
Dynamic Deployment and Monitoring of

Security Policies

Jose-Miguel Horcas1, Mónica Pinto1, Lidia Fuentes1,
Wissam Mallouli2, and Edgardo Montes de Oca2

1 CAOSD Group, Universidad de Málaga, Andalucía Tech, Spain
{horcas, pinto, lff}@lcc.uma.es,

2 Montimage, 39 rue Bobillot Paris 75013, France
{wissam.mallouli,edgardo.montesdeoca}@montimage.com

Abstract. INTER-TRUST is a framework for the specification, nego-
tiation, deployment and dynamic adaptation of interoperable security
policies, in the context of pervasive systems where devices are constantly
exchanging critical information through the network. The dynamic adap-
tation of the security policies at runtime is addressed using Aspect-
Oriented Programming (AOP) that allows enforcing security require-
ments by dynamically weaving security aspects into the applications.
However, a mechanism to guarantee the correct adaptation of the func-
tionality that enforces the changing security policies is needed. In this
paper, we present an approach with monitoring and detection techniques
in order to maintain the correlation between the security policies and
the associated functionality deployed using AOP, allowing the INTER-
TRUST framework automatically reacts when needed.

Keywords: aspect-oriented programming, dynamic deployment, moni-
toring, security policies

1 Introduction

Future Internet (FI) systems encompass a set of pervasive computing devices
(e.g., smartphones, vehicles, wearables) always connected to the Internet and
continuously exchanging information with remote entities [1]. In order to ensure
that the exchange of information is performed securely, the development of such
systems requires the creation of a set of security mechanisms that are able to
protect the system against different threats that may arise. For instance, let us
consider the following case study: an Intelligent Transportation System (ITS)
application that dynamically recommends the speed limits for a road according
to climate conditions and to unexpected events like accidents or traffic jams,
collects the information sent by both the vehicle’s sensors (e.g., geolocation, cur-
rent speed) and the road side sensors (e.g., weather conditions, traffic status).
Then, using this information the new recommended speed limit is calculated
and notified to the driver on his On Board Unit (OBU). Some of the security
requirements that could be taken into account in the development of this ap-
plication are: (1) the user anonymity must be assured, otherwise, some users
will not agree to send their current speed and location; (2) only authorized users

subscribed to the service can send information to the ITS server and receive

recommendations,and (3) in some contexts (e.g., when a police car is pursuing
an offender) all the information sent by the police car should be cyphered in
order to hide the information from the infractors.

The main problematic of enabling security in FI systems is the heterogeneity
and dynamicity of the security policies that determine how the different parties
need to interact with each other. On the one hand, the security policies can be
heterogeneous because each user can customize his own security policies that
answer their security constraints and they can also be different from the security
policies expected by the applications. On the other hand, the security policies
can be dynamic and can change over time to adapt to new requirements, new
regulatory rules or new application contexts, for instance moving from one coun-
try to another. In this context, there is a lack of sufficiently rich techniques to
tackle the problem of security policy modeling, interoperability, deployment, en-
forcement and supervision. Moreover, focusing on dynamic security enforcement,
there is also a lack of solutions that allow the dynamic adaptation of security to
new application requirements and changes in the environment.

In order to solve these issues, the Inter-operable Trust Assurance Infrastruc-
ture (INTER-TRUST) framework [2] aims to deal with the problematic of en-
abling security in heterogeneous and pervasive systems, modeling secure interop-
erability policies with different constraints, and enabling the dynamic and secure
establishment of trusted relationships between systems [3]. The main contribu-
tions of the INTER-TRUST framework are the dynamic specification of security

policies, the dynamic deployment of security policies, the dynamic monitoring

of security policies and the fuzz and active testing of security policies. In this
paper we focus on the second and third contributions. The dynamic deployment
of security policies is performed by using one of the most used enhanced deploy-
ment mechanisms to inject dynamic behavior: Aspect Oriented Programming
(AOP) [4]. AOP is used to add/implement security aspects (i.e., anonymity, au-
thentication, integrity, encryption, etc.) to application components at runtime so
that applications can dynamically adapt their behavior for required/negotiated
security policies. However, the dynamic deployment mechanism can introduce
new vulnerabilities and security risks, and thus INTER-TRUST incorporates dy-
namic monitoring and testing techniques to obtain enriched information of the
system’s execution, which is used to verify the conformity with the implemen-
tations, ensuring a secure interoperability between systems. In this paper, we
present an approach to detect changes in the environment and checking that the
communicating parties respect the negotiated security policies by maintaining
the correlation between the security policies, the security aspects, and the secu-
rity properties of the monitoring tool. The dynamic monitoring of the security
policies allows FI applications to have a global understanding of the changes
performed at runtime and can automatically react to new risk or threats that
may arise. This approach represents a generic solution that can be applied to
many types of pervasive applications.

