
A qualitative evaluation of model-based security

activities for software development

Erkuden Rios
1
, Per Håkon Meland

2
, Shanai Ardi

3
,

Alessandra Bagnato
4
, Jostein Jensen

2
 , Wissam Mallouli

5
,

Fabio Raiteri
4
, Txus Sanchez

1
, Inger Anne Tøndel

2
, Bachar Wehbi

5

1 European Software Institute, Parque Tecnológico 204, 48170 Zamudio. Spain

{erkuden.rios, jesus.sanchez}@esi.es,
2 SINTEF ICT, Software Engineering, Safety and Security, NO-7465 Trondheim, Norway

{per.h.meland, jostein.jensen, inger.a.tondel}@sintef.no,
3 Department of computer and information science

Linköpings universitet, SE-58183, Linköping, Sweden

{shaar}@ida.liu.se,
4 TXT e-solutions S.p.A, Via Al Ponte Reale 5, 16100 Genoa, Italy

{alessandra.bagnato, fabio.raiteri}@txt.it,
5 Montimage, 39 rue Bobillot, 75013 Paris, France

{wissam.mallouli, bachar.wehbi}@montimage.fr

Abstract. Most of the reoccurring types of security problems can be solved by

known mitigations in most software products, preferably as early as possible

during development. Representing mitigation knowledge in form of reusable

security models will help developers in improving software security and

learning from past mistakes. This paper explains six model-based security

activities that can be integrated with most existing development processes,

along with the methods and results of a qualitative evaluation involving

software developers from the industry. The evaluation includes semi-structured

interviews and questionnaires based on the Technology Acceptance Model

(TAM).

Keywords: model-based security, software development, security engineering,

qualitative evaluation.

1 Introduction

As stated by Noopur Davis [1]: “...over 90 % of software security vulnerabilities are

caused by known software defect types. [...] the top ten causes account for about 75 %

of all vulnerabilities.” Therefore, in most systems it is possible to substantially

improve security by focusing on common security problems that can be solved in

similar ways in most software products. Our approach is to transform up-to-date

information on security problems and ways to mitigate them in the form of reusable

security models. These models are intended to help developers improve software

security and learn from past mistakes, and they can be accessed from within

development tools.

The purpose of this paper is to present a set of model-based security activities with

their supporting modeling formalisms. These activities were subjected to a qualitative

evaluation which we also explain and show the results from. All the work has been

performed in the context of the EU project SHIELDS [2], which is about reducing

known security vulnerabilities during software development by sharing security

models through a centralized repository [3].

The qualitative evaluation explained herein was performed at an early stage of the

project in order to get feedback from end-users to improve the security activities, the

associated models and the descriptions of both. The evaluation was performed by

selecting a set of software developers and security experts from some of the industrial

partners of SHIELDS. These were exposed to descriptions and examples of the

security activities, along with scenarios that describe the context of the activities

execution. The evaluation method is based on semi-structured interviews and a set of

questionnaires according to Technology Acceptance Model (TAM) [4].

In the next sections we explain the SHIELDS activities and models that have been

target of evaluation. We then describe the qualitative evaluation method and

summarize the feedback received from industry. This is followed by a discussion on

the methodology and the results. Finally, the paper is concluded along with plans on

our future work.

2 The SHIELDS activities

The SHIELDS approach is not intended to be a development process of its own, but

proposes six activities that can be integrated with most existing development

processes with as little extra overhead as possible.

These activities are shown as rounded rectangles in Fig. 1, where they have been

related to what is considered to be the most generic phases in any development

process, namely requirements, design, implementation and testing. Although the

SHIELDS activities are complementary, they are not strictly dependent on each other

and can be performed separately. This is similar to the seven touch-points or

principles for software security proposed by McGraw [5], but our activities are always

based on using security knowledge in the form of security models. We believe that

this benefits access and comprehension of the information, as well as the process of

sharing security information [6].

