

RCIS 2013

7th IEEE International Conference on Research Challenges in Information Science

May 29-31 2013, Paris, France

Network Monitoring for Security Checking

Wissam Mallouli – Montimage RCIS industrial day – May 31st 2013 wissam.mallouli@montimage.com

What is network monitoring

- Process of observing or inspecting the network at different points
- With the objective of
 - Drawing operation baselines
 - Produce reports
 - Notify on abnormal operation
 - Provide input to network management

- Can be used to
 - Understand the behavior of the network
 - Network planning & resource optimization
 - Detect faults and abnormal operation
 - Network security (Intrusion & Attack Detection)
 - Performance, quality & SLA monitoring
 - CRM, Marketing
- Sit above traffic measurements
 - Gather traffic measures and performance/security indicators
 - Analyze and correlate the measures in order to make a diagnosis

Network monitoring: Basics

Need for network monitoring Diagnose & react

- Typical problem
 - Remote user arrives at regional office and experiences slow or no response from corporate web server
- Where to begin?
 - Where is the problem?
 - What is the problem?
 - What is the solution?
- Without proper network monitoring, these questions are difficult to answer

Network monitoring: Components

Deep Packet Inspection Based Monitoring

What is DPI Application classification Traffic attributes extraction

What is DPI

- Technology consisting of digging deep into the packet header and payload to "inspect" encapsulated content
 - Content may be spread over many packets

Why to DPI

• Network Visibility

- Understand how bandwidth is utilized
 - What is the application mix
 - Who is using what, where and when?
- Traffic Management (Application Control)
 - Block undesired traffic (spam, worms, etc.)
 - Prioritize and shape traffic (limit P2P, QoS, QoE)
 - Advanced policy enforcement
 - Zero Facebook, OTT services, per application policy rules
- Security
 - Understand network attacks
 - Core component in next generation firewalls
- Etc.

Inside DPI

- Group packets belonging to the same session
- Application classification
 - Detect application type (Skype, Bittorrent, etc.) or application family
 - Considered as the core of DPI
- Protocol decoding and attribute extraction
 - Parse the packet structure (this depends on the protocol & application)
 - Get protocol attributes (IP @, port numbers, ...)
 - Get session attributes
 - Events and attributes may involve different packets
 - Attached file of an email

From classification to attributes and events extraction

- Application classification is a first step towards accurate traffic information extraction
 - How can we get the HTTP method (Get, Post, etc.) if we don't know the type of the traffic
 - When the application type is known decoding becomes "easy"
- What are traffic attributes?
 - Meta-attributes: timestamp, data source etc.
 - Protocol field derived from the packet data: IP@, attachment size, encoding type, etc.
 - Flow parameter: packet mean size, inter-arrival delay, packets lost, reordered, etc.
 - The application class can be considered as a traffic attribute

Attribute extraction with DPI

• With the extraction capability, DPI can provide input for security analysis

• Imagine the network as a database and DPI as an engine to extract data from this database!

Network as a Database

 Select flow_id Where (application = email AND attachment is executable)

 Select user_id, perceived_quality Where (application = Video AND protocol = RTP AND perceived_quality < 1)

Security Monitoring with DPI Using MMT

- Abstract description
- Challenges
- Security properties

Security monitoring with DPI: Abstract description

- The concept:
 - Detect the occurrence of events on the network
 - Input provided by DPI
 - Event can be: packet arrival, HTTP POST request, etc.
 - Inspect and analyze the succession of events to detect properties
 - Property: Succession of events that are linked with "time" and "logical" constraints
 - If we detect event "A", then we MUST detect event "B" after 10 seconds
- The idea:
 - Monitor the network looking for the occurrence of properties.

Security monitoring using DPI: Abstract description

- Example: SQL injection
 - www.abcd.com/page?name=Select * Where 1
 - The events to be detected
 - HTTP GET request
 - URL parameter contains SQL statement
 - The property
 - It is not allowed to have a URL parameter containing SQL statement in an HTTP GET request
 - If the property is detected on the network then most probably there is an attack attempt!
- Nice Theory! But very challenging

Security monitoring using DPI

- Challenges
 - The number of events that can occur on a network is huge!
 - Solution: Use DPI for the events extraction
 - Group events/attributes by application and add new ones when needed
 - The expressivity of the properties (need to combine time and logical constraints)
 - Complex analysis and processing especially in high bandwidth links
 - Optimization techniques, multi-core implementations, smart traffic filtering

Properties Expressivity

Considering security monitoring, properties can be used to express:

- A Security rule describes the expected behavior of the application or protocol under-test.
 - The non-respect of the Security property indicates an abnormal behavior.
 - Set of properties specifying constraints on the message exchange
 - i.e. the access to a specific service must always be preceded by an authentication phase
- An Attack describes a malicious behavior whether it is an attack model, a vulnerability or a misbehavior.
 - The respect of the Security property indicates the detection of an abnormal behavior that might indicate the occurrence of an attack.
 - Set of properties referring to a vulnerability or to an attack
 - A big number of requests from the same user in a limited period can be considered as a behavioral attack

