Section 5 gives
some elements for discussion of the exposed work and presents the conclusion
and future work.

2 The MUSA security assurance platform SaaS

The MUSA Security Assurance Platform (MSAP) is part of the MUSA project
framework, and is offered following the Software-as-a-Service (SaaS) model to
the Cloud Service Client (CSC). The MSAP ensures the security of the whole
application distributed across heterogeneous cloud providers. This platform inte-
grates and offers the MUSA monitoring service, the MUSA enforcement support
service and the MUSA notification service, all of them working together with
embedded security libraries. The monitoring service aims at evaluating the se-



A platform for security monitoring
of multi-cloud applications

P. Carvallo, A. R. Cavalli
and W. Mallouli

curity and functional measures gathered by the use of multiple mechanisms such
as standard APIs offered by the cloud provider or the security libraries. Further-
more, the monitoring service is able to trigger security alerts based on the event
rules defined by the Application DevOps team (Fig.1) following a SLA perspec-
tive. The notification service is in charge of sending the alerts to the CSC when
relevant security incidents have been detected, so the Application DevOps team
can react and adapt the application or the provisioned cloud resources if needed.
At the same time, the enforcement support service collaborates with the MUSA
security libraries to enforce the security protection of multi-cloud application
components.

2.1 The MUSA framework

The MUSA Framework relies on the MUSA H2020 project [1]. The main goal
of this framework is to support the security-intelligent life-cycle management of
distributed applications over heterogeneous cloud resources, through a security
framework that includes: a) security-by-design mechanisms to allow application
self-protection at runtime, and b) a reactive security approach, monitoring ap-
plication at runtime to mitigate security incidents, so multi-cloud application
providers can be informed and react to them without losing end-user trust in
the multi-cloud application.

Fig. 1. MUSA Framework workflow

The MUSA framework workflow is depicted in Fig.1. in three phases, where
each element of the global architecture of the system is presented. The workflow
begins when a CSC’s Application DevOps team uses the IDE module to specify
and design the multi-cloud application based on modeling techniques, taking



A platform for security monitoring
of multi-cloud applications

P. Carvallo, A. R. Cavalli
and W. Mallouli

into account (a) security requirements such as security embedded libraries for
security at runtime, as well as (b) functional and business needs by delivering
a composition of SLAs [8, 9] with respect to each cloud component. The second
phase is provided by the Decision support tool regarding cloud resource modeling
through a continuous discovery and categorization of cloud services from different
CSPs. Moreover, this module assists the Application DevOps team by selecting
the set of combinations of cloud resources that best matches with the multi-cloud
application functional and security needs. The third phase is the monitoring and
operational stage, provided by the MSAP.

2.2 The MSAP inputs

As mentioned previously, the MSAP fits the operation phase of the MUSA frame-
work and considers two main inputs from the previous modules, in order to work
properly:

– The Security SLA of the application to monitor: The MSAP recuperates the
single application components SLAs or the multi-cloud composite applica-
tion SLA. From single SLAs, the MSAP can monitor the security of single
components, and from composite SLAs it can check the end-to-end security
of the multi-cloud application taking the communication exchanges between
remote components into account.

– The application deployment plan: From this plan, the MSAP recuperates
the list of monitoring agents deployed with each application component as
well as their IP addresses. This information is vital to link the monitoring
agent with the application component to monitor the right security metrics
that are specified in the application component security SLA.

The MUSA workflow is composed, as demonstrated in Fig.2, of four main
steps that come after gathering and preprocessing data from different monitoring
agents. More details about these steps are provided in the next subsections.

2.3 Monitoring agents

Network monitoring agent Monitors a set of combined functionalities pre-
sented in the following list: (a) Data capture, filtering and storage (b) Events
extraction and statistics collection, and (c) Traffic analysis and reporting pro-
viding, network, application, flow and user-level visibility.

This agent facilitates network performance monitoring and operation trou-
bleshooting through its real-time and historical data gathering. With its ad-
vanced rules engine, the monitoring agent can correlate network events to detect
performance, operational, and security incidents.