We will now briefly introduce these activities, but for a more thorough

walkthrough with examples the interested reader should refer to the publicly available

report on the SHIELDS Web site D1.2 Initial SHIELDS approach guide [7] (which

was the theoretical source used during the evaluation). The modeling formalisms

mentioned related to these activities are further explained in section 3.

Requirement ImplementationDesign Test

Selecting mitigation

strategies

Goal driven

inspection

Vulnerability driven

inspection

S
e

c
u

ri
ty

 e
d

u
c

a
ti

o
n

o
n

 v
u

ln
e

ra
b

il
it

y

c
a

u
s

e
s

Security goal and

vulnerability class

identification

Vulnerability Cause

Presence Testing

Fig. 1. SHIELDS security activities related to development phases

Security education on vulnerability causes is an activity not directly associated

to any specific development phase. Developers are hardly able to design, develop and

test secure systems until they understand the most common reoccurring security

issues and their causes [8]. An important step toward securing software products is to

raise security awareness of developers through the provision of up-to-date

information about known vulnerabilities. It is important that developers learn how

inadequate requirements, flaws in design, and mistakes in code can result in

vulnerabilities. This can be accomplished using Vulnerability Cause Graph (VCG)

[9], [10], which are graph structures that relate causes to vulnerabilities in a software

product. Using VCGs developers can develop an in-depth understanding of

vulnerabilities and their causes. This additional depth is crucial to be able to identify

solutions to prevent vulnerabilities in future software products and not to repeat same

old mistakes.

Security Goal and Vulnerability class identification is an activity that uses

threat models to identify both the security goals for the software and the potential

vulnerabilities that might occur in it. A developer creates his project specific threat

models by starting from generic ones and adding details specific of the project he is

working on, or by reusing more specific models from similar development projects

and adapting them to the current project needs. The threat models visually present

aspects that can be of threat to a software system or a component of a system. These

should be used to prioritize what is to be protected (and thus indicate security goals)

and identify relevant attacks that exploit commonly found vulnerabilities for this type

of system. Additionally, the models can show measures on how to mitigate the

threats. The modeling formalisms we use for threat modeling are attack trees [11] and

misuse cases [12].

Goal-driven inspections are manual inspections on different development

documents (not just source code) that check for indicators or evidences of the correct

implementation of security goals. The starting point for the inspection is a set of

identified security goals. A security goal, when met, contributes to meeting some

other security goal or ensures that one or more security properties desired by some

stakeholder hold. Security goals are closely related to security requirements and

policies, but goal-driven inspections can also be performed on the security

requirements documents themselves. The technique introduces a model named

Security Goal Indicator Tree (SGIT) [13] that describes in a tree-like structure the

indicators to check for a certain security goal and their relationships. A SGIT is

transformable into a Guided security inspection checklist [14] that consists of a set of

questions for the inspector to answer during the inspection, so that inspection

procedure is easily understandable and even non-security experts can perform it.

Vulnerability-driven inspections are manual inspections on different

development documents that aim at searching for vulnerability causes. These

inspections check for evidences in development documents that indicate that a

specific vulnerability is present. In order to guide these inspections for each

vulnerability class a Vulnerability Inspection Diagram (VID) model is used [15]. The

VIDs are a high level description of the inspections and are transformable into

Security Inspection Scenarios that explain in natural language the manual inspection

procedure in even a more understandable way. Both models can be understood by

non-security experts so they can perform the inspections.

Selecting mitigation strategies identifies alternative development activities that

can be performed in order to prevent vulnerabilities. There are usually a number of

alternatives that can be selected to address these security issues. The models that

describe the different alternatives are named Security Activity Graphs (SAG), which

show in a tree-like structure the different alternatives and their combinations. SAGs

are used by developers to select the activities that best fits their corresponding

development organization [16], [17].

Vulnerability cause presence testing is used to detect vulnerabilities in software

products. Here, we also utilize the VCGs by formally defining the information of

causes by creating Vulnerability Detection Conditions (VDCs) [7], which are then

used through testing tools to determine whether the vulnerability is present in the final

implementation.