The rest of the paper is organized as follows. Section 2 explains the correlation
between the security policies, the aspects, and the security properties; and briefly

overviews the INTER-TRUST framework. In Section 3 we present our approach
to deploy the security policies and monitor that correlation. Section 4 evaluates
the overhead performance of our approach and Section 5 discusses related work.
Finally, Section 6 concludes the paper and presents our future work.

2 Correlation between Security Policies, Aspects and

Security Properties

The correct enforcement and dynamic adaptation of the security policies is based
on two cornerstones (see Figure 1). The first is the correlation defined between
the security policies that need to be enforced, the security aspects that are de-
ployed/undeployed in order to enforce those security policies and the security

properties that are activated/deactivated in order to check whether or not the
system is behaving according to the specified security policies. The second is
the monitoring at runtime of this correlation in order to detect any attack that
breaks it. These attacks could occur due to different kinds of security vulnera-
bilities (e.g., an attacker could send a huge number of legitimate requests to a
server to monopolize its resources), or due to those vulnerabilities that are intro-
duced by the dynamic deployment mechanism itself (e.g., a malicious aspect).
For instance, in order to monitor the correct deployment of the security policy
shown in Figure 1, with three rules that indicate that the system is required
to cypher the messages, to ensure the user’s anonymity and to allow only the
interaction of authorized users, a set of security properties associated with these
rules needs to be activated in the monitoring tool. In Figure 1 we have shown
an example of the security property that needs to be verified to ensure that the
messages are correctly cyphered. Also, for each rule in the security policy, a set
of aspects that fulfill the required functionality are deployed inside the applica-
tion. For instance, the encryption and decryption aspects are deployed to cypher
the messages, the authentication, privacy and pseudonymous certificate aspects
are deployed to ensure the user anonymity, and the authorization aspect are
deployed to provide user authorization. Finally, the application with the aspects
is monitored and the captured traces are sent to the monitoring tool that corre-
lates the deployment of the aspects with the security properties. Note that this
correlation must be maintained, both when the user joins the application for the
first time (i.e., after the deployment of the initial security policies) and also at
runtime, when the security policies are dynamically negotiated and adapted.

The modular architecture of the INTER-TRUST framework that implements
the correlation described is shown in Figure 2. In INTER-TRUST, security poli-
cies rely on the OrBAC model [5], and are first specified using a Security

Editor (e.g. MotOrBac [6]) and then negotiated between the different parties
(e.g. a vehicle and an ITS server in the context of a Vehicle-to-Infrastructure
communication) using a Negotiationmodule (see the Dynamic Specification
of Security Policies block in Figure 2). The negotiated security policies are
analyzed and interpreted by the Policy Engine and the Policy Interpreter

modules. These modules are responsible for identifying changes in the security
policies that require the security concerns deployed inside the application to be

��������	
�	�
��������	
�	 ������������������� ���������������
�	���������
 � ������ ��!���������������" !!##

$$!!!� % !!!
�%�������	
�	�
������ �
��
������ �
� ������
�&�	�
������'����'�!����
	�!(�
�&�	���� �����)		���%%��	��*	���	!��%��
���	&����
	�%(�
�&�	���!�+�
����,��
	������	��� ����,��
	������	& �����)&������� % ����,��
	������	& ����(�
�&�	� % �%���,��
	������	���
�%����� �
� !!!

�%����� �
��
��������
	�
��������
	 ����(�
�&�	���� �� �
�*��,����
�&�	� ����	
�	*��,����������������� ���*	&��������
	-� % !!!