System monitoring agent Monitors operating system resources which may be
the cause of server performance degradation, and spots performance bottlenecks
early on. The agent relies on Linux top command, which is frequently used by



A platform for security monitoring
of multi-cloud applications

P. Carvallo, A. R. Cavalli
and W. Mallouli

Fig. 2. A MSAP as a service instance general workflow

many system administrators to monitor Linux performance, being available in
many Linux/Unix-like operating systems. The top command is used to display
all the running and active real-time processes in an ordered list updating it



A platform for security monitoring
of multi-cloud applications

P. Carvallo, A. R. Cavalli
and W. Mallouli

regularly. It displays CPU usage, Memory usage, Swap Memory, Cache Size,
Buffer Size, Process PID, User, among others.

Application monitoring agent Monitors information about the internal state
of the target system, i.e., multi-cloud application component to the MSAP during
its operation. It notifies the MSAP about measurements of execution details
and other internal conditions of the application component. The application
monitoring agent is a Java library composed by two parts. The first is an aspect
to be weaved into the application code via pointcuts in order to send application-
internal tracing information to the MSAP for analysis. It is composed of a set of
functions that can be weaved in strategic application points to capture relevant
internal data. The second part connects the aspect with the notification tool via a
connector library, providing a simple interface for sending log data to the MSAP
in a secure way. In other words, the application monitoring agent is responsible
for extracting the information from the system, and the connector is in charge
of transferring it.

2.4 Preprocessing module

This module has a particular challenge, which is extracting the right information
from the collected data events provided by different monitoring agents and from
different CSPs, in order to build the correct usage profiles. Additionally, in real
cloud environments, periodic reports may be subject to loss or high latency,
due to the applications elasticity or VM-related features (e.g., restarting a VM,
rolling back). Therefore, this unit is meant to be dynamic, where features are
analyzed regarding time-based contextual information. This has the advantage
of decreasing the usage of resources for the analysis of large amounts of data,
therefore increasing the performance of the framework and reasoning detection.
Also following this direction, it is relevant at the moment of keeping a non-
redundant knowledge and behavior dataset.

2.5 Metrics and Threat analyzer

The detection module consists of two sub-modules: a Rule-based inspector and
a Behavior profiler, as shown in Fig.2.

The first relies on an engine that receives information events from the pre-
possessing module, regarding user’s access to non-authorized data, which are
checked against these permission rules. Additionally to this policy control, some
of the attributes obtained from the agents are inspected for specific pattern-
matching detection.

The second module also receives the preprocessed data and comprehends two
functions: the online learning and anomalies detection.

Most of the literature related to anomaly detection establishes a separated
two-stages process, where systems are trained with normal data for second-stage
comparison with new incoming information. This idea lacks dynamism, as cloud



A platform for security monitoring
of multi-cloud applications

P. Carvallo, A. R. Cavalli
and W. Mallouli

behavior may vary in mid-long term, and is highly dependent upon the nature
of the training data. Therefore, the proposed self-learning module is capable
of feeding and updating itself dynamically from new incoming data flows. This
system will discriminate if it is appropriate to feed itself or not, lowering the
possibility of training the engine with malicious activity as normal.

The model uses a semi-unsupervised learning, given the fact that new input
data has not been labeled yet and it needs to be classified on the basis of their
statistical properties only. The supervised component comprehends a smaller
labeled dataset created in a lab environment, which learns from known attacks.

2.6 Service Level Objectives (SLO) Manager

The SLO Manager is able to check measured metrics to assert which objectives
are useful in defining an anomalous behavior or a disrespected rule. The latter
is already paved since it consists of rules that are continuously checked, but the
challenge is designing criteria for stating SLO’s for abnormal activity.

2.7 Alert Manager and Countermeasures Manager

The agents implement a prevention and mitigation methodology through a set
of defenses, practices, and configurations prior to any attack, with the aim of
reducing the impact of such attack. These issues may be addressed by network
security, data protection, virtualization or isolation of resources.

The Incident handler responds to a policy-based alert and countermeasures
mechanisms, given the severity of the incident diagnosed. This corresponds to
the Alert Manager and Countermeasure Manager components from Fig.2. The
last module is intended to advise the CSPs and may consist in notifying the
administrator to roll back the composite application, replicating a database,
upgrading passwords complexity, disabling a specific user, among others.

