
Intrusion detection and attack tolerance for cloud

environments: the CLARUS approach

Georges Ouffoué1, Antonio M. Ortiz2, Ana R. Cavalli2, Wissam Mallouli2, Josep Domingo-Ferrer3,

David Sánchez3, Fatiha Zaidi1

1 Univ. Paris-Sud, LRI; CNRS Orsay, France

Email: {ouffoue, zaidi}@lri.fr
2 Montimage, Paris, France

Email: {antonio.ortiz, ana.cavalli, wissam.mallouli }@montimage.com
3 UNESCO Chair in Data Privacy, Department of Computer Engineering and Mathematics,

Universitat Rovira i Virgili, Av. Paisos Catalans, 26, 43007, Tarragona, Catalonia

Email: {josep.domingo, david.sanchez}@urv.cat

Abstract—The cloud has become an established and
widespread paradigm. This success is due to the gain of flexibility
and savings provided by this technology. However, the main
obstacle to full cloud adoption is security. The cloud, as many
other systems taking advantage of the Internet, is also facing
threats that compromise data confidentiality and availability. In
addition, new cloud-specific attacks have emerged and current
intrusion detection and prevention mechanisms are not enough
to protect the complex infrastructure of the cloud from these
vulnerabilities. Furthermore, one of the promises of the cloud
is the Quality of Service (QoS) by continuous delivery, which
must be ensured even in case of intrusion. This work presents
an overview of the main cloud vulnerabilities, along with the
solutions proposed in the context of the H2020 CLARUS project
in terms of monitoring techniques for intrusion detection and
prevention, including attack-tolerance mechanisms.

I. INTRODUCTION

Cloud computing, as a paradigm of distributed systems,
has emerged over the last decade. Following the definition
provided by the NIST [1], cloud computing enables organi-
sations to run applications (often referred to as services) on
a pay-as-you-go basis on top of reliable, highly-available, and
scalable software and hardware infrastructures referred to as
clouds. This new concept has revolutionised the IT industry
by considerably reducing production and operating costs for
companies. From a technical perspective, the cloud is the union
of two main concepts: grid computing and virtualization. Grid
computing enables the aggregation of distributed resources,
while virtualization provides the following three properties:
pooling, location independence, and elasticity.

Despite the various facilities offered by the cloud, security
remains the main Achille’s heel for its wide adoption. Cloud
infrastructures, like many others taking advantage of the Inter-
net, are also facing attacks on availability, integrity and con-
fidentiality of platforms and user data. Recently, new attacks
exploiting cloud vulnerabilities (such as VM escape, hacked
interfaces and APIs, account hijacking, etc.) are reducing the
effectiveness of traditional detection and prevention means
(e.g., firewall, intrusion detection systems, etc.) available in the

market. However these systems may not be sufficient to fully
ensure security in environments such as the cloud. Moreover,
they can only detect existing attacks (whose signatures exist
in viral bases) with relatively high rates of false positives and
negatives, while the cloud must be able to ensure a level
of safety even in the presence of unknown (non-previously
defined) intrusions.

Research on cloud security has been focused on the design
of secure protocols for exchanging messages that meet the
confidentiality, integrity and availability requirements [2]. Be-
cause of this limitation, a cloud system may fail to perform its
mission when an attack is successful, and it may be unable to
recover quickly. The work presented in [3] views security as a
system property that must be continuously managed during the
whole lifetime of a system. Research on attack and intrusion
detection systems has mainly focused on how to detect as many
attacks as possible, as soon as possible, and at the same time, to
reduce the false alarm rate. However, it has been increasingly
recognised that a variety of critical applications need to be
able to continue in operation or to provide a minimal level of
service even when they are under attack or have been partially
compromised; hence the need for attack-tolerant systems.

In this sense, the H2020 CLARUS project arises to pro-
vide an attack-tolerant framework to improve trust in cloud
computing while securely unlocking sensitive data to enable
new and better cloud services. The ultimate goal of CLARUS
is developing a secure framework for storing and processing
data outsourced to the cloud so end-users can monitor, audit
and control their stored data to regain trust in cloud computing.

The remainder of this paper is organised as follows: Section
II introduces an overview of some of the most common cloud-
based threats; the CLARUS project is presented in Section III;
Section IV provides a deep analysis of the security, metrics,
and monitoring mechanisms used in CLARUS. Section V
shows the intrusion tolerance mechanisms that will be de-
veloped in the CLARUS framework. Finally, conclusions and
future work are outlined in Section VI.