�%�������
	�

1. Cyphering -> Encryption, Decryption.

2. Anonymity -> Authentication, Pseudonymous certificate, Privacy.

3. Authorization -> Authorization.

�������	& � ������.(/� �� ��&0'����1� �� ��&0'����2� �� ��&0���	����� ������	&0����2�
	&��0������	&���(�34��506476(4�5�

�� ��	 �������7�63�(� � ��	0����2� �������0���������� � ����!� ��	/�'��86�������09�:;#�%
�� ��	 �������7�63�(� � ��	0����<� �������0�����������������!� ��	/�'��89��0(�
�&�	;# $$

��=�����	��
��,���!7�+�
	" 8(�
�&�	���;#��2# $$ ���! �)�
��0�� � ��! �)�
��0��!2### $$
���!��&0	&����>?1@## $$ ���!������)'�;9��;# $$!!!�

!!!
�%������	&

LTL

Context, pursuit AND vehicle == police

DELAY, 1 second.

Encrypted communication,
 EventName == DSA_Encrypt AND
 Key-Type == X509 AND
 Same Vehicle AND
 ...

Aspectual Knowledge (XML format)

2! ��ABCD�EFG�6���
�" ��
�&�	" ���0'������# �*
BCD�EHI�BJ����" K�)�
��" 9��0��
�&�	���" '������" ������	# L
FMNBOFP����" 6���
�" K�)�
��# L
QBJ��GFP����" ��
�&�	" 9��0��
�&�	���# L
R�F����" ���" '������# !!

<! ��ABCD�EFG�K�)�
��" �������&'" �����# L !!!
S! ��ANFPM�IIFG�K�)�
��" ����" '������# L !!!

OrBAC

1. The system has the obligation to
cypher all the information that the
vehicle sends during a pursuit.

2. The system has the obligation to
assure the user anonymity when the
vehicle sends its current speed.

3. The system has the obligation to
authorize the users that send
information to the server.

Security
Aspects

Security
Properties

deployment

monitoring

activateSecurity
Policy

Fig. 1. Correlation of the security policies, the aspects, and the security properties.

adapted. Security policies are dynamically deployed, and/or adapted at runtime
using the Aspect Generation and the Aspect Weaver modules, which are in
charge of receiving the information generated by the Policy Interpretermod-
ule and of incorporating or eliminating the corresponding security aspects in the
application (see the Dynamic Deployment of Security Policies block in
Figure 2). Security aspects can be developed in any Java-based AOP language
such as AspectJ, Spring AOP, CaesarJ, or JBoss. The aspectual knowledge de-
picted in Figure 1 contains the functionality provided by the aspects for each
security policy and the join points where the aspects can be deployed.

DEVICE

INTER-TRUST Framework for Secure Interoperation

Testing for
Vulnerabilities

Detection

Monitoring
(Test & Operation

phases)

Dynamic
Deployment of

Security Policies

Dynamic
Specification of
Security Policies

Negotiation
Module

Policy
Interpreter

Aspect
Generation

Aspect
Weaver

Test Init
Module

Notification
Module

Context
Awareness

Application

Active
Testing Tool

Fuzz
Testing Tool

Monitoring
ToolSecurity Policy

Policy
Engine

Security
Editor

Fig. 2. Architecture of the INTER-TRUST framework.

Negotiated security policies are also sent to the Monitoring Tool in order to
activate/deactivate the associated security properties that control the fulfillment

of the security policies by the deployed aspects. Security properties are formally
described as conditions in sequences of events [7] based on Linear Temporal
Logic (LTL) to define security rules (i.e., rules that should be respected) or
attacks and misbehaviors [8]. The Monitoring Tool relies on an adaptation
of the Montimage Monitoring Tool (MMT) [9] which is an online monitoring
solution that allows a real-time network traffic, application, flow and user level
visibility to be provided. The Notification and Context Awareness modules
notify the Monitoring Tool about application’s internal events and changes
in the application context — e.g. network packets, battery of the device, CPU
consumption, etc. (see the Monitoring (Test & Operation phases) block in
Figure 2). Finally, different fuzz [10] and active [11] testing techniques are also
provided as part of the framework (Fuzz Testing Tool and Active Testing

Tool modules) in order to test the application’s security and robustness. During
the testing phase the MMT tool monitors the traces automatically generated
by the fuzz testing and active testing tools in order to simulate the application
behavior (see the Testing for Vulnerabilities Detection block in Figure 2).

In this paper, we focus on the dynamic deployment of the security policies
and on the monitoring phase, while the details of the dynamic specification of
security policies and the testing phases are beyond the scope of this paper.