The latter presents a crucial challenge because sometimes CSPs are unaware
precisely of the countermeasures to consider because there are no established
relationships between cloud components and their dependencies. This can be
solved by clarifying these relationships.

3 Case study: Service availability in smart-city
application

We studied the MSAP in the context of a multi-cloud platform for a smart city
application, as depicted in Fig.3. The TSM application (which stands for Tam-
pere Smart Mobility) with the exception of the mobile application, has an archi-
tecture which is distributed in nature. Thus, each of the TSM components are
decoupled and developed independently. This application utilizes resources, ser-
vices and information from the FMI (Finnish Meteorological Institute), Google
directions and the Tampere Intelligent Transport System and Services (ITS)
platform. The general schema is composed of:



A platform for security monitoring
of multi-cloud applications

P. Carvallo, A. R. Cavalli
and W. Mallouli

1. TSM Engine (TSMe): It is an orchestrator which receives requests from
different TSM components, analyses the requests according to several map-
pings, determines the appropriate TSM component required for processing
the request and forwards the request to it.

2. Component Journey Planner (MJP): It provides multi-modal and optimal
journey options based on the specified departure and destination points.
Journey options are provided for buses, cars, cycling and walking.

3. Component Consumption Estimation Calculator (CEC): It calculates the
energy needed to complete every journey option specified in the TSM ap-
plication via a mobile application. It provides this information in a user-
friendly way such as: the amount chocolate bars that would be burnt if the
user chooses to walk to his/her destination.

4. Component IDM: It handles user authentication and authorization, as the
security pillar of the entire TSM application. It authorizes the requests made
over the resources and services that each TSM component exposes.

Fig. 3. Topology for multi-cloud case study

Given the real-time requirement for this platform, we decided to study the
service availability metric, defined as a non-functional requirement, specified in
terms of the percentage of time a system or a service is accessible [16]. To monitor
service availability, we deployed dockers for each of the mentioned components
and implemented the topology in OpenStack. We collected events from the sys-
tem, network and application agents, and checked that the application processes
are operative. Additionally, this metric uses the active monitoring module of the
MSAP, in favor of checking the service availability from an end-user perspective.
This observation is helpful given the fact that the agent events may show the
service is running when it may not be visible from outside the cloud.

Continuing the MSAP flow, we parse the SLA and extract the SLO metric
for service availability, as described in Fig.3. This SLO is an individual example
which is instantiated for each component.

To assess the functionality of the MSAP, our testbed consisted in actively
shutting down a component of the system and checking visualization results,
alert notifications and countermeasures activations, through the dashboard front-
end. Fig.5a. and Fig.5b. correspond to the metrics presented in dashboard of



A platform for security monitoring
of multi-cloud applications

P. Carvallo, A. R. Cavalli
and W. Mallouli

<musa:SLO SLO_ID="1">

<musa:Metric>Service availability</musa:Metric>

<musa:SLOexpression>

<musa:oneOpExpression operator="ge (>=)" operand="99.9"/>

</musa:SLOexpression>

<musa:importance_weight>HIGH</musa:importance_weight>

</musa:SLO>

Fig. 4. SLO XML for service availability metric in TSM application

the MSAP, and contain all the monitored historical data regarding the service
availability metric. Detailed in Fig.5a., the first white part of the time slot in the
graph accurately presents the unavailability of service for several seconds (also
depicted as the orange portion of the pie chart). Additionally, Fig.5b. illustrates
the numerous notifications for all the period of evaluation.

The Countermeasure Manager module of the MSAP is in charge of using a
High Availability (HA) framework3 as a way of reacting to a possible alert or
violation of this metric. This HA framework, one of the security enforcement
mechanisms of the MUSA framework, is based on an open-source software built
around the Corosync/Pacemaker stack, patched and configured to work together
to bring clustering mechanisms to multi-cloud-based services. This framework
encapsulates each of the TSM application components (e.g., TSMe, CEC, IDM
and MJP) and handles the task of their deployment in a redundant way managing
thus different availability failures and proposing a fault tolerant system that
guarantees the availability of different TSM components.