II. CLOUD BASED THREATS

The new threats introduced by cloud computing can be
classified as follows [4]:

A. Data leakage vulnerabilities

1) Data loss: mostly occurs due to malicious attackers,
data deletion, data corruption, loss of encryption keys, faults
in the storage system, or natural disasters [5]. Data loss
can have catastrophic consequences in the business, which
may result in bankruptcy [6]. Another source of data loss
are insecure interfaces and APIs (Application Programming
Interface) [4], [7]. Cloud Services Providers (CSPs) expose
APIs to third-parties to interact with their cloud services. In
fact, whether launching applications services (SaaS), deploying
their own applications (PaaS), or managing virtual machines
(IaaS), cloud consumers use these APIs. Since the APIs are
accessible from anywhere in the Internet, malicious attackers
can use them to compromise the confidentiality and integrity
of the enterprise customers [5].

2) Cache-based side-channel: the prowess of modern cryp-
tography led to the design of algorithms mathematically proven
robust and secure [8]. Although these algorithms are safe,
their software and hardware implementations may be prone
to attacks called covert-channel or side-channel attacks. A
side-channel attack uses communication means that are not
normally designed to leak the information [9]. These attacks
consist of two steps. First, a detailed analysis of the power
consumption, the electromagnetic emanation or any other
source is made. Then, the exploitation of this analysis gives
the attacker the ability to recover some bits of the encryption
keys. In the cloud, the main micro-architectural leakage source
is the cache. The first study that revealed cached-based side-
channel in cloud computing platforms was [10]. This method
permitted to execute a coarse-grained keystroke attack on the
public cloud platform Amazon Web Services (AWS) [11].

There are also other vulnerabilities such as unauthorised
access to data, data ex-filtration, denial of service, metadata
modification, data sniffing/spoofing, etc., that are also oriented
to get protected information from the cloud.

B. Virtualization vulnerabilities

Cloud computing leverages the concept of virtualization,
that usually enables a new software layer (hypervisor) atop
the operating system. However, virtualization introduces new
security concerns [12]:

• Detecting a virtualized environment: officially, a
virtualized platform acts as a real platform, but an
attacker has the possibility to detect if a machine is vir-
tualized by measuring some instructions at execution
time. Then, performing a comparison of the obtained
values with previous measurements, the virtualization
can be detected.

• Identifying the hypervisor: all of the hypervisors
have their own vulnerabilities and flaws. Normally a
cloud user cannot know on which hypervisor his/her

VMs are running. However a spy can identify the
hypervisor by using some specific instructions not well
supported by each kind of hypervisor.

• VM escape: bad configuration within the hypervisor
can break isolation between the hypervisor and the
host. A virtual machine could directly interact with
the host operating system. This would compromise all
the data stored in the affected virtual machine and can
affect other virtual machines deployed on the same
host.

• VM hopping: this kind of attack is based on a
virtual machine accessing other virtual machines. This
vulnerability allows remote attacks and malware to
compromise the overall virtual machine security, also
granting access for the attackers to the host computer,
the hypervisor and other virtual machines.

• Insecure VM migration: information related to cre-
dentials, personal data, and other sensitive information
can be retrieved by attackers in case of performing an
insecure virtual machine migration.

• Malicious VM creation: the creation of malicious
virtual machines constitutes a high risk for the system
since they can replace the legitimate virtual machines
offering similar services, but making a malicious use
of the exchanged data.

III. THE CLARUS PROJECT

CLARUS (http://www.clarussecure.eu/) is a H2020 Euro-
pean research project [13] that focuses on providing solutions
to the usual security and privacy threats that affect cloud
computing and hinder a franker migration by end users. By
developing a secure framework for the storage and processing
of data outsourced to the cloud and by increasing the users
control on the security and privacy of their data, CLARUS
aims at enhancing trust in cloud services. Regarding privacy,
end users will have the guarantee that no other than themselves
will be able to see or infer their sensitive data outsourced to the
cloud. Regarding security, users will be assured that no intruder
can hack the cloud and/or impersonate them and that no denial
of service will occur. By means of the solutions provided by
CLARUS, end users will be able to monitor, audit and control
their outsourced data without impairing the functionality and
cost-saving benefits of cloud services, which constitute the
main appeal for migrating to the cloud. The main innovation
provided by CLARUS is mainly focused on the development
(and adaptation) of security tools for cloud environments, and
on the integration of these mechanisms into a single proxy
that will provide the means to effectively bring security and
privacy to cloud-based data operations.