3 Deployment and Monitoring Approach

Figure 3 provides a more detailed description of the dynamic deployment of
security policies (activities labeled 1, 2, and 3) and the monitoring mechanism
to maintain the correlation between the security policies, the security aspects,
and the security properties (activities labeled 4, 5, and 6).

3.1 Dynamic Deployment of Security Policies

When a security policy needs to be deployed inside the application at runtime
(activity labeled 1 in Figure 3) — e.g., due either to the initial deployment or
to a (re)negotiation of the security policy, the new security policy is sent to
the modules of the framework in charge of: (i) the Dynamic Deployment of

Security Policies, which will deploy/undeploy/reconfigure the aspects, and
(ii) the Dynamic Monitoring of Vulnerabilities, which will activate/deac-
tivate the corresponding security properties. In order to deploy the security pol-
icy, the Aspect Generation module receives a security deployment specification

(activity labeled 2) that is the result of interpreting the security policy and con-
tains the list of security aspects that must be deployed (woven), undeployed
(unwoven), and reconfigured (i.e., changing the configuration parameters such
as the digital certificate in an authentication aspect) within the application to
enforce the new security policy. The Aspect Generation module also receives
the required aspectual knowledge that contains the list of aspects available in the
aspect repository of the framework.

The Aspect Generation module performs a mapping between the required
security functionalities and the aspects that provide these functionalities. The

TUVWXYZ [\VY]\^YV_ \` abcVd^WeYcY]YdfTUVWXYZ Tdgc\UXdV] \` hdZb^Y]U i\cYZYdf

Monitoring
context

DEVICE

Aspect
Generation

Aspect
Weaver

2

Security
Deployment
Specification

3

Aspectual
Knowledge

4

APPLICATION

...

REPOSITORY OF SECURITY ASPECTS

Aspect1
jklmnop

Aspect2
jklmnop

Aspect3
qlrstujvw

...

Object1 Object2 Object3 ObjectN

Deployment
of aspects

Monitoring
Tool

Context
Awareness

Notification

7 8

6

Context
Change

Potential
Threat

xy

Monitoring
application

Trace Context
changeWeave/Unweave/

Reconfigure

z{|}~��

��{�|�

��||{��

�{�~��

���

�~��|�~�

���

Deployment
notifications

Security
Policy

1

5

Security
Adaptation Plan

{"protoName":"Inter-Trust",
 "protoId":10,"event":
 {"eventName":"Pursuing_DCL",
 "timestamp":1411471331917,
 "serviceId":1,"attributes":
 [{"Vehicle_id":"8766"},
 {"Vehicle_type"=="police"},
 {"Speed":"120"},
 {"Section":"11_SECTION"}]}}
{"protoName":"Inter-Trust",
 "protoId":10,"event":
 {"eventName":"DSA_Encrypt",
 "timestamp":1411471331927,
 "serviceId":1,"attributes":
 [{"Vehicle_id":"8766"},
 {"Speed":"120"},
 {"Section":"11_SECTION"},
 {"Object":"6a12876b6567"},
 {"key_type":"X509"},
 {"algorithm":"DSA"}, ...]}}
...
{"protoName":"Inter-Trust",
 "protoId":10,"event":
 {"eventName":"Rec_SPEED",
 "timestamp":1411471331937,
 "serviceId":1,"attributes":
 [{"vehicle_id":"8766"},
 {"Section":"11_SECTION"},
 {"Recommended_Speed":"134"}]}}
...

Sample trace

Fig. 3. Our approach for deploying and monitoring security policies.

output of this mapping is a new configuration that is analyzed to: (1) obtain
the differences between the new and the current configurations of the aspects
deployed within the application, and (2) generate a security adaptation plan with
the list of actions that must be performed over the aspects: weave, unweave, or
reconfigure. The security adaptation plan generated by the Aspect Generation

module is sent to the Aspect Weaver module that is in charge of executing the
actions by interacting directly with the aspects (activity labeled 3). The Aspect
Weaver module is a wrapper that translates the list of actions received as input
(which is specified independently of a particular AOP language/framework) to
the particular syntax of the AOP weaver being used. This means that we provide
different instantiations of the Aspect Weaver module for using different AOP
weavers, since the use of a unique AOP solution does not cover all the dynamicity,
expressiveness, and performance requirements that the applications may need
(e.g., AspectJ does not support runtime weaving).