4 Related work

From the monitoring perspective, current solutions to assess security can still
be used in virtualized network environments [2, 4]. Nevertheless, they need to
be adapted and correctly controlled since they were meant mostly for physical
and not virtual systems, and they do not allow fine-grained analysis tailored
to the needs of CSCs and virtualized networks. The lack of visibility, controls
on internal virtual networks and the heterogeneity of devices used, make many
performance assessment applications ineffective. On one hand, the impact of vir-
tualization on these technologies needs to be assessed. On the other hand, these
technologies need to cope with ever-changing contexts and trade-offs between
the monitoring costs and benefits involved. Here, virtualization of application
components facilitates changes, making it necessary for monitoring applications
to keep up with this dynamic behavior.

Solutions such as Ceilometer [2], a monitoring solution for OpenStack, pro-
vide efficient collection of metering data regarding CPU and network costs. How-
ever, it is focused on creating a unique contact point for billing systems to acquire

3 https://dspace.cc.tut.fi/dpub/handle/123456789/24492?locale-attribute=en



A platform for security monitoring
of multi-cloud applications

P. Carvallo, A. R. Cavalli
and W. Mallouli

(a) Visualization

(b) Notifications

Fig. 5. MSAP Dashboard

all of the measurements they need, and it is not oriented to perform any action to
improve the metrics that it monitors. Furthermore, security issues are not part
of the monitored features. StackTach [4] is another example oriented to monitor
performance for billing purposes by auditing the OpenStack’s Nova component.
Similarly, but not specifically oriented to billing, Collectd [10] gathers system
performance statistics and provides mechanisms to store the collected values.
A recent project from OPNFV named Doctor [3], focuses on the creation of a
fault management and maintenance framework for high availability of network
services on top of virtualized infrastructures.

In terms of security, OpenStack provides a security guide [15] with best prac-
tices determined by cloud operators when deploying their solutions. Some tools
go deeper to guarantee certain security aspects in OpenStack, for instance: Ban-
dit [18] provides a framework for performing security analysis of Python source
code; Consul [11] is a monitoring tool oriented to service discovery that also
performs health checking to prevent routing requests to unhealthy hosts.



A platform for security monitoring
of multi-cloud applications

P. Carvallo, A. R. Cavalli
and W. Mallouli

Also, threat detection systems in cloud-based environments usually enhance
security mechanisms by monitoring system’s health. They correspond to a hard-
ware device or software application that monitors activity (e.g., from network,
VM host, user) for malicious policy violations. Zbakh et al. evaluated in [19] sev-
eral Intrusions Detection Systems (IDS) architectures through proposed multi-
criteria decision technique, according to the above-introduced requirement to-
gether with few others such as: Performance, availability, scalability, secure and
encrypted communication channels, transparency with respect to end-users, in-
formation security policies as input to the architecture, accuracy including the
number of false positives (FP) and false negatives (FN) and detection methods
used, among others.

According to such literature, IDS architectures may vary if they are dis-
tributed, centralized, agent-based or collaborative [19]. Patel et al. [17] provided
an extended systematic-based study of intrusion detection systems, presenting
a classification with regards to response time, alarm management, detection
method, data collection type, among others. In general, these systems are de-
signed with the following modules: data capturing (Section 2.3) and preparation
(Section 2.4), which function as an input for the data analysis and detection (Sec-
tion 2.5). The latter functionality corresponds to the algorithms implemented to
detect suspicious activities and known attack patterns.

5 Conclusion and Future work

The MUSA Security Assurance Platform is proposed as a service that needs
to be deployed in the suitable CSP (or CSPs since we can divide the platform
into multiple components or micro-services). It offers a set security controls and
requirements according to the application needs. Moreover, the MSAP is able
to enforce the security of multi-cloud applications by executing the necessary
countermeasures to security requirements or to mitigate undesired issues. Its
real-time data collection and analysis, together with its virtualized (cloud-based)
nature, makes the MSAP a powerful tool to provide multi-cloud applications with
end-to-end assurance capabilities.

In detail, this platform presents several advantages, as includes techniques
to perform the monitoring of applications that are deployed over heterogeneous
cloud resources. It is also based in the concept of monitoring security metrics
from SLAs to detect potential deviations and trigger countermeasures to pro-
tect applications against attacks and anomalies. This service is available follow-
ing this link http://assurance-platform.musa-project.eu/ and a demonstration of
the tool for the presented use-case is available on You-Tube following this link:
https://www.youtube.com/watch?v=zc6p-0H9yFo.