3 The SHIELDS models and formalisms

The modeling formalisms supported by SHIELDS are both newly developed and

extensions to previously existing ones. Generally, the introduced extensions have

made it easier to add tool support and make the formalisms complement each other

through common concepts found in the various models. New formalisms have e.g.

been created to support model-based inspection at various stages of the development,

something we did not find covered in existing work. Improvements have also made it

possible to show how different types of models are related to each other.

In Table 1 we present an overview of the main modeling formalisms already

mentioned as the driving force of the SHIELDS activities.

Table 1. Overview of SHIELDS models and formalisms.

Modeling

formalism

Purpose Relation to other

models

Misuse case Get an overview of typical threats towards

functionality commonly found in software

systems, and common mitigating security

activities to these threats.

Provide input for finding

relevant attack trees,

VCGs, SAGs, SGITs and

VIDs.

Attack tree Get an overview of how an attacker can

achieve a specific attack goal, in order to

protect a system from such attacks. Attack

trees can be used to detail threats in a misuse

case.

Provide input for finding

relevant VCGs, SGITs

and VIDs.

Vulnerability

Cause Graph

(VCG)

Improve understanding of software

vulnerabilities by identifying a

vulnerability’s causes and their relationships.

Provide Causes and paths

leading to a vulnerability

that will allow defining

VDC. Can identify

SAGs.

Security

Activity Graph

(SAG)

Identify software development activities that

can prevent vulnerabilities by addressing

their causes.

A SAG is typically

associated with a cause in

a VCG or mitigation of a

threat in a misuse case or

attack tree.

Vulnerability

Detection

Condition

(VDC)

Describe system or application behavior in

order to detect causes of vulnerabilities in

the implementation and execution traces.

This information is then typically used by

testing tools to perform automated

vulnerability detection.

Derived or part of a

VCG.

Security Goal

Indicator Tree

(SGIT)

Describe indicators that can be examined to

find if a security goal has been correctly

implemented. The structured set of

indicators can then be used to guide

inspections.

Can be identified from

misuse cases and attack

trees. Can refer to

Security Indicator

Specialisation Trees.

Security

Indicator

Specialisation

Tree

Give more details on an indicator that can be

used for inspections, e.g. how to check for

this indicator in different document types

and on different platforms.

Connected to SGITs.

Guided Security

Inspection

Checklist

Provide an easy to use guide for how to

inspect whether a security goal has been

correctly implemented.

Used based on SGITs and

Security Indicator

Specialisation Trees.

Vulnerability

Inspection

Diagram (VID)

Guide inspections for a specific class of

vulnerabilities.

Vulnerabilities can be

identified by misuse

cases and attack trees.

Security

Inspection

Give concrete guidance as to how to perform

the actions described in a VID in order to

Identified by VIDs.

Scenario inspect for the vulnerability.

4 Evaluation method

In order to get early indications on the perceived usefulness and ease of use of the

security activities and related models, we have used a scenarios-based evaluation

method. The following text summarizes this method and the results from the

evaluation, but for a more thorough explanation, together with the actual

questionnaire forms and received answers the readers should refer to the publicly

available report D5.1. Results of First Evaluation of the Technical Work Packages

[18].

The goal of the evaluation was to get professional opinions on the following pre-

defined criteria:

- Level of usability of the activities, i.e. learning curve, ease of use, efforts in

the definition of security requirements and adaptation of existing procedures,

expected model interdependencies and lack of coherence.

- Expected impact on security and trust of the software produced when

performing the activities.

- Return on Investment (ROI) that can be expected when adopting the

activities in software development processes: expected gain in efficiency,

productivity and costs.

- Potential scalability problems when used in more complex systems

compared to the provided examples.

- Possibilities of reusing work (models) from other projects or other users.

- Possibilities related to adaptations and extensions to SHIELDS.

- Compliance with existing development processes currently used within the

organization.