Listing 1.1 shows an example of an encryption aspect using the AspectJ
language. The aspect defines two main pointcuts: encrypt (line 5) and decrypt
(line 6). Each pointcut defines the points where the messages will be encrypted
(line 2) or decrypted (line 3). To control the activation of the pointcuts we
use the if() pointcut constructor that AspectJ provides to define a conditional
pointcut expression which will be evaluated at runtime for each candidate join
point3. This mechanism increases the degree of dynamicity by coding patterns
that can dynamically support enabling and disabling advice in aspects [12]. In
our example, the AspectsStatus class contains the configurations and status

3 http://eclipse.org/aspectj/doc/released/progguide/index.html

Listing 1.1. Encryption aspect in AspectJ language.
1 public aspect Encryption {
2 pointcut sendCAMMessage (CAMMessage message) : execut ion (public ∗

ITSServer . send (CAMMessage , . .)) && this (Veh ic l e) && args (message) ;
3 pointcut receiveCAMMessage(CAMMessage message) : execut ion (public ∗

ITSServer . r e c e i v e (CAMMessage , Vehic le , . .)) && args (message) ;
4

5 pointcut encrypt (CAMMessage m) : i f (AspectsStatus . i sEnab led ("ENCRYPT"))
&& sendCAMMessage (m) ;

6 pointcut decrypt (CAMMessage m) : i f (AspectsStatus . i sEnab led ("DECRYPT"))
&& receiveCAMMessage(m) ;

7

8 Object around (CAMMessage m) : encrypt (m) {
9 ChyperingModule chyper = new ChyperingModule (AspectsStatus . getParams ("

ENCRYPT")) ;
10 CAMMessage chyperedMessage = chyper . encrypt (m) ;
11 proceed (chyperedMessage) ;
12 }
13

14 Object around (CAMMessage m) : decrypt (m) {
15 ChyperingModule chyper = new ChyperingModule (AspectsStatus . getParams ("

DECRYPT")) ;
16 CAMMessage c l earMessage = chyper . decrypt (m) ;
17 proceed (c l earMessage) ;
18 }
19 }

(enabled/disabled) of the aspects that are changed at runtime by the Aspect

Weaver module. The aspect defines two advice associated with the encrypt and
decrypt pointcuts: one for encrypting (line 8) and one for decrypting (line 14)
CAM messages. The advice use a CypheringModule object that provides the
functionality for encryption and decryption and is configured with the algorithm
and parameters indicated in the AspectsStatus class (lines 9 and 15).

Once the aspects have been adapted, the Aspect Weaver module notifies the
Monitoring Tool in order to inform about the status of the deployment (activity
labeled 5). That is, to notify whether or not the deployment was successfully
carried out and which aspects were deployed/deployed/reconfigured.

3.2 Dynamic Monitoring of Security Policies

In order to maintain the correlation between the security policies, the aspects,
and the security properties, the application and the aspects are monitored at
runtime by the Notification module. The Notification module reports the
application’s internal events (e.g., traces with state changes, error conditions,
timestamps, method status, etc.) to a monitoring server (the Monitoring Tool)
(activity labeled 7 in Figure 3). To operate at runtime, the Notificationmodule
is introduced into the target application as an aspect in the instantiation phase.
The target source code is annotated, using standard Java annotations, to specify
the measurement points (or meters) that generate the monitored data. These
annotations are also incorporated using AOP without manually modifying the
source code of the application. While the target application is operating, the
Notification module produces a stream of log messages. Measurement points
can be attached to classes, methods and attributes, and work on two different
levels of scope: local and recursive. Meters operating at the local scope level are
always marked by an annotation. Only annotated elements are effected by local

scope meters (e.g., calls to nested methods are not tracked). In the next scope
level, recursive monitoring, beside the annotated code, all code reachable through
control flow is monitored, up to the available call depth. Recursive monitoring
may cause a significant performance overhead, so this kind of monitoring should
be used by annotating only relevant data for security analysis. Call depth is
limited by the available source code, because static aspects operate by modifying
accessible source code. The instrumentation therefore does not penetrate pre-
compiled classes, such as .class files or system libraries.