As shown in Fig. 1, the CLARUS solution is envisioned
as a proxy located in a domain trusted by the end user
(e.g., a server in his/her companys intranet, a plug-in in the
users device) that implements security and privacy-enabling
features towards the cloud service provider. To enhance pri-
vacy, CLARUS will implement a set of privacy-enabling
mechanisms to ensure that the users sensitive data are properly



Figure 1. CLARUS architecture

protected before they are outsourced to the cloud in a way
that cloud service functionalities are still preserved. To do
so, CLARUS relies and innovates on the current state of
the art on functionality-preserving cryptography [14], data
anonymization [15] and splitting techniques [16]. To enhance
security and users trust, CLARUS will also implement a set
of auditing and monitoring services, so that users can directly
supervise how data are being protected and detect security
threats. By means of constant monitoring, CLARUS will also
provide an attack-tolerant framework, so that potential security
breaches within the cloud can be dynamically detected and
appropriate mitigation measures can be activated on-line, so
reducing the effects of the detected attacks.

In this way, users privacy, security and trust can be signif-
icantly enhanced with respect to current cloud security solu-
tions, which are commonly located within the cloud platform
and compel customers to blindly trust cloud providers.

IV. SECURITY, METRICS AND MONITORING IN CLARUS

For CLARUS, monitoring represents a key tool to evaluate
the behaviour of the system, being able to supervise its correct
operation and to early detect any security and privacy issue.
This section presents a global overview about monitoring
mechanisms, requirements and data sources, illustrating how
they will be integrated in CLARUS, as well as a description
of those attacks that can be detected using monitoring mech-
anisms and the metrics that lead to the attack detection.

A. What is monitoring

Monitoring is the process of dynamically collecting, in-
terpreting and presenting metrics and variables related to a

system’s behaviour in order to perform management and con-
trol tasks [17]. The idea behind monitoring is to measure and
observe performance, connectivity, security issues, application
usage, data modifications and any other variable that permits to
determine the current status of the entity being monitored. By
keeping a constant view of the different entities, we can obtain
a real-time status of Key Performance Indicators (KPI) or
Service Level Agreements (SLA) compliance as well as faults
and security breaches. Monitoring can be performed in several
domains that include user activity, network and Internet traffic,
software applications, services and security. The monitoring
processes should not disturb the normal operation of the
protocol, application, or service under analysis.

A typical monitoring platform is basically composed of
three main elements:

• Monitoring probes: they directly collect data from the
sources to be further analysed by the analysis module.
Probes can be distributed in diverse locations of the
system (e.g., network, application, user side, etc.) in
order to obtain a global view of the system.

• Database: diverse databases can be used. Commonly,
one database is used to store the raw data gathered
by the probes, and other databases containing diverse
information (e.g., rules, security, performance) are also
consulted to correlate the collected data in order to
extract the required information.

• Analysis module: it contains the means to examine
the input collected by the probes, correlate it with
the information stored in the database and produce
an output that can be used for different purposes.

Additional components can be added with the aim of
performing supplementary tasks. For example, visualization
components may be used to show the requested statistics to
the involved actors.

B. Monitoring techniques

The general processes involved in monitoring are: define
the detection method to track and label events and measure-
ments of interest; transmit the collected information to a pro-
cessing entity; filter and classify the events and measurements
based on pre-defined criteria; and finally, generate decisions
associated to the results obtained after the evaluation [17].
Regarding how to collect events and measurements, monitoring
techniques can be classified into three main categories: active,
passive and hybrid approaches.

Active monitoring: the System Under Observation (SUO)
is stimulated in order to obtain responses to determine its
behaviour under certain circumstances or events. This tech-
nique permits directing requests to the concerned entities
under observation (see Fig. 2). However, it presents some
drawbacks. The injection of requests towards the SUO might
affect its performance. This will vary depending on the amount
of data required to perform the desired tests or monitoring
requests. For large amounts of data, the SUO processing load





A. Intrusion tolerance techniques

In order to enable attack-tolerance, and depending on the
individual circumstances of the attack and the system itself,
diverse techniques can be applied to keep the system operating
in the event of an attack:

• Redundancy and diversity: redundancy refers to the
extra reserved resources allocated to a system that are
beyond its need in normal working conditions. Whilst,
diversity means that a function should be implemented
in multiple ways, differently at different times.