The subjects of the evaluation were provided with two documents that described

the descriptions and examples of the activities and models [7] and a set of scenarios

showing the larger context of their use [19]. More documents from the SHIELDS

project were also made available in case the subjects felt that they needed more

details on the technical background of what they were evaluating, but these were not

mandatory reading. Additionally, a briefing was made for the participants to explain

the expectations from the evaluation and also to present some scenario walkthroughs

where example models were showed. During the evaluation, human guidance was

also available to assist and clarify any unclear parts of the documents.

The characteristic of the people we wanted for this evaluation were the following:

- Knowledgeable persons from industrial end-users in SHIELDS consortium

not having participated in creating what was to be evaluated.

- Security experts familiar with security best practices and tools, as well as

practical security reviews, threat analysis and preferably security modeling.

- Experienced software developers that are somewhat knowledgeable of

current “best practices” related to secure development.

- People with research experience within the field of software security, with

good knowledge of security-related sources of information (such as NVD

stats, CERT stats) and various threat level measurers.

Based on this we selected four participants, two from each participating

organization. The first organization (A) was an SME, while the second organization

(B) was a larger enterprise. The two organizations are located in different European

countries working on somewhat different types of development projects, but both

concerned about software security. From organization A two participants fit within the

description of “Software security expert and researchers (with good knowledge of

various security vulnerabilities and an interest in security techniques and models)”.

From organization B the two remaining were characterized as “Software developers

(involved in all phases of software development, from specification to maintenance)”.

The feedback from the participants was collected using a questionnaire based on

the Technology Acceptance Model (TAM) [4], followed by an interview performed

during a one day session meeting. The interview guide consisted of detailed questions

on particular scenarios, questions related to business indicators and improving the

SHIELDS activities and models. The questionnaire was tried out beforehand during a

pre-test on an independent security expert in order to make sure that they did not lead

to any misunderstandings. The interviews were also practiced on beforehand, and

performed by two different interviewers. Also four people were involved in the

evaluation to analyze the results and draw conclusions.

5 The feedback from the industry

In general, the evaluators (also called subjects of evaluation) found that the security

activities and models developed so far have a great potential of usability. To quote

one of the subjects; “SHIELDS technology can be applied in different fields where

high system reliability is needed (e.g. industry, telecommunication or medical

fields)”. It was also expressed that the techniques will be useful in “all development

phases, from system design to system implementation, test and monitoring”.

Nevertheless, subjects also felt that not enough material was given to evaluate the

methods completely, and although they agreed that activities will help in the detection

and avoidance of vulnerabilities, they did not see clearly if it will be easier to

eliminate vulnerabilities. An important point is that they hesitated to state that they

would actually use the activities unless it was already an integrated part of their daily

development process. In subjects’ opinion, the activities should probably be

performed by a security expert in the design phase, by a software developer in the

implementation phase and by both a security expert and software developer in the

testing phase.

To adequately support different types of users it should be possible to easily locate

the relevant information (models) that could be used for their particular tasks.

Eventually, it should be possible to limit the models and information that is available

for a given type of user. The profusion of different model types could make things

more difficult to understand for the users. One evaluator suggested that “it should be

possible to say that the more popular development processes are covered by

SHIELDS”.

Related to scalability, it was stated that based on the current documentation it was

difficult to see how the activities would perform in complex situations. It was

recommended that the SHIELDS activities should be designed so that complex and

critical systems can be targeted and more complex examples are presented when

describing the activities in the documentation.

As for possibilities for reusing work (models) from other projects or other users,

subjects believed that it would be possible to use a centralized database of known

security problems and models in future projects. The results of each project can be

considered as part of the information/models that the user has to collect to build a

complete security database. Additionally, SHIELDS can take profit from the existing

major security projects and vulnerability databases. Vice versa, a public API could be

created to let other systems use the centralized repository as input. Evaluators also

pointed out that statistics should be used to help users find the models and techniques

in the repository that are most popular to solve problems that are similar to their own.