Furthermore, the Context Awareness module notifies the Monitoring Tool

but, in contrast to the Notificationmodule, the Context Awareness monitors
changes in the environment (activity labeled 8) — i.e., contextual changes that
are external to the application such as packets over the communication network,
battery status of the device, CPU consumption, etc. Both traces and context
changes are sent to the Monitoring Tool that interprets them (activity labeled
8 in Figure 3) so it can react to changes or adapt the security rules with the
negotiation of a new security policy.

The right-hand side of Figure 3 shows an excerpt of a sample trace received
by the Monitoring Tool with three events generated from the Notification

module. For instance, the first event (event with name Pursuing_DCL) provides
the values of the attributes captured by the monitoring annotation. When the
first event arrives, the Monitoring Tool checks whether it fits one or more of the
events defined in the security property (Figure 1). In the example, the first event
received fits the event of the property event_id="1" that corresponds with a
change in the context. The second event received with the name DSA_Encrypt fits
the event event_id="2" of the property by checking the values of the attributes
received in the event with the boolean expression defined in the property. The
class object captured is an instance of the DSAEncryption aspect that is deployed
inside the application of the police vehicle and is using the DSA algorithm to
encrypt the messages. Other attributes such as the key and the type of the key
are also checked against the rule defined in the security property. As the two
events received have a delay of less than one second as defined by the security
property, the two events consecutively match the rules of the security property.
So, in this example the Monitoring Tool checks that the CAM messages sent
by the police vehicle are being encrypted in the context of a pursuit, and verifies
the correct deploying of the encryption aspect required by the security policy,
maintainig the correlation between the three parts. A non-match condition in
the boolean expression of the rules in the security property, for instance, if the
event with the name DSA_Encrypt does not occurr, or if the algorithm attribute
is different to DSA. This means the non-match of the entire security property,
and thus the detection of a gap in the correlation between the security policy,
the aspects and the security property.

4 Evaluation
We quantitatively evaluate the performance overhead of the dynamic deployment
of security policies and the dynamic monitoring of the application. Also, as part
of our participation in the INTER-TRUST project, the deployment modules

(the Aspect Generation and the Aspect Weaver)4, the monitoring modules
(the Notification and the Context Awareness)5 as well as the Monitoring
Tool6 have been used to implement a demonstrator of the project that provides
dynamic adaptation of security policies for two real case studies: the ITS case
study presented in this paper and an online electronic voting case study.

4.1 Performance of Deployment

The performance overhead of the deployment process considers the time from
the reception of a security deployment specification in the Aspect Generation

module to the execution of the adaptation plan by the Aspect Weaver. We con-
sider the number of aspects that need to be dynamically adapted (i.e., woven,
unwoven, or reconfigured) in order to fulfill the required functionality specified in
the security policy. The experiments were done on a laptop Intel Core i3 M350,
2.27GHz, 4 GB of memory, and with 1.7 JVM. Aspects were implemented in
AspectJ and Spring AOP. The results are summarized in Figure 4 where the
performance presents a linear increment of the overhead over the number of as-
pects. For instance, the adaptation process takes 320 milliseconds for deploying
20 aspects specified in the security policy. Reconfiguring aspects takes 20 mil-
liseconds more on average than deploying them, while undeploying aspects takes
15 milliseconds more than deploying them. The results indicate that adapting
security policies with AOP at runtime does not suppose a high overhead.

�

��

���

���

���

���

���

���

���

� � � �� ��

��

��������

���������	
����������

� ¡¢£¤¥ ¦§

¨£¦©ª«¬®§ª£¦

¯¦° ¡¢£¤¥ ¦§

Fig. 4. Performance of deployment security policies.

4.2 Performance of Monitoring

The performance overhead of the dynamic monitoring considers the time over-
head introduced at runtime when the Notification and Context Awareness

modules are integrated as aspects inside the application. We evaluated the time
overhead for generating the traces for the most expensive monitor annotation —
i.e., the recursive annotation that tracks all methods encountered by the control
flow from the annotated method. Figure 5 shows the time overhead based on the
number of join points captured. We can observe that the performance presents
a linear increment of the overhead over the number of join points while this
number is lower than 100. Then, from 100 join points, the increment is higher

4 https://github.com/Inter-Trust/Aspect_Generation/tree/demonstrator-version
5 https://github.com/Inter-Trust/Notification_Module
6 https://github.com/Inter-Trust/MMT_Security

but still linear. In all cases, the results obtained do not suppose a significative
overhead. For instance, monitoring 10,000 join points in the control flow of a
method takes 250 milliseconds on average. The analysis of the generated traces
is carried out by the Monitoring Tool which is independent of the application
and can reside in a different computer, and thus, the analysis of the traces does
not affect the application’s performance.