• Voting: is used to resolve any differences in redundant
responses and to arrive at a consensus result based on
the responses of perceived non-faulty components in
the system. It has two complementary goals: masking
of intrusions, thus tolerating them, and providing
integrity of the data.

• Acceptance test: this issue usually consists of a
sequence of statements that will raise an exception
if the state of the system is not acceptable.

• Threshold scheme and distributed trust: the general
idea is to devise a method to divide data D into n

pieces in such a way that it needs at least k shares to
reconstruct original data D. Anything less, reveals no
information at all.

• Dynamic reconfiguration: reconfiguration after the
detection of an intrusion in traditional systems is
mostly reactive and generally performed manually by
the administrator, thus, involves some downtime.

• Indirection: the common goal of all indirection tech-
niques is to separate clients and servers by an addi-
tional layer that plays the role of protection barriers.

B. Mapping between attacks and countermeasures

Since attack-tolerance is the final objective, we should
recognize that identification of intrusion and attacks is a key to
obtain tolerance. In other words, intrusion and attack detection
of some form is required to provide intrusion attack tolerance.
In CLARUS, depending on the detected attack, the detection
will be made by the Montimage Monitoring Tool (MMT) [22],
and a series of countermeasures will be applied in order to
mitigate its effects. Table I shows the countermeasures that
will be applied by the CLARUS framework depending on the
detected attack.

C. How to approach intrusion tolerance in CLARUS

To date, there exist a number of solutions that provide
security for cloud systems using one or a combination of the
techniques we presented in Section V-A. However, there are
very few that are able to manage the intrusions and the attacks
and able to insure the reactions and countermeasures with
the aim of protecting the system and guaranteeing its normal
behaviour in hostile environments. The framework presented
in [23] leverages the MAFTIA framework for general intrusion
tolerance [24]. The detection relies on event analysis, while the

Table I. COUNTERMEASURES APPLIED IN CLARUS FOR EACH KIND

OF ATTACK

Attack Countermeasures

Access by unauthorised users Expelling of the unauthorised user; source IP

blocking; alarm for the administrator to manage

the IP blocking

Impersonation of authorised

users

Alarm to notify both the administrator and the

affected user; access temporary limited for the

affected user until credentials update

Insider attacks Immediate user expulsion; source IP temporary

blocking; notification to the users and administra-

tors

Access to trusted zone User expelling; alarm to the administrator; tempo-

rary close of the affected zone

Modification of metadata

stored in CLARUS

Warning to the user and administrator; temporary

user repelling; metadata restore; alarm to the ad-

ministrator

Man in the Middle attacks Module operation hold; alarm to the administrator

DoS/DDoS attacks Temporary new access blocking; warning/alarm to

the administrator

Data leakage Depends on the attack nature

VM escape Stop host; alarm to the administrator

VM hopping (jumping) Alarm to the administrator

Malicious VM creation Virtual machine creation stop; alarm to the admin-

istrator

Insecure VM migration Virtual machine stop; deletion in the destination

host; alarm to the administrator

Sniffing/spoofing virtual net-

work/links

User block; virtual network redeployment; Warn-

ing to the administrator

intrusion detection is based on threshold cryptography. After
the detection, the recovery module reallocates the VM running
on these hosts and the hosts are turned off. But, the main
bottleneck of this architecture is the performance overhead.

Other approaches have been developed to cope with
intrusion-tolerance. The work in [25] explores how to build
distributed systems that are attack-tolerant by design. The idea
is to implement systems with equivalent functionality that can
respond to attacks in a more safe way. As a result a number
of code variants are produced, which ensures the system will
be more resistant to attacks. In [26], the authors propose a
formalism based on graphs to model an intrusion tolerant
system. In this model they introduce system’s response to
(some of) the attacks.

In CLARUS, we propose to design an attack tolerant
system that integrates intrusion detection methods, diverse
defence strategies, and countermeasure techniques. To cope
with all these issues it is necessary to consider information
security as a permanent issue that needs to be managed in
order to obtain attack-tolerant systems.

We consider that a system is correct-by-construction if we
create a formal model of the system, derive some other models
from the first one, verify that the new models satisfy the global
security properties of the system and finally generate source
code according to the chosen model that face to the potential
attack. Fig. 5 illustrates our approach in which the original
formal model is adapted considering the measurements made
by the monitoring system.

The practical use of the proposed framework, techniques
and tools will be demonstrated and evaluated in real appli-
cation deployments. In particular, an eHealth and a Geodata
application will test the proposed approach.