The effort needed to feed repository with usage statistics should be reduced as much

as possible for users or they will be reluctant to provide them.

Concerning the perceived ROI of adopting the activities, evaluators asserted that

the prevention of expensive security flaws like loss of data and leak of sensitive

information was an important aspect that would make the adoption of the SHIELDS

activities profitable and would allow selling better value to customers. About the costs

of development, software developers will gain in efficiency and productivity since

they can easily find the relevant security information they need in a short period of

time. Using the activities should make it faster and simpler to do validation and

testing. Product maintenance should also become cheaper, thus improving customer

satisfaction.

One of the crucial factors that were pointed out is the necessity to complement the

activities with automation tools (at least during implementation and testing). The

evaluators believed that special attention should be given to building easy-to-use

interfaces for the users and well-defined API’s for integrating new tools. One

evaluator recommended supporting automatic and periodically analysis of software

products to detect whether any new vulnerability is introduced (when modifying the

product) or to take into account the new vulnerabilities information added to the

centralised repository.

Other suggestions were in the line of improving the description and/or content of

some of the usage scenarios or the documentation itself, mostly with examples that

show the reusability of the models in other projects and how external vulnerability

information databases and security tools can be integrated in the approach.

6 Discussion

There are a number of advantages of having performed a scenario-based evaluation

early in this research project, e.g. it helped to improve usability and to eliminate

misconceptions and lack of completeness in the activities and modeling formalisms

we are working with. Another important issue has been to verify that the scenarios

describing the use and context of the activities and models are realistic and achievable

in a real-world setting. The results have given us many indications on how to proceed,

such as the need for more complex examples when presenting the models and

activities. Simple school-book examples are good for basic understanding, but in our

case we need more realistic and detailed ones to show the benefits of adopting the

SHIELDS activities in development of complex systems.

The two major factors that reduce the significance of this qualitative evaluation

are:

1. The evaluation was mainly based on documentation of the SHIELDS activities

and models, but no real trial on using the models or performing the activities during

the development of a real application was carried out.

2. Only four people from two software companies participated, which is hardly a

number that provides substantial evidence.

Regarding the first factor, we chose to do it this way in order to introduce the end

users to the activities and models as early as possible. At the time of the evaluation,

the supporting tools were still very immature, which would probably have stolen a lot

of the attention of the evaluators. For the next evaluation the evaluators will make a

more hands-on test of the SHIELDS activities, models and supporting tools. This will

give them a better idea of which aspects of their work will be impacted and how, and

we expect to obtain richer feedback.

As for the second factor, the number is low, but we believe that we selected

representative candidates, and involving more people would probably not have given

us much more fruitful feedback. We saw from the results that the evaluators were

pretty much in agreement, which supports this assumption. The next evaluation will

of course involve more people so that we can support our work with more evidence

and measurements.

7 Conclusion and future work

The qualitative evaluation presented herein was performed during the first ten months

of the SHIELDS project (with a total duration of 30 months) on descriptive

documentation of the model-based security activities, examples and usage. As a

general conclusion from the evaluation, it is believed that adopting these activities

will bring benefits to the current software development processes used by the

software companies, helping developers to implement reliable software and eliminate

vulnerabilities in their products. There is a great interest in easy and efficient

solutions to guide developers during their tasks (i.e. conception, implementation and

testing) to improve the software security. The interest will be significantly improved

if the activities are supported by automation tools (especially during implementation

and testing), something which is a major goal of the project, but was not ready for this

evaluation.

The next evaluations within SHIELDS are planned for the end of phase 2 (June

2009) and end of the final phase 3 (June 2010). These will be both qualitative and

quantitative evaluations aimed at assessing the usefulness and easy of use when

actually performing the activities, including the practical appliance of models both

manually and through supporting tools. We will also evaluate creation/modifying

models through the use of the centralized model repository.