±

²±

³±±

³²±

´±±

´²±

µ±±

¶·

¸¹º»¼ ½º»¼¾·

�����������	
�������

¿ÀÁÂ ÃÀÁÂÄÅ

ÆÀÂÁÄÀÇÈÉ

Fig. 5. Performance of monitoring join points at runtime.

5 Related Work

The analysis of existing research work and standards in the domain of FI and
pervasive systems reveals a common problem: the inexistence of a proper secu-
rity framework to secure the communications flexibly and efficiently ([13, 14]).
In [13], the authors propose a framework for specifying, deploying and testing
access control policies independently of the security model. The main drawback
to this approach is that the generic meta-model only supports access control poli-
cies, and thus, it is not possible to specify and deploy other security concerns
such as integrity, encryption, or non-repudiation, as the INTER-TRUST frame-
work can. In [14], an Aspect Oriented Permission System (AOPS) for runtime
policy enforcement is presented. The policy decisions are based on the execution
history-based access control model (HBAC) [15] and implemented in AspectJ
following the Java permissions model but applied to AOP. Only security vul-
nerabilities related to access control permissions are considered (e.g., restricted
rights to read and modify attributes of the base system by the aspects). Also,
the approach assumes that the weaver as well as the execution environment
are trusted, and that the weaver protects against scenarios in which untrusted
aspects are incorrectly woven into the application code.

AOP vulnerabilities are well-known and have been identified during the de-
velopment activity [16–19]. In [16], the authors present bug patterns in AspectJ
and illustrate the symptoms of the patterns through examples. The security
risks in using AOP to develop secure software are analyzed in [17] from a pro-
gramming level point of view. An aspect permission system is also proposed to
address some of the issues identified (e.g., parameter alteration, invocation hi-
jacking, use of privileged aspects, etc.). In [18], the authors use a combination
of static code analysis and protection code generation during the development
phase. They focus on security vulnerabilities caused by missing input validation
— i.e., the process of validating all the inputs for an application before using
it. They analyze the source code and/or binary code without executing it and
identify anti-patterns that lead to security bugs. The unexpected vulnerabilities

that the dynamic weaving may introduce when the aspects are woven at runtime
cannot be covered with the static analysis. In [19], aspect orientation is used to
monitor the information flows between objects in a system for the purpose of
detecting misuse. That is, identifying behavior that is close to some previously
defined pattern signature of a known intrusion. The problem with misuse-based
detections is that the anomalies must be known in advance and cannot detect
new vulnerabilities at runtime.

Apart from monitoring, there are several techniques to perform dynamic de-
tection of failures in the deployment of security policies such as active testing [11]
(to validate the implementation by applying a set of test cases and analyzing its
reaction) or fuzz testing [10] (to detect unwanted behaviors or security violation
by using random or mutated inputs). However, although these testing techniques
are incorporated in the INTER-TRUST framework, these are not suitable to use
at runtime as monitoring can be, but are applied at the testing phase.

Finally, the modular architecture of the INTER-TRUST framework allows its
integration with different middlewares such as FamiWare [20] in order to provide
security and privacy to wireless sensor networks; and with security adaptation
services such as a MAPE-K loop approach [21].

6 Conclusions and Future Work
We have defined an approach to maintain the correlation between the security
policies that need to be enforced, the security aspects that are deployed/unde-
ployed in order to enforce those security policies and the security properties that
are activated/deactivated in order to check whether or not the system is behaving
according to the specified security policies. Our approach has been integrated
as part of the INTER-TRUST framework, however, it can also be applied to
many other types of pervasive systems in other contexts independently of the
INTER-TRUST framework, and can also be used to adapt other functionalities
implemented as aspects (not only security).

As for future work, we plan to complete our approach by dynamically gener-
ating the structure of the aspects and the security properties from the security
policies minimizing the aspectual knowledge needed to maintain the correlation.