Properties Expressivity

- A security property is composed of 2 parts:
 - A Context
 - A condition to verify
- The "Context" and "Condition" of a property are composed of:
 - Simple events
 - Conditions on attributes (IP @ equal to 1.2.3.4)
 - Complex events linked by
 - Logical operators (AND/OR/NOT)
 - Chronological operator (AFTER/BEFORE)

Properties Expressivity

- A security property is composed of 2 parts:
 - A Context
 - A condition to verify

If an HTTP Response is received (this is the context)

Then an HTTP request should have been received **before** (condition to verify)

Montimage Monitoring Tool (MMT)

Thales Case Study: Ad-hoc waveform networking protocols

- Technical challenges
 - Automatic network : no initial planning
 - Network continuity whatever are the stations in the network
 - "on the move" automatic network re-organization and operation
 - End-to-end heterogeneous user services transmission : voice, messages
 - Decentralized mesh network. no Base Station
 - Nodes collaborate to ensure connectivity and participate in the routing task
- Main scope of radio protocol case study: vulnerability analysis based on over-the-air info exchanged at physical layer
 - Frames analysis, data alteration, replay, denial of service, tampering and misuse, and combination of the threats

Network threats and vulnerabilities

- Detection of potential attacks
 - Link spoofing, Data alteration, Flooding attack, Blackhole attack, Denial of service, Replay ...

Testing architecture

<u>SMARTESTING</u>

- Security test generation model and test purposes specification
- Generation of test scenarios denoting attacks using Certifyit
- <u>FSCOM</u>
 - TTCN3 test cases specification
 - Test execution using TT-Workbench

<u>MONTIMAGE</u>

- Specification of 19 security properties
- Client /Server architecture
- Notification of exchanged PDUs
- Parsing and extraction of relevant information
- Online analysis of captured PDUs and detection of attacks occurrences

Security Rules Specification : Example

- **Security requirement:** Every node must periodically send a notification message that includes the list of its neighbors on its allocated service slot.
- Attack scenario 1: A malicious node sends a message on a non-allocated service slot. This provokes slot reallocation. If done repeatedly, it provokes denial of service.
- Specified security properties
 - If one node receives two successive MSG_SPHY_DATA_IND messages from the same source, then these two messages must to be separated by 50 slots (Prop 1).
 - If one node receives two MSG_SPHY_DATA_IND messages from different sources, then these two messages must have two different slot ids (Prop 2).

Analysis results: Attack Scenario 1

Security rules summary results

Id	Description		Ø	۲
1	SECURITY RULE: If one node reallocation, this property is	e receives two successive MSG_SPHY_DATA_IND messages from the same source, then these two messages must be separeted by 50 slots (in the case of slot s no longer correct)	24	8
2	SECURITY RULE: If one node property is no longer corre	e receives two MSG_SPHY_DATA_IND messages from different sources, then these two messages must have two differents time slots (in the case of slot reallocation, this ct)	0	0
3	SECURITY RULE: If node A r 4 periods (On	eceives from B an MSG_SPHY_DATA_IND message claiming A as a neighbor, then this means that A received from B at least 3 MSG_SPHY_DATA_IND messages in the last	12	5
4	SECURITY RUL 1	SECURITY_RULE: If one node receives two successive MSG_SPHY_DATA_IND messages from the same source, then these two messages must be separeted by 50 slots (in the case of slot reallocation, th property is no longer correct)	is	0
5	SECURITY RUL	EVENT 1: MSG_SPHY_DATA_IND message		0
6	SECURITY RUL	timeslot=000257		0
7	SECURITY RUL	MSG_SPHY_DATA_IND.SLOT_ID = 255	- 1	8
0		THALES_META.NODE_ID = 3	_	0
0	SECORITY KOL	MSG_SPHY_DATA_IND.ADDRESS_SOURCE = 1		0
9	SECURITY RUL	MSG_SPHY_DATA_IND.SLOT_TYPE = 0		8
10	SECURITY RUL	THALES_META.MSG_CODE = 8193		0
11	SECURITY RUL MSG_SPHY_DA	EVENT 2: MSG_SPHY_DATA_IND message		1
		timeslot=000297		1
12	SECURITY RUL	MSG_SPHY_DATA_IND.SLOT_ID = 295		0
13	SECURITY RUL	THALES_META.NODE_ID = 3		0
14	SECURITY RUI	MSG_SPHY_DATA_IND.ADDRESS_SOURCE = 1	- 1	0
14	SECONT I NOE	MSG_SPHY_DATA_IND.SLOT_TYPE = 0		0
		THALES_META.MSG_CODE = 8193		

Some Results

- A plugin for "data/fields values" extraction from collected messages has been developed for layer 2 protocols and services.
 - More than 20 messages are parsed.
- Identification of 5 attack types and generation of different test scenarios simulating intruder nodes.
- A set of 19 "security" properties have been specified and checked by Montimage
 - Mainly properties dealing with
 - the right order of messages
 - ensuring availability of specific fields
 - ensuring the right structure and length of transmitted messages
- <u>At least one security</u> property is violated for each attack occurrence

THANK YOU

Wissam Mallouli wissam.mallouli@montimage.com

Some of the material used in these slides come from the Internet

Thanks to "them"