Acknowledgements

The research leading to these results has received funding from the European

Community Seventh Framework Programme (FP7/2007-2013) under grant agreement

no 215995. We would also like to acknowledge all the members of the SHIELDS

Consortium for their valuable help. Especially we would like to thank Professor

Nahid Shahmehri and David Byers from Department of Computer and Information

Science at Linköping University for their excellent work in the SHIELDS modelling

formalisms and security activities.

References

1. Davis, N.: Developing Secure Software, Software Tech News, vol 8, nr 2, 2005.

2. SHIELDS Project Consortium: SHIELDS Project Homepage, http://www.shields-project.eu

3. Meland, P.H., Ardi, S., Jensen, J., Rios, E., Sanchez, T., Shahmehri, N., Tøndel, I.A.: An

architectural foundation for security model sharing and reuse, Proceedings of the Third

International Workshop on Secure Software Engineering (SecSE), IEEE Computer Society,

Fukuoka, Japan, March 2009.

4. Davis, F.D.: Perceived usefulness, perceived ease of use and user acceptance of information

technology, MIS Quarterly 13 (1989) 319–340.

5. McGraw, G.: Software Security: Building Security In, Addison-Wesley, 2006.

6. Ardi, S., Byers, D., Meland, P.H., Tøndel, I.A., Shahmehri, N.: How can the developer

benefit from security modeling?, Proceedings of the Second International Conference on

Availability, Reliability and Security, ARES2007, IEEE Computer Society, pp. 1017-1025,

Vienna, Austria, April 2007.

7. SHIELDS Project: D1.2 Initial SHIELDS approach guide. Report 2009. http://www.shields-

project.eu

8. Howard, M.: Building more secure software with improved development process. IEEE

Security & Privacy, 2(6):63–65, 2004.

9. Ardi, S., Byers, D., Shahmehri, N.: Towards a structured unified process for software

security, Proceedings of the ICSE 2006 workshop on Software Engineering for Secure

Systems (SESS06), Shanghai, China, 2006.

10.Byers, D., Ardi, S., Shahmehri, N., Duma, C.: Modeling software vulnerabilities with

vulnerability cause graphs, Proceedings of the International Conference on Software

Maintenance (ICSM06), Philadelphia, USA, September 2006.

11. Schneier, B.: Attack Trees, Dr. Dobbs Journal, December 1999.

12. Sindre, G., Firesmith, D., Opdahl, A. L.: A reuse-based approach to determining security

requirements. In Proceedings of the 9th international workshop on requirements

engineering: foundation for software quality (REFSQ’03), Klagenfurt, Austria, 2003.

13. Peine, H., Jawurek, M., Mandel, S.: Security Goal Indicator Trees: A Model of Software

Features that Supports Efficient Security Inspection. HASE 2008: 9-18

14. Elberzhager, F., Klaus, A., Jawurek, M.: Software Inspections Using Guided Checklists to

Ensure Security Goals, Workshop on Secure Software Engineering, Fukuoka, Japan, 2009.

http://www.informatik.uni-trier.de/~ley/db/conf/hase/hase2008.html#PeineJM08

15.SHIELDS Project: D4.1. Initial specifications of the security methods and tools. Report

2009. http://www.shields-project.eu

16.Byers, D., Shahmehri, N.: Prioritisation and Selection of Software Security Activities,

Fourth International Conference on Availability, Reliability and Security, ARES 2009

(IEEE Computer Society ed.), Fukuoka, Japan, March 2009.

17.Byers, D., Shahmehri, N.: A cause-based approach to preventing software vulnerabilities,

Proceedings of the International Conference on Availability, Reliability and Security

(ARES08), Barcelona, Spain, March 2008.

18.SHIELDS Project: D5.1. Results of First Evaluation of the Technical Work Packages.

Report 2009. http://www.shields-project.eu

19. SHIELDS Project: D1.1. Initial architecture and requirements specification. Report 2009.

http://www.shields-project.eu

http://www.shields-project.eu/
http://www.shields-project.eu/
http://www.shields-project.eu/