Acknowledgment

Work funded by the European INTER-TRUST FP7-317731 and the Spanish
TIN2012-34840, FamiWare P09-TIC-5231, and MAGIC P12-TIC1814 projects.

References

1. Atzori, L., Iera, A., Morabito, G.: The internet of things: A survey. Computer
Networks 54(15) (2010) 2787–2805

2. FP7 European Project INTER-TRUST: Interoperable Trust Assurance Infrastruc-
ture. http://www.inter-trust.eu/

3. Ayed, S., Idrees, M.S., Cuppens-Boulahia, N., Cuppens, F., Pinto, M., Fuentes, L.:
Security aspects: A framework for enforcement of security policies using AOP. In:
Signal-Image Technology & Internet-Based Systems. SITIS (2013) 301–308

4. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-oriented programming. In: ECOOP — Object-Oriented Pro-
gramming. Volume 1241. (1997) 220–242

5. Kalam, A., Baida, R., Balbiani, P., Benferhat, S., Cuppens, F., Deswarte, Y.,
Miege, A., Saurel, C., Trouessin, G.: Organization based access control. In: Policies
for Distributed Systems and Networks. (2003)

6. Autrel, F., Cuppens, F., Cuppens, N., Coma, C.: MotOrBAC 2: a security policy
tool. Third Joint Conference on Security in Networks Architectures and Security
of Information Systems (SARSSI) (2008)

7. Morales, G., Maag, S., Cavalli, A., Mallouli, W., de Oca, E., Wehbi, B.: Timed
extended invariants for the passive testing of web services. In: IEEE International
Conference on Web Services. (2010) 592–599

8. Mallouli, W., Wehbi, B., de Oca, E.M., Bourdelles, M.: Online network traffic
security inspection using MMT tool. In: System Testing and Validation. (2012)

9. Wehbi, B., de Oca, E., Bourdelles, M.: Events-based security monitoring using
MMT Tool. In: Software Testing, Verification and Validation. (2012)

10. Howard, M., Lipner, S.: Inside the windows security push. IEEE Security Privacy
1(1) (2003) 57–61

11. Cavalli, A., de Oca, E., Mallouli, W., Lallali, M.: Two complementary tools for
the formal testing of distributed systems with time constraints. In: Distributed
Simulation and Real-Time Applications. (2008)

12. Andrade, R., Rebelo, H., Ribeiro, M., Borba, P.: AspectJ-based idioms for flexible
feature binding. In: Software Components, Architectures and Reuse (SBCARS),
VII Brazilian Symposium on. (2013) 59–68

13. Mouelhi, T., Fleurey, F., Baudry, B., Traon, Y.: A model-based framework for
security policy specification, deployment and testing. In: Model Driven Engineering
Languages and Systems. (2008)

14. De Borger, W., De Win, B., Lagaisse, B., Joosen, W.: A permission system for
secure aop. In: Aspect-Oriented Software Development. (2010)

15. Abadi, M., Fournet, C.: Access control based on execution history. In: Proceedings
of the 10th Annual Network and Distributed System Security Symposium (NDSS).
(2003) 107–121

16. Zhang, S., Zhao, J.: On identifying bug patterns in aspect-oriented programs.
In: 31st Annual International Computer Software and Applications Conference.
Volume 1 of COMPSAC’07. (2007) 431–438

17. De Win, B., Piessens, F., Joosen, W.: How secure is AOP and what can we do
about it? In: Software Engineering for Secure Systems. (2006) 27–34

18. Serme, G., De Oliveira, A.S., Guarnieriy, M., El Khoury, P.: Towards assisted re-
mediation of security vulnerabilities. In: 6th International Conference on Emerging
Security Information, Systems and Technologies (SECURWARE). (2012)

19. Padayachee, K., Eloff, J.: An aspect-oriented model to monitor misuse. In: In-
novations and Advanced Techniques in Computer and Information Sciences and
Engineering. (2007) 273–278

20. Pinto, M., Gámez, N., Fuentes, L., Amor, M., Horcas, J.M., Ayala, I.: Dynamic
reconfiguration of security policies in wireless sensor networks. Sensors 15(3) (2015)
5251

21. Horcas, J.M., Pinto, M., Fuentes, L.: Runtime enforcement of dynamic security
policies. In: Software Architecture. Volume 8627 of LNCS. Springer International
Publishing (2014) 340–356