As future work, we consider experimenting with an automatic deployment of
reactive countermeasures. Additionally, we plan on extending the set of security
metrics available for monitoring, by enhancing our monitoring agents and by
developing new techniques for detection in the Metrics and Threat Analyzer



A platform for security monitoring
of multi-cloud applications

P. Carvallo, A. R. Cavalli
and W. Mallouli

module. This last section will focus further on the detection of unknown threats
with anomaly-behavior detection techniques.

6 Acknowledgment

The work presented in this paper has been developed in the context of the MUSA
EU Horizon 2020 project [1] under grant agreement No 644429.

References

1. Musa project. http://www.musa-project.eu/, (Retrieved January 2017)
2. Openstack ceilometer. http://docs.openstack.org/developer/ceilometer/, (Re-

trieved January 2017)
3. Opnfv doctor. http://wiki.opnfv.org/doctor, (Retrieved January 2017)
4. Stacktach. http://stacktach.readthedocs.org/en/latest/index.html, (Retrieved

January 2017)
5. Lifecycle management of service-based applications on multi-clouds: a research

roadmap (2013)
6. Multi-Cloud: expectations and current approaches (2013)
7. Carvallo, P., Cavalli, A.R., Mallouli, W., Rios, E.: Multi-cloud Applications Secu-

rity Monitoring, pp. 748–758. Springer International Publishing, Cham (2017)
8. Casola, V., Benedictis, A.D., Modic, J., Rak, M., Villano, U.: Per-service security

sla: A new model for security management in clouds. In: 2016 IEEE 25th In-
ternational Conference on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE). pp. 83–88 (June 2016)

9. Casola, V., Benedictis, A.D., Rak, M., Rios, E.: Security-by-
design in clouds: A security-sla driven methodology to build secure
cloud applications. Procedia Computer Science 97, 53 – 62 (2016),
http://www.sciencedirect.com/science/article/pii/S1877050916320968, 2nd
International Conference on Cloud Forward: From Distributed to Complete
Computing

10. Collectd: http://collectd.org/, (Retrieved January 2017)
11. Consul: https://www.consul.io/, (Retrieved January 2017)
12. Ferry, N., Rossini, A., Chauvel, F., Morin, B.: Towards model-driven provisioning,

deployment, monitoring, and adaptation of multi-cloud systems. 2013 IEEE Sixth
International Conference on Cloud Computing (2013)

13. Global Inter-cloud Technology Forum: Use Cases and Functional Requirements for
Inter-Cloud Computing. Tech. rep. (2010)

14. Grozev, N., Buyya, R.: Inter-Cloud architectures and application brokering: tax-
onomy and survey. Software - Practice and Experience 44(3), 369–390 (2012)

15. Guide, O.S.: http://docs.openstack.org/sec/, (Retrieved January 2017)
16. Nabi, M., Toeroe, M., Khendek, F.: Availability in the cloud: State of the

art. Journal of Network and Computer Applications 60, 54 – 67 (2016),
http://www.sciencedirect.com/science/article/pii/S1084804515002878

17. Patel, A., Taghavi, M., Bakhtiyari, K., Celestino Júnior, J.: An intrusion detec-
tion and prevention system in cloud computing: A systematic review. Journal of
Network and Computer Applications 36(1), 25–41 (Jan 2013)



A platform for security monitoring
of multi-cloud applications

P. Carvallo, A. R. Cavalli
and W. Mallouli

18. Project, B.: http://wiki.openstack.org/wiki/Security/Projects/Bandit, (Retrieved
January 2017)

19. Zbakh, M., Elmahdi, K., Cherkaoui, R., Enniari, S.: A multi-criteria analysis of
intrusion detection architectures in cloud environments. In: 2015 International Con-
ference on Cloud Technologies and Applications (CloudTech). pp. 1–9. IEEE (2015)

20. Zeginis, C., Kritikos, K., Garefalakis, P., Konsolaki, K.: Towards cross-layer mon-
itoring of multi-cloud service-based applications. Lecture Notes in Computer Sci-
ence pp. 188–195 (2013)